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Determination of the reinforced concrete slabs ultimate load
using finite element method and mathematical programming

Abstract

In the present paper, the ultimate load of the reinforced con-

crete slabs [16] is determined using the finite element method

and mathematical programming. The acting efforts and dis-

placements in the slab are obtained by a perfect elasto-plastic

analysis developed by finite element method. In the perfect

elasto-plastic analysis the Newton-Raphson method [20] is

used to solve the equilibrium equations at the global level of

the structure. The relations of the plasticity theory [18] are

resolved at local level. The return mapping problem in the

perfect elasto-plastic analysis is formulated as a problem of

mathematical programming [12]. The Feasible Arch Interior

Points Algorithm proposed by Herskovits [8] is used as a re-

turn mapping algorithm in the perfect elasto-plastic analysis.

The proposed algorithm uses Newton’s method for solving

nonlinear equations obtained from the Karush-Kuhn-Tucker

conditions [11] of the mathematical programming problem.

At the end of this paper, it is analyzed six reinforced con-

crete slabs and the results are compared with available ones

in literature.
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1 INTRODUCTION

Reinforced concrete slabs [16] are among the most common structural elements. Despite of

the large number of slabs designed and built, the details of their elastic and plastic behavior

are not fully appreciated or properly taken into account. Although almost all the technical

standards approach to slab design is basically one of using elastic moment distributions, it is

also possible to design slabs using plastic analyses (perfect elasto-plastic analyses) to provide

the required moments. In this paper, the ultimate load of the reinforced concrete slabs and

the ultimate moment distributions are determined using the finite element method [20] and

mathematical programming [12].

The resistance of a point within a structural element of reinforced concrete subjected to a

multiaxial stress state depends on the interaction between the stresses which is subject. In the
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NOTATIONS

C Elastic stiffness modules matrix;

dεεε Strain increment tensor;

dλ Consistency parameter or Lagrange multiplier;

dσ Stress increment tensor;

E Young modulus;

f Yield surface or strength criterion;

f Objective function;

g Equality constraint;

h Inequality constraint or slab height;

L Lagrangian function;

l Span;

M+
u , M

−
u Positive and negative ultimate moment of resistance;

Pu Ultimate concentrated load;

qu Ultimate Uniformly distributed load;

m Acting moment;

u Displacement tensor;

εεε Strain tensor;

λ Lagrange multiplier;

µ Lagrange multiplier;

ν Poisson ratio;

σ Stress tensor;

σe Trial stress tensor;

slab, the strength criterion is defined for each midsurface point in terms of bending moments

and torsion moment. With the strength criterion at each point and the elastic properties of

the material is possible to perform a model analysis to determine the acting efforts from the

applied load considering the elasto-plastic behavior of the material. The strength criterion

proposed by Johansen [10] is used in this paper.

In the present paper, the acting efforts and displacements in the slab are obtained by a per-

fect elasto-plastic analysis developed by finite element method. The perfect elasto-plastic anal-

ysis of the slabs, described by their midsurface and discretized by the finite element method,

is performed under the hypothesis of small displacements with consistent formulation in dis-

placements. In the perfect elasto-plastic analysis the Newton-Raphson method [20] is used

to solve the equilibrium equations at the global level of the structure. The relations of the

plasticity theory [18] are resolved at local level, that is, for each Gauss point of the discretized

structure. The return mapping problem in the perfect elasto-plastic analysis is formulated as

a problem of mathematical programming [12]. The Feasible Arch Interior Points Algorithm

proposed by Herskovits [8] is used as a return mapping algorithm in the perfect elasto-plastic

analysis.

The Feasible Arc Interior Point Algorithm [8] proposes to solve mathematical program-
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ming problems [12] with nonlinear objective function and nonlinear constraints quickly and

efficiently.

The Feasible Arc Interior Point Algorithm is a new technique for nonlinear inequality and

equality constrained optimization and was first developed by Herskovits [8].

This algorithm requires an initial point at the interior of the inequality constraints, and

generates a sequence of interior points. When the problem has only inequality constraints, the

objective function is reduced at each iteration. An auxiliary potential function is employed

when there are also equality constraints.

The fact of giving interior points, even when the constraints are nonlinear, makes of pro-

posed algorithm an efficient tool for engineering design optimization, where functions evalua-

tion is in general very expensive.

Since any intermediate design can be employed, the iterations can be stopped when the

objective reduction per iteration becomes small enough.

At each point, the Feasible Arc Interior Point Algorithm defines a “feasible descent arc”.

Then, it finds on the arc a new interior point with a lower objective.

The proposed algorithm uses Newton’s method for solving nonlinear equations obtained

from the Karush-Kuhn-Tucker conditions [11] of the mathematical programming problem.

The proposed algorithm requires at each iteration a constrained line search looking for a

step-length corresponding to a feasible point with a lower objective. Herein we have imple-

mented the Armijo’s line search technique [8].

The implementation of the Feasible Arc Interior Point Algorithm was developed using the

programming language C++ [19] that uses the technique of object-oriented programming.

This technique allows quickly and located implementation of the proposed methods and also

facilitates the code expansion.

In this paper will be presented: the strength criterion proposed by Johansen, the elasto-

plastic analysis of plates using finite element method and mathematical programming, the

Feasible Arc Interior Point Algorithm and six examples of reinforced concrete slabs whose

results are compared with results available in literature.

2 STRENGTH CRITERION

The strength criteria are characterized by a yield surface, defined as the geometric locus of

the independent combinations of the stress tensor components or of the stress resultants that

provoke the material plastification. Mathematically the yield surface can be defined by the

Equation (1) presented as follows:

f (σ) = 0 (1)

The plasticity postulates define the yield surface as a continuous, convex region which could

be regular or not. The yield surface implemented in this work was proposed by Johansen

[2, 10, 14, 16] and is of specific application for reinforced concrete slabs.
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2.1 Strength criterion of Johansen

According to Johansen, the yield condition is based on the following physical criterion proposed

by Massonet [14]: “The yield happens when the applied moment of flexion in a cross-section

of inclination θ in relation to the x axis reaches a certain value that just depends on the angle

θ and on the resistant moments in the reinforcement directions.” The basic parameters of the

Johansen criterion are presented in the Figure 1.

Figure 1 Basic parameters of the Johansen criterion.

The yield surface proposed by Johansen is frequently used to determine the ultimate resis-

tance in the design of reinforced concrete slabs [10, 14, 16]. The mathematical equations that

define this surface are presented as follows.

f1 (σ) =m2
xