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Abstract 
Low-velocity impacts have a relevant importance for safety of 
laminated and sandwich composite structures, because they are 
highly susceptible to damage. In this paper, a 3D cost effective zig-
zag model is developed in order to efficiently simulate such im-
pacts. It a priori fulfills the continuity of out-of-plane stresses at 
layer interfaces, the continuity of stresses under in-plane variation 
of properties across undamaged and damaged regions and it is 
suitable for general boundary conditions. Its main advantage is its 
capability to accurately predict stresses from constitutive equations 
at a low cost, along with being refined across the thickness keeping 
fixed the number of unknowns. A modified Hertzian contact law 
that forces the target to conform to the shape of the impactor and 
the Newmark’s implicit time integration scheme are used for com-
puting the contact force time history. The progressive damage 
analysis is carried out using stress-based criteria. Non-classical 
feature, a continuum damage mesomechanic model is employed 
that accounts for the effects of local failures in homogenized form 
by modifying the strain energy expression. Fiber, matrix and de-
lamination failures are predicted using stress-based criteria, and 
then the modified strain energy expression is employed for compu-
ting stresses. Such modeling options enable to account for the 
residual properties as they are in the reality, as shown by the com-
parison with the damage experimentally detected. As shown by the 
comparison with experiments, a closed-form solution by the Ga-
lerkin’s method, obtained as a series expansion of trial displace-
ment functions, accurately simulates the contact force and the 
damage progressively accumulated. The results show the im-
portance of in-plane stress continuity for obtaining accurate predic-
tions. 
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1 INTRODUCTION 

Laminated and sandwich composites are increasingly used as primary structural components by 
virtue of superior specific elastic moduli, strength, energy absorption and dissipation properties. 
Higher speed, longer range, larger payloads, less engine power and better operating economy can be 
achieved using these materials. 

Owing to elastic moduli and strengths in the thickness direction that are much smaller than 
their in-plane counterparts, warping, shearing and straining deformations of the normal and out-of-
plane stresses rise that are responsible of local micro-failures and, consequently, of relevant loss of 
strength and stiffness. As the damaged area may increase in size under loading in service, till caus-
ing a premature failure, the basic requirement is that composites must carry the ultimate design 
load even when they are damaged. So, accurate numerical simulations are required to understand 
the effects of the damage accumulated in service. Manufacturers have found a high susceptibility to 
impact damage from dropped tools, vehicular collisions and to damage caused by drilling. A critical 
case for aircraft structures is impact from crushed stones during taxiing manoeuvres and take-off.  

The readers are referred to the papers by Richardson and Wisheart (1999), Morinière et al. 
(2014) and by Abrate (2001, 2014) for a comprehensive review of low-velocity impact studies on 
laminates. Methods for predicting delamination induced by low-velocity impacts are discussed by 
Elder et al. (2004). A review of numerical and experimental impact studies on sandwich panels, a 
discussion of their damage mechanisms and of failure criteria used in the simulations are given by 
Chai and Zhu (2011). An overview of damage models is also given by Garnich and Akula Venkata 
(2009), Liu and Zheng (2009) and Berthelot (2003). The damage analysis of honeycomb sandwich 
panels carried out by Horrigan and Staal (2011) is also cited as a relevant contribution in the field. 
A comparison of simulations and experiments is given by Hongkarnjanakul et al. (2013). The effects 
of stacking sequence on the impact and post-impact behaviour is shown by Aktas et al. (2013), 
those of the impactor shape are studied by Mitrevski et al. (2005). Multiple impacts are investigated 
by Damanpack et al. (2013) and Chakraborty (2007). The impact behaviour of different honeycomb 
core cells is shown by Yamashita and Gotoh (2005).  

The structural models play a central role in the simulation procedure, since they should accu-
rately describe the behaviour of composites requiring a low computational effort, as many iterations 
are required to solve the impact problem. An extensive discussion of structural models used in the 
simulations and extensive assessments of their performances are given by Chakrabarti et al. (2011), 
Chen and Wu (2008), Kreja (2001), Zhang and Yang (2009), Tahani (2007) and Matsunaga (2004).  

In a broad outline, three-dimensional finite element discretization (3D-FEA), refined plate mod-
els (R-M) and related plate elements are of interest for damage analysis. R-M can be further split 
into: Discrete-Layer models (DL) with a separate representation across each computational/physical 
layer, High-Order Layerwise models (HLW) based on a combination of global higher-order terms 
and local layerwise functions and physically-based zig-zag models (ZZ-F) with fixed degrees of free-
dom (d.o.f.) that a priori fulfil the displacement and stress continuity conditions at the material 
interfaces.  

3D-FEA, DL and HLW are inadequate for impact damage analysis of structures of industrial 
interest, as too large number of unknowns may overwhelm the computational capacity. Studies by 
Palazotto et al. (2000a), Kärger et al. (2007), Diaz Diaz et al. (2007), Icardi and Ferrero (2009) and 
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Oñate et al. (2012a, 2012b) have shown that ZZ-F and even equivalent single layer models (ESL) 
can be can be successfully used in order to save costs.  

Recent studies have shown that stress predictions as accurate as those by 3D-FEA and DL can 
be obtained using global-local models, as shown by Zhen and Wanji (2006, 2010), Wanji et al. 
(2007), Zhen et al. (2009), as well as incorporating zig-zag functions based either upon kinematic 
assumptions, e.g. Murakami (1986), or physical assumptions, e.g. Tessler et al. (2009, 2010) and 
Iurlaro et al. (2014). Accurate results have been obtained by Icardi and Sola (2014a, 2014b) using 
ZZ-F of the latter type, with fixed d.o.f. and variable kinematic, with a processing time and 
memory storage occupation comparable to those minimal of ESL. Although these features make 
such models suitable for low-velocity impact studies, no applications have been presented yet in 
literature. 

To contribute to fill the existing gap, in this paper a low velocity impact analysis is carried out 
using as structural model a refined version of the variable kinematic zig-zag model (VK-ZZ) with 
fixed d.o.f. developed by Icardi and Sola (2014a), having as functional d.o.f. the two in-plane dis-
placement components, the transverse one and the two shear rotations at the reference middle-
plane. So, the characteristic feature of this model is that its number of unknowns neither increases 
with the number of physical or computational layers (i.e. refining the representation across the 
thickness), nor with the number of constraints enforced. The present refined version of the VK-ZZ 
model makes continuous the stresses at the interfaces of undamaged and damaged regions, where 
material properties suddenly vary, not just across the thickness, i.e. at layer interfaces as in the 
former version.  

Zig-zag functions making piecewise variable displacements are incorporated in order to a priori 
fulfil the 3D stress contact conditions at the interfaces of physical/computational layers and of un-
damaged and damaged regions, as prescribed by the elasticity theory for satisfying equilibrium. The 
assumed displacements a priori satisfy the stress boundary conditions at the upper and lower 
bounding surfaces and general boundary conditions at the edges as well. The fulfilment of local 
equilibrium equations is enforced at selected points across the thickness, in order to define the coef-
ficients of high-order contributions of displacements that enable a variable representation from 
point to point.  

By virtue of an accurate representation of strain energy density, displacement, strain and stress 
fields obtained through a realistic representation of warping, shearing and straining deformations, 
the present model efficiently computes the stress field at each time step from constitutive equations, 
even when the constituent layers have distinctly different properties.  

To speed-up computations and to overcome algebraic difficulties, closed form expressions of its 
coefficients and zig.zag amplitudes are obtained once for all in terms of the 5 functional d.o.f. and of 
their derivatives using symbolic calculus. A C0 formulation of the model useful for developing effi-
cient finite elements free from nodal d.o.f. derivatives can be obtained from the present VK-ZZ 
model applying the technique as shown in Icardi and Sola (2014c). However, in the present paper 
this technique is left apart.  

The progressive damage analysis is carried out at each time step using stress-based criteria, ex-
tending a pre-existing damaged area at the previous iteration to the points where the ultimate con-
dition is reached at the next one, as customarily. Instead of guessing the residual properties of the 
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damaged area, they are determined using the continuum damage mesomechanic model by Ladevèze 
et al. (2006) that accounts for the effects of hard discontinuities in homogenized form through a 
modified version of the strain energy. The transverse cracking rate and delamination ratios are 
computed using the stress-based criteria at each step, then the homogenized energy that accounts 
for the damage is computed and used for evaluating stresses at each point. 

The modified Hertzian contact law of Icardi and Ferrero (2009) is adopted to compute the con-
tact force for laminates. The refined contact model by Palazotto et al. (2000b) that forces the target 
to conform to the shape of the impactor is employed to compute the contact radius at each time 
step when sandwiches are analysed.  

Hertzian contact is chosen being proven to be accurate by a plenty of studies (see, e.g. Yigit 
and Christoforou (1995) for laminates and Choi (2006) for sandwiches), nevertheless it was devel-
oped for isotropic media. A different alternative approach accounting for the heterogeneous nature 
of composites is that developed by Chao and Tu (1999). In this case, the contact stresses are de-
rived via an energy variational approach, accounting for three-dimensional boundary conditions and 
interlaminar continuity. Another alternative approach is developed by Zhou and Stronge (2006), 
where the load-indentation law of sandwiches is obtained via FEA (ABAQUS/Explicit) assuming 
the elastic face sheets and rigid-perfectly plastic the core. Application of these more advanced con-
tact models is left to a future study. 

The Newmark’s implicit time integration scheme is used in the present paper for solving transi-
ent dynamic equations, despite experiments have shown that low-velocity impact studies could be 
carried out also in static form (see, Li et al. (2012)). One practical reason for carrying out a transi-
ent analysis is that dynamic effects can be captured progressively increasing the impactor velocity, 
thus a unique scheme can be used for a wide range of applications. Another reason is that the com-
putational cost of Newmark’s implicit time integration scheme is not much higher of that required 
by a static analysis carried out at each load step in order to capture the evolving damage.  

Differently to paper by Icardi and Ferrero (2009), where non-linear strains of von Karman type 
are adopted, here the updated Lagrangian approach is chosen to efficiently account for geometric 
nonlinearity. Accordingly, the deformations at each new time step are obtained from the geometry 
of the structure at the previous step, not from the initial unloaded configuration.  

Since core crushing is governed by the properties of the cellular structure of honeycomb, it can-
not be appropriately accounted for by the present multi-layered VK-ZZ model that describes the 
core as a thick layer with homogenized properties. Therefore, the variable, apparent elastic moduli 
of the core while it collapses/buckles under transverse compressive loading are computed apart once 
for all through a detailed three-dimensional finite element analysis and provided to the VK-ZZ as 
variable properties at each load level, like in Icardi and Sola (2015).  

Numerical applications presented are aimed at assessing whether the in-plane stress continuity 
has a relevant bearing on results. To this purpose, the results obtained in closed form adopting a 
truncated series expansion of trial functions for the d.o.f. with and without in-plane continuity en-
forcement are compared. The sample case considered are those already investigated in Icardi and 
Ferrero (2009) or which experimental results giving the contact force time history and the damage 
detected using ultrasonic cartography in Icardi and Zardo (2005) are available. The comparison of 
the present results with those obtained by Icardi and Ferrero (2009) will also show the progress 
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obtained considering a damage mesomechanic model that accounts for the effects of hard disconti-
nuities in homogenized form. 
 
2 CONTACT FORCE MODELLING 

Since the literature shows that the contact pressure profile is less important than the load and the 
area over which it acts, the contact stress is assumed to be distributed according to the Hertzian 
law, like in homogeneous isotropic materials as:  
 

( )2 2( ) (0) 1 /   if  ( ( ) 0  if  )contact contactr r R r r Rs s s= - = >  (1)
 

In the former equation, contactR  is the radius of the contact area, while ( )rs , (0)s are the Hertz-

ian stress intensity at a distance r  from the center and at the centre, respectively. The impactor is 
assumed to be spherical, as no details regarding the real shape of the contact area and the real dis-
tribution of the force acting on it are available in the literature for other impactor shapes. The 
analysis of laminates is carried out assuming contactR  as a fixed variable, while for sandwiches it is 

computed at each step by forcing the target to conform to the shape of the impactor. 
 
2.1 Laminates 

In the loading phase, the contact force F is related to the indentation depth α through the contact 
stiffness Kc in standard form as:  
 

cF K ua=  (2)
 

A 3D Finite element analysis, here referred as PFEA-1 (see Figure 1) is performed apart once 
for all as a virtual material test (VMT) for determining Kc and Rcontact. A non-linear model (RA-
DIOSS -MAT25) is used to account for the failures occurring in the target structure, as described in 
section 3.  

The exponent υ is set in agreement with experiments in the literature. Also in the unloading 
phase 
 

0

0

q

m
m

F F
a a
a a

æ ö- ÷ç ÷= ç ÷ç ÷ç -è ø
 (3)

 

the exponent q is set according to experiments. In the previous equation, Fm is the maximum of the 
contact force, αm is the relative indentation depth at each loading and α0 is the permanent indenta-
tion. In case of bounces, the following reloading law is assumed: 
 

'
0( )pF k a a= -  (4)

 

Again, the contact stiffness k is computed by VMT accounting for contact stiffness degradation 
due to the damage arose in the loading phase. The exponent p is still set according to experiments. 
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The literature shows that υ= p= 1.5 and q= 2.5 is very often the most appropriate choice for lami-
nates. 
 

 

Figure 1: Stages of the procedure to solve the problem. 

 
2.2 Sandwiches 

A constant R contact being inappropriate for simulating sandwich panels with lightweight soft core, 
the iterative algorithm by Palazotto et al. (2000b) is applied to compute the contact radius, as it 
forces the impact area to conform to the shape of the impactor at any load increment. The problem 
is solved using a modified version of the Newton-Raphson method: 
 

( )( 1) ( 1) ( 1) 0i i i i
cS

d dd - - -é ù= - ¹ê úë ûK F  (5)
 

because the solution depends both on the current configuration, the previous history and local de-
formations can be quite large. The secant stiffness matrix [K(d)]S is computed using the VK-ZZ 
model of section 4. The symbols d (i-1) and δi

 represent the converged solution at the previous load 
increment Fc(i-1) and the residual force, respectively. The displacement amplitude vector d(i-1)

 is  
updated by Δdi in order to make the structure in equilibrium with Fci. Displacements are applied 
during iterations till the impactor and the indentation radii conform: 
 

( )( 1)i i i

T
d d d-é ù D =ê úë ûK  (6) 

 

( )
T

dé ùë ûK  being the tangent stiffness matrix computed using the VK-ZZ model. The updated vector 

of displacement d.o.f. di is computed as: 
 

( 1)i i id d d-= + D  (7)
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The process is repeated till the convergence tolerance is reached. The convergence tolerance is 
confronted with the percentage of variation of the solution, from the current to the previous itera-
tion using the norm of displacements 
 

( )2
i

n
j

n

d d= å  (8)

 

to compute 
 

1i i

i

d d

D

d

+é ù
ê ú-
ê úë û=  (9)

 

The iterative process is stopped when D ≤ 1 %. Once a converged solution is obtained, the fail-
ure analysis is carried out. 
 
3 DAMAGE AND POST-DAMAGE MODELLING 

Stress-based criteria with a separate description of various failure modes are used to estimate where 
the constituent materials are failed. 
 
3.1 Failure Criteria 

The 3-D criterion developed by Hashin and Rotem (1973) with in-situ strengths is used to predict 
the fibre and matrix failures. Tensile failure is ruled by: 
 

( )
2

11 2 2
12 13 112

12 13

1
1 ,  ( 0)

tX S

s
t t s

=
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 (10)

 

tX being the tensile strength of fibres, 12 13S =  the in-situ shear strength of the matrix resin and 11s , 

12t , 13t  the tensile and shear stresses acting on the fibres. Compressive failure is predicted by: 
 

11 11 ,  ( 0)cXs s= - <  (11)
 

cX  being the compressive strength of fibres. Matrix failure under traction is described by: 
 

2 2 2
22 33 2 12 13
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while under compression it is described by: 
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Delamination failure is predicted using the criterion developed by Choi and Chang (1992): 
 

211
2

1 1
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e D
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s ss ++

+ +
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 (14)

 

where 1 1n n
tY Y+ +=  if 0yys ³ , or 1 1n n

cY Y+ +=  if 0yys < , aD  is an empirical constant that is 

set after consideration of the material properties, ijs is the average stress at the interface between 

the nth ply and the n+1th ply:  
 

1
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The symbol ‘i’ stands for in situ, while ‘t’ and ‘c’ stand for traction and compression, respec-
tively. This criterion is chosen because numerical tests in literature have shown its accuracy for 
laminates undergoing low velocity impact loading. 

The failure of honeycomb core under compression and transverse shear is predicted using the 
criterion by Besant et al. (2001): 
 

     ( 1)

nn n
yzzz xz

core core
cu lu lu

e e
ss s
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 (16) 

 

cus  and lut  being the core strengths in compression and transverse shear. It is assumed n = 1.5, 

since numerical tests in literature have shown that results are quite accurate. However, results do 
not considerably vary changing the exponent from 1 to 2. 

The failure of foam core is estimated according the rule suggested by Evonik for Rohacell core 
(see Rohacell (2011) and Li et al. (2000)), using as safety factor 11 / vR s : 
 

2 2 2
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where 1 11 22 33  I s s s= + +  and 
3
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Parameters 2
1 ( 1) /a k d d= - , 11 11/d R R- += , 2

2 ( / ) 1a k d= -  and 12 113 /k R R+=  are deter-

mined from experiments, while 11R
+ , 11R

-  and 12R  represent the strengths of the foam under traction 

compression and shear, respectively.  
Core crushing failure under out-of-plane normal and shear stresses is also predicted using the 

criterion by Lee and Tsotsis (2000): 
 

1 , 1 , 1yzzz xz
c x yZ S S
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cZ , xS , yS  being the compressive yield strength and the out-of-plane shear strengths, respectively. 
As both criteria (16) and (18) refer to honeycomb failure, the failed region is computed as the enve-
lope of failures predicted by each of these two criteria. Strengths and material properties assumed in 
section 5 are taken from material databases and from experiments published in the literature. 
 
3.2 Mesoscale Damage Model 

In order to account for the effects of hard discontinuities in homogenized form, the mesoscale dam-
age model (DML) by Ladevèze et al. (2006) is used that provides a modified strain energy expres-
sion from which stresses are computed. With this model, no factors are guessed to modify the ini-
tially health properties in the failed regions as the damage is simulated as it is in the reality inside 
energy functionals. 

DML replaces the discretely damaged medium containing matrix cracks, delaminations and fi-
bre failures with a continuous homogeneous medium, equivalent from an energy standpoint, whose 
strain energy expression incorporates damage indicators computed as the homogenized result of 
damage micromodels. Micro-meso relations, representing the homogenized result of micromodels, 
are derived from damage variables and associated forces. Displacement, strain and stress fields on 
the microscale are denoted as Um, εm and σm, respectively. These quantities are expressed as the 
sum of the solution of a problem P  in which damage is removed and the solution of a residual 
problem P  where a residual stress is applied around the damaged area. The homogenized potential 
energy density of the generic ply is expressed as Ladevèze et al. (2006): 
 

1 22 12 33 2 22 12 33

2 22 2
33 3323 23 13 13

33 3 22 12
23 23 3

2
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ss s
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 (19)

 

The meaning of symbols is as follows: 22 12 23 13, , ,I I I I  and 33I  are the damage indicators, each 

defined as the integral of the strain energy of the elementary cell for each basic residual problem 
under the five possible elementary loads in the directions 22, 12, 23, 13, 33; 1[ ]M , 2[ ]M , 3[ ]M are 

operators that depend on the material properties, S  is the deformation, . +< > represents the 

positive part operator. The homogenized potential energy density of the generic interface is ex-
pressed as Ladevèze et al. (2006): 
 

1 2 3
13 23 33

1 2 3

2 (1 ) (1 ) (1 )j
p

j

E I I I

k k k

s s s

g

+ + +
= - - -

  
    (20)

 

1k
 , 2k

  and 3k
  being the elastic stiffness coefficients of the interface, 1I , 2I  and 3I  the three dam-

age indicators and jg  the deformation. The coefficients of stresses in equations (19) and (20) repre-

sent the elastic properties of the homogenized model equivalent to the discretely damaged real mod-
el. The damage is quantified in terms of cracking rate L Hr =  and delamination ratio e ht = , 
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which are damage variables that links the damage state to the loss of stiffness of the damage meso-
constituent, L  being the distance between two adjacent cracks, H  being the length of the crack 
across the thickness and e  being the length of the microcrack. Experiments show that the range of 
practical interest for r  is [0; 0.7] and for t  is [0; 0.4]. 

In this paper, the damage indicators are determined numerically through 3-D FEA VMT 
(PFEA-3). The elementary cell is discretized by 3-D elements once for all outside the time-loop 
cycle, considering discrete values of fibre failure and matrix cracking rates and delamination ratios 
of the elementary cell obtained at various load levels applying criteria (10) to (14). 

The modified elastic properties by the mesoscale model are provided to the VK-ZZ model that 
is used to carry out the analysis. The progressive failure analysis is performed at each time step 
applying criteria (10)-(18) under the forces provided by the contact model (1)-(9) and the modified 
elastic coefficients of the mesoscale model (19)-(20). The damage computed at the previous step by 
the criteria (10)-(18) is extended at the next step to the points where the ultimate stress is reached. 
Instead of carrying out the analysis at an infinite number of points, a discrete representation is used 
that identifies small square damaged cells of the domain over which the ultimate stress is reached or 
just passed (up to an assumed magnitude tolerance, see Fig. 9), in a fashion similar to that of finite 
elements. Accordingly, the domain is subdivided into fictitious small square cells, whose damage 
state computed at the central point is assumed constant over the area of the cell. A layer loop com-
putes the stresses across the thickness at the central point of each cell, which is used to carry out 
the damage analysis. Obviously, if the dimension of cell decreases, the accuracy and computational 
effort rise.  
 
4 THE VK-ZZ STRUCTURAL MODEL 

The VK-ZZ model, as developed by Icardi and Sola (2014b), is chosen as structural model. The 
displacement field is postulated to piecewise vary across the thickness as the superposition of con-
tinuous functions and layerwise functions having appropriate discontinuous derivatives at the layer 
interfaces. 

Here x, y represent the in-plane coordinates (the mid-plane is assumed as reference plane) and z 
the thickness coordinate (–h/2 <z< h/2), while u, v and w denote the elastic displacement compo-
nents in the directions x, y and z, respectively.  

The through-the-thickness variation of elastic displacements is assumed as follows:  
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 _

0 _

0 _

( , , ) , , , , , , , ,
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i c c ip
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 (21)

 
The explicit expressions of each contribution are given forward. In order to determine the struc-

tural response through a closed form approach, they are expressed as truncated series expansions of 
unknown amplitudes computed by solving the transient dynamic problem and assumed in-plane 
functions.  
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4.1 Linear Contribution 

It provides the basic linear contribution across the thickness and contains the five functional d.o.f. 
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 (22)

 
u0 (x, y), v0 (x, y), w0 (x, y), γx

0 (x, y) and γy
0 (x, y) respectively represent the two in-plane 

elastic displacement components of the points laying on the reference middle-plane, the transverse 
component and the two shear rotations at these points.  
 
4.2 High-Order Contribution 

They are aimed at refining the model across the thickness in the regions with step stress gradients, 
because they can vary the representation from point to point across the thickness: 
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 (23)

 
The expressions of 1xA … znA  are determined by enforcing the stress-boundary conditions at the 

upper and lower faces of laminated and sandwich plates: 
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 (24)

 
and the fulfilment of local differential equilibrium equations at discrete points chosen across the 
thickness:  
 

, , ,
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 (25)

 
So the expansion order can be increased adding more points. Please notice that the computa-

tions of Ax1 … Azn don’t imply adding new d.o.f. Symbols bi represent volume loading (e.g., inertia 
terms), while as customarily, a comma is used to indicate differentiation (for instance σzz,z repre-
sents the stress gradient of σzz across the thickness). 
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4.3 Piecewise Contribution 

These terms are aimed at a priori fulfilling the continuity of displacements and interlaminar stresses 
at the material interfaces through appropriate discontinuous derivatives across the thickness: 
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 (26)

 
Hk being the Heaviside unit step function (Di Sciuva (1985)) , i.e. Hk=0 for z < zk, while Hk=1 for z 
≥zk. The contributions to in-plane displacements Φx

k, Φy
k are similar to those postulated by Di 

Sciuva (1985) in order to fulfil the continuity of σxz and σyz at the interfaces between layers. The 
contribution Ψk to the transverse displacement is aimed at satisfying the continuity of σzz, while Ωk 
satisfies the continuity of the gradient σzz,z (see, Icardi and Sola (2014a)), as prescribed by the elas-
ticity theory (it directly follows from local equilibrium equations (25) and from conditions (24)). 
The contributions Cu

k, Cv
k and Cw

k restore the continuity of displacements where the representa-
tion is changed across the thickness through (23). In this way, all stress and displacement continui-
ty conditions are fulfilled. 

Summing up, the continuity functions are computed by enforcing the following set of stress con-
tinuity conditions:  
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 (27)

 
Algebraic difficulties are overcome using symbolic calculus (MATLAB® symbolic software 

package). As a result, expressions for Φx
k, Φy

k, Ψk, Ωk, Cu
k, Cv

k and Cw
k are computed once for all 

for any lay-up that speeds up computations. SEUPT technique, as shown in Icardi and Sola (2014c) 
can be applied for obtaining a C0 formulation that overcomes the presence of unwise derivatives of 
the d.o.f. in the expressions of continuity functions, so to develop efficient finite elements. 
 
4.4 Variable Piecewise In-Plane Representation 

These contributions are aimed at making continuous the stresses under in-plane variation of proper-
ties, namely crossing the interface between undamaged and damaged regions. They constitute the 
new contribution brought by the present paper.  

New zig-zag functions of the following form are added, in order to restore the continuity of 
stresses under a discrete in-plane variation of properties: 
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 (28)

 

The continuity functions j ku xq  make continuous xxs  in the x direction, while their counterparts 
j k
u yq  do the same in y. 

Functions j kv yq  are aimed at making continuous yys in the y direction, while j kv xq make it continu-

ous in x. In a similar way, j ku xl  and j kv yl  make continuous xys  moving in x and y; j kw xh  and j kw yh  

make continuous xzs , while, j k
w x¡  and j kw y¡  make continuous yzs . Each contribution 

1

s

j=
å  makes 

continuous the stresses in either x or y directions, while 
1

ln

k=
å  makes continuous the stresses across 

the thickness. Whether desired, the continuity of the gradients of order n of these stresses could be 
enforced considering power of order (n-1). Instead the in-plane continuity of σzz and of its gradient 
should not be enforced when in-plane discontinuity occurs.  

A former application of the idea discussed in this section was presented in Icardi and Sola 
(2015) for studying bonded joints (suddenly changing lay-up). In that case, the material variation 
was allowed only in one direction. Therefore (28) constitute a generalization of Icardi and Sola 
(2015). 

Also the continuity functions in (28) are computed using symbolic calculus through enforcement 
of the continuity of the chosen stresses. It could be noticed that just a fraction of second is required 
on a laptop computer, once their closed form expressions are obtained for the first time through 
symbolic calculus in a couple of minutes. 

As previously shown by Icardi and Sola (2014a, 2014b) the apparently cumbersome and time 
consuming zig-zag model (21)-(28) requires an overall computational effort for the analysis that is 
still comparable to that of the basic model as used by Icardi and Ferrero (2009) and by Icardi and 
Sola  (2016) with stresses computed by integrating equilibrium equations. 

A comparison of simulations with and without contributions (28) will be presented in order to 
show the effect brought by the in-plane continuity of stresses. A case previously studied in Icardi 
and Zardo (2005) with a less refined version of the simulation procedure will be retaken in order to 
show the progress obtained by refining the structural model and using the DML for the damage 
analysis. 
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4.5 Core Crushing Simulation 

With the VK-ZZ model, sandwiches are described in homogenized form as multilayered structures.  
In order to account for the core crushing mechanism, the technique developed by Icardi and Sola 
(2015) that accounts for the buckling of cell wall of honeycomb core is adopted.  

A detailed finite element analysis (PFEA-2) is carried apart once for all in order to compute the 
apparent elastic moduli of the core while it collapses/buckles under transverse compressive loading. 
They are determined as the tangent moduli at each load level from the average ratio of stresses and 
strains, then they are provided to the VK-ZZ model for the analysis. 

In PFEA-2, a detailed representation of the honeycomb structure as it is in the reality is em-
ployed. A rather refined meshing is used to discretize the cellular structure of core, because the 
prediction of micro-buckling phenomena requires a dimension of shell elements comparable to the 
wall thickness. An elastic-plastic isotropic material and a self-contact algorithm are used to prevent 
from interpenetration between the folds in the cell walls. The cell walls bonded together are mod-
elled using double shell elements. Criteria (16) and (18) reported previously are used to have an 
indication of the load range at which carrying out the analysis PFEA-2. Foam core is discretized by 
solid elements with nonlinear material behaviour derived from experiments and materials databases. 

In Icardi and Sola (2015), this technique was shown to provide accurate predictions for a varie-
ty of sample cases dealing with sandwich indentation whose experimental results are published in 
the literature.  

As PFEA-2 is carried apart once for all in order to determine the apparent elastic moduli of the 
core at each magnitude of transverse loading, the simulation of the core crushing mechanism while 
it collapses/buckles under the contact load is accounted for by the VK-ZZ model with a low compu-
tational effort at each time step and quite accurately, as it will be shown by the numerical results. 
 
4.6 Solution of the Structural Model 

Solution is found in closed form at each time step within the framework of the Galerkin’s method, 
assuming the functional degrees of freedom u0, v0, w0, γx

0 and γy
0 expressed as: 
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for clamped edges, or as: 
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for edges that are freely movable in the in-plane directions. 
At clamped edges, the mechanical boundary conditions 

 

  ;  x xz y yzQ dzdy Q dzdxs s
G G

= =ò ò  (30)
 

are satisfied by an appropriate choice of terms (23), Γ being the contour of the plate. Qx, Qy are 
assumed to be uniformly distributed over Γ when the edges are sufficiently far from the impact 
point located at the centre of the plate. This assumption is valid for large length side-to-thickness 
ratios. 

The dynamic governing equations in matrix form are obtained from (29) or (29’), then they are 
solved using Newmark’s time integration scheme. Once unknown amplitudes Amn, …, Emn are com-
puted at each time step, stresses are calculated and the damage analysis is carried out. 

The expressions of linear, secant and tangent stiffness matrices of the VK-ZZ model are deduced 
from (29) or (29’), once they are substituted in (22) to (28) according to Zienkiewicz and Taylor 
(2000). The consistent mass matrix of the VK-ZZ is computed considering the inertia contributions 
within governing functionals, like the dynamic version of the principle of virtual work. The con-
sistent mass matrix is used in the computations, because numerical tests using the mass matrix 
derived just considering displacements (22) have shown errors up to 10% in the first five eigen-
frequencies, with just a reduction of the processing time less than 15%. Hence, the use of a simpli-
fied matrix is left to a future study 
 
5 NUMERICAL RESULTS AND DISCUSSION 

The contact force time history for laminates and sandwiches and the damage predicted by simula-
tions are compared to experiments and to the results of previously developed zig-zag models and 
finite elements. The results of simulations are presented for different impact energies in order to 
assess: (i) which advantages are brought by the refined VK-ZZ model by the viewpoint of progres-
sive damage analysis; (ii) whether consideration of the effects of hard discontinuities (matrix crack-
ing, broken fibres and delamination) in homogenized form improves accuracy; (iii) whether consid-
eration of in-plane stress continuity has a significant bearing for the quality of results and, finally; 
(iv) whether the impact damage simulation can be successfully carried out in closed form.  

As no damage detections are available for sandwiches with laminated faces, except for a 
stitched one (see Potluri et al. (2003)), the comparison with experiments is limited to the contact 
force time history. Modelling of stitching (Icardi and Sola (2013)) could be applied, but as it repre-
sents an uncertainty source that could prevent from the assessments of (i)-(iv), it is left to a future 
study.  
 
5.1 In-Plane Stress Continuity 

In order to assess the capability of the VK-ZZ structural model to predict continuous stresses under 
sudden in-plane variation of properties (Figure 2), first the sample case of a two-material wedge is 
considered (Figure 3).  

The goal is to compare the in-plane variation of the shear stress σxy across the material discon-
tinuity to exact elasticity solutions by Hein and Erdogan (1971) and Yamada and Okumura (1983). 
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In this sample case, the variation of solutions in the transverse direction with respect to the 
plane x, y of Figure 3 has no relevance. Here just the in-plane shear stress is considered, being the 
one with the highest singularity strength at the corner interface. A Young’s modulus of 7.3 GPa 
and a Poisson’s ratio of 0.3 are assumed for the deformable sector, while a modulus larger by a fac-
tor 100 is assumed for simulating the rigid sector. 
 

 

Figure 2: Illustration of the interface where in-plane continuity is imposed. 

 

 

Figure 3: In-plane variation of the normalized in-plane shear stress for the two material  

wedge by the present model (inset: exact solution by Hein and Erdogan (1971)). 

 
The exact elasticity solution shows a strong stress concentration at the edge corners, which 

could produce a catastrophic failure in service when dissimilar materials are bonded or welted to-
gether. Hence the stress analysis should be carried out with the maximal accuracy at the interface 
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of materials with dissimilar properties. Figure 3 reports the in-plane variation of the shear stress σxy 
across the material interface normalized as follows: 
 

xy
xy

xyMAX

s
s

s
=  (31)

 

The present solution is obtained assuming a subdivision of the domain of the two half plates in-
to 16x16 subdomains whose side length is progressively reduced close to the corner interface. Within 
each subdomain, the variation of the functional d.o.f. of the VK-ZZ model u0, v0, w0, γx

0 and γy
0 is 

assumed to be linear (product of Lagrange’s polynomials in x and y). Hence, the continuity of the 
in-plane shear stress is enforced at the sides of subdomains by computing the appropriate expres-

sions of the continuity functions j ku xl  and j kv yl  appearing in Eq. (28). 

In this sample case, it is sufficient to enforce the continuity of σxy across the material disconti-
nuity line. For multi-layered materials, i.e. with different properties across the thickness direction z, 
the stress continuity should be simultaneously enforced at each interface through Eqs. (27) and (28)  
and at each point in x, y. Thus, this continuity should be enforced at the interfaces of undamaged 
and damaged regions and for all stress components excepted σzz. 

The results of Figure 3 show the capability of the VK-ZZ model to accurately reproduce the 
variation of the shear stress σxy across the interface even in this case. The present structural model 
is shown able to capture a continuous stress with a discontinuous gradient like in the exact solution.  

The strong stress concentration occurring at the interface of material with dissimilar properties 
shows the importance of enforcing the stress continuity under in-plane material discontinuity, as in 
impact damaged structures, to accurately evaluate stresses. The effective importance of in-plane 
stress continuity is further assessed in section 5.4 in a specific case for which the impact-induced 
damage is detected by ultrasonic cartography. 

In the next sections 5.2 and 5.3 the contact forces for laminates and sandwiches predicted at 
different levels of energy are compared to experiments. 
 
5.2 Contact Force of Laminates 

First, the sample case of a 230x127 laminated plate with a [45°/0°/-45°/90°]2s lamination scheme 
and with all the edges clamped is presented. The plate is subjected to the impact of a steel hemi-
spherical nose of 1.15 kg at different levels of energy (1.5 J and 2.5 J). Each of its 16 layers is made 
of AS4/3502 Graphite-Epoxy and its total thickness is 2.48 ± 0.0254 mm.  

The acceleration time-history is detected through an accelerometer mounted on the impactor 
nose and connected to a data acquisition system. The contact force time-history is obtained multi-
plying the impactor mass by the measured acceleration. Since the arm carrying the impactor nose 
follows a circular trajectory, attention has been paid to assure that the impact force is perpendicular 
to the impacted panel, as assumed in numerical simulations. A sampling frequency of 105 Hz is 
used.  

The results for this case by the present simulation presented in Figures 4 and 5 constitute a 
contemporaneous assessment of the contact force simulation, of the VK-ZZ model used to represent 
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the structural response and of the damage model, as they are simultaneously employed. So there is 
no possibility to separately ascertain these three contributions by the comparison to experiments.  
 

 

Figure 4: Comparison between simulated and experimental contact force (Sola (2016))  

for a laminated [45/0/-45/90]2s plate impacted at 1.5 J. 

 

 

Figure 5: Comparison between simulated and experimental contact force (Sola (2016))  

for a laminated [45/0/-45/90]2s plate impacted at 2.5 J. 
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The results of Figures 4 and 5 show the numerical simulation to be appropriate for this sample 
case, its results being in good agreement with experiments. Note that just 350 s are required to 
carry out the analysis on a laptop computer, thus the efficiency of the present simulation is proven. 
The results with and without enforcement of the target to conform the shape of the impactor are 
shown to be equivalent for this case, as the iterative algorithm of section 2.2 is unnecessary when 
laminates are analysed. 

In the subsequent sections, further tests are made considering other samples, with the aim of 
showing if accurate predictions can be always obtained by the present simulation technique.  
 
5.3 Contact Force of Sandwiches 

The experimental contact force time history detected by Kärger et al. (2007) is compared to that 
predicted by the present simulation, with and without enforcing the panel to conform to the shape 
of the impactor and by the previous model by Icardi and Ferrero (2009). The aim is to show that 
soft media requires the application of algorithm of section 2.2, as well as to show that accuracy is 
improved with respect to the previous structural model by Icardi and Ferrero (2009). 

The thin top face sheet (0.633 mm) is made of Cytec 977-2/ HTA. The thick bottom face sheet 
(2.7 mm) is made of CFRP fabric plies and UD tapes, with a [(0°2/45°/90°/-45°)s]s lay-up. The core, 
which is 28 mm thick, is made of NOMEX 4.8-48 honeycomb. This sandwich panel is completely 
supported at the edges and it is impacted by a steel sphere with energy of 8 J, having a diameter of 
25.4 mm carried by an impactor with a mass of 1.10 kg. 
 

 

Figure 6: Contact force for a sandwich plate impacted at 8 J by experiment by Kärger et al. (2007),  

the present model and the previous model by Icardi and Ferrero (2009). 
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The results of simulations reported in Figure 6 show that a quite accurate prediction of the con-
tact force is obtained at each instant of time only if: (i) the iterative algorithm of Section 2.2 that 
computes the contact radius at each step is considered; (ii) the detailed FEA representation of the 
core behaviour is carried out through PFEA-2, in order to account for the buckling of cell walls 
under transverse compressive loading, otherwise totally wrong results are obtained. 

The results also show the superior predictive capability of the present model with respect to the 
former model by Icardi and Ferrero (2009), which already considered the core crushing mechanism. 
Hence the present VK-ZZ model has a significant bearing on accuracy of results. 

As in this case the algorithm that accounts for the core crushing behaviour is activated, the 
computations at each time step are a little bit slower than for the laminates previously considered. 
However, just 550 s are required to compute the contact force time history, hence the simulation 
procedure is still proven to be accurate and cost-effective. 

Whether accurate predictions of the contact force of sandwiches can be obtained at different 
levels of energy is discussed next. 

Attention is now focused on the sandwich panel with PVC foam core (Divinycell H250) and 
laminated carbon fabric/epoxy faces (AGP370-5H/ 3501-6S) studied by Schubel et al. (2005), for 
impact energies ranging from 7.75 to 108 J. A sphere with a radius of 12.7 cm mounted on an im-
pactor with a mass of 6.22 kg is left to fall onto the panel. Increasing the heights of the mass drop, 
the above mentioned impact energies are obtained, with velocities ranging from 1.6 to 5 m/s. The 
sandwich plate has sides of 27.9 cm, thickness of 2.82 cm and it is simply supported. The core is 
25.4 mm thick, while the laminated face sheets are obtained stacking four plies of prepreg for a total 
thickness of 1.37 mm. According to Schubel et al. (2005), the mechanical properties of the faces are: 
ρ= 1600 kg/m3, E1= 77 GPa, E2= 75 GPa, G12= 6.5 GPa, G13= 5.1 GPa, G23= 4.1 GPa, υ12 = 
0.07.  

Since at low energies the damage may occur with a different mechanism than at high energies, 
consideration of different impact energies is required to assess whether the range of applicability of 
the present model is quite large to cover practical applications. However, only cases for which 
strain-rates effects are unimportant will be considered 

Figure 7 shows the comparison between the experiments of Schubel et al. (2005) and the con-
tact force time histories predicted by the present simulations at the three energy levels of 7.75, 41.1 
and 108 J. The results show that the present simulation obtains accurate contact force time histo-
ries in all three cases. No increasing errors are seen increasing the impact energy. Thus, it is reputed 
that the present modelling approach can be successfully used at least for energies up to a hundred 
of J. A further refinement is required in order to more closely represent the jumps in the force and 
the oscillating behaviour detected during experiments. 

In the next section, the damage predicted by the present simulations is compared to that de-
tected via ultrasonic cartography.  
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Figure 7: Comparisons between experimental results by Schubel et al. (2005) and numerical contact forces  

for a sandwich plate with foam core considering an impact energy of a) 7,75 J, b) 41,1 J and c) 108 J. 

 
5.4 Importance of In-Plane Continuity 

A composite panel with I stiffeners having a length of 800 mm (Lx), a width of 330 mm (Ly) and a 
skin thickness (t) of 3 mm formerly tested by Icardi and Zardo (2005) is now considered. The panel 
is clamped at the short sides and is kept free at the long sides. It is impacted at the centre with 
impact energy of 40 J (mass of the impactor 5.45 kg, velocity 3.83 m/s). The skin layers are 0.25 
mm thick, they are stacked with a [45°/-45°/0°/0°/45°/-45°/-45°/45°/0°/0°/-45°/45] sequence and 
have the following mechanical properties: E1= 130 GPa, E2= 8 GPa, G12= 5 GPa, G13= 5 GPa, 
G23= 2.5 GPa, ν12= 0.3, ρ= 1557 kg/m3. The strengths are: St11= 1.67 GPa, St22= 0.06 GPa, Sc11= 
1.08 GPa, Sc22= 0.17 GPa, S12= S13= S23= 0.07 GPa, where Stii represents the strength to traction 
in directions i, Scii represents the strength to compression in directions i while Sij represents the 
shear strength. The impactor is made of steel (E= 210 GPa, ν= 0.3) and has a nose sphere with a 
diameter of 25.4 mm.   

For this case the results by various zig-zag models by Icardi and co-workers are available for 
comparisons, in addition to experimental results. The comparison with the former models will per-
mit to understand the improvements achieved over the years. 
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Figure 8: Comparison between the experimental contact force in Icardi and Zardo (2005) and that  

computed with the present procedure for a laminate with I stiffeners. 

 
The comparison between the contact force predicted by the present simulations to that experi-

mentally detected of Figure 8 shows that a better predictive capability is achieved with respect to 
previous simulations by Icardi and Zardo (2005), thanks to the improved structural and damage 
models here used. Note that while in Icardi and Zardo (2005) the residual properties of the failed 
regions are guessed within the framework of the ply-discount theory, here they are computed as 
outlined in Section 3.2. 

The centre of each arbitrarily chosen sub-region for damage analysis corresponds to a point pi 
where the damage criteria of Section 3 are applied in order to determine whether or not materials 
are failed. If in pi one of the damage criteria predicts failure, the corresponding sub-region is consid-
ered damaged and therefore it is coloured in grey in Figure 9. Stresses in pi are determined assum-
ing the modified expression of the strain energy resulting by the damage mesoscale model (3.2) with 
the damage indicators computed by PFEA-3.   

The damage predicted with and without enforcement of the in-plane stress continuity is com-
pared to that detected via ultrasonic cartography in Figure 9. This figure shows the considerable 
practical importance of contributions (28) in the VK-ZZ model, which thus don’t merely represent a 
theoretical achievement. An elapsed time of 490 s being required to complete the analysis, consider-
ation of in-plane continuity does not adversely affect computational costs.  

Figure 9 shows that the overlapped damaged area measured through C-SCAN (dashed line) by 
Icardi and Zardo (2005), is much better represented considering in-plane stress continuity (light-
grey regions) than disregarding it (dark-grey regions). Thus, in-plane stress continuity is shown to 
have a significant bearing in improving the accuracy of results However, a correct prediction of the 
overlap damage is obtained in any case. 
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Figure 9: Overlap induced damage for a laminate with I stiffeners by: C-SCAN in Icardi and Zardo (2005)  

(dashed line), present procedure without considering in-plane continuity (dark-grey square sub-regions)  

or considering it (light-grey square sub-regions). 

 
Table 1 shows the extension of the delaminated area at each interface, as measured in Icardi 

and Zardo (2005) and as computed by the present simulation procedure and by previous ones. The 
results show that the present refined structural model achieves at each interface a better accuracy. 
It is reminded that an analytical model is used in this paper, instead of the finite element of Icardi 
and Zardo (2005). However, square sub-regions similar to finite elements are considered for the 
damage analysis. The results of Figures 8 and 9 show that the present closed-form approach does 
not result in an accuracy loss with respect to finite element modelling, though its computational 
cost is much lower. So use of finite elements can be limited to cases with a complex shape. 
 

Physical interface 
Experimental by Icardi 

and Zardo (2005) 
Present 

Present without 
continuity 

Basic 
Model 

Model by Icardi 
and Zardo (2005) 

1st 960 950 930 1423 950 
2nd 790 758 740 1096 258 
3rd 430 400 380 590 376 
4th 310 250 210 490 143 
5th 160 115 107 289 114 
6th 135 102 98 190 108 
7th 95 75 62 125 75 
8th 50 44 38 100 43 

Table 1: Delaminated area [mm2] at the interfaces for a laminate with I stiffeners by the present procedure and by 
 results of experiment in Icardi and Zardo (2005) and by simpler models (FSDPT and Icardi and Zardo (2005)). 

 
6 CONCLUDING REMARKS 

A refined, 3D zig-zag structural model has been developed for simulating low-velocity impacts on 
laminated and sandwich composite plates. It a priori fulfils the continuity of stresses at the layer 
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interfaces and at the interfaces of undamaged and damaged regions (where material properties sud-
denly vary), as prescribed by the elasticity theory for keeping equilibrium. 

It gives an accurate representations of strain energy density, displacement, and strain and stress 
fields at each time step with a low computational effort from constitutive equations. 

Five unknown variables describe the displacement fields, nevertheless the representation can be 
refined across the thickness as desired. The continuity of out-of-plane stresses at the layer interfaces 
and across damaged/undamaged interfaces is a priori fulfilled with an appropriate choice of zig-zag 
amplitudes. A modified version of the Hertzian contact law is used for solving the contact problem. 
It forces the target to conform to shape of the impactor when soft core sandwiches are analysed. 
The Newmark’s implicit time integration scheme is used for solving transient dynamic equations. 

Stress-based criteria with a separate representation of failure modes are employed to identify 
the damaged regions at each time step under the contact force. The Hashin and Rotem’s criterion 
with in-situ strengths predicts fibre and matrix’s failures. Delaminated regions at the interfaces are 
predicted by the Choi-Chang’s criterion. The failure of honeycomb is predicted separately by the 
criteria by Besant et al. and Lee and Tsotsis, computing the failed region as the envelope of failures 
predicted by these two criteria. The failure of foam core is estimated according to the rule suggested 
by Evonik for Rohacell core.  

The progressive damage analysis is carried out accounting for the effects of hard discontinuities 
(i.e. matrix cracks, fibre failures and delaminations) in homogenized form by a continuum damage 
mesomechanic model. A modified version of the strain energy is obtained, from which stresses are 
computed. The damage computed at the previous step is extended at the next step to the points 
where the ultimate stress is reached. Instead of guessing the residual properties, they are computed 
in a physically consistent way. 

Small square cells of the domain are identified, where the damage of layers is assumed uniform 
and equal to that computed at the central point. The damage indicators of the mesoscale model are 
determined via 3-D FEA at various load levels (computations carried apart once for all). 3-D FEA 
is also used to predict the variable apparent elastic moduli of the core while it collapses/buckles 
under transverse compressive loading. In this way, stresses are accurately computed across the core, 
even if a homogenized structural model is used. 

The impact problem is solved in analytic form within the framework of the Galerkin’s method 
assuming appropriate displacement trial functions for representing the in-plane variation of the 
functional d.o.f. 

The application to a two-material wedge problem shows the present structural model able of 
capturing continuous stresses even under a sudden variation of properties like across undamaged 
and damaged regions, with a discontinuous gradient, as in the exact elasticity solution. 

The simulated contact force time-history is shown to be in a close agreement with experiments 
for all laminated and sandwich composite sample plates considered and for different level of impact 
energy. This result shows the reliability of contact force simulations and of the progressive damage 
model adopted. The comparison with previous analyses reveals the improved predictive capability 
of the structural models and of the progressive failure simulation here adopted, while the computa-
tional time is not considerably increased. 
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The comparison of simulations with and without enforcement of in-plane stress continuity 
shows the non-negligible effects of such continuity on accuracy of results. 

The capability of the present impact simulation is corroborated by the comparison with the 
damage detected through ultrasonic cartography.  
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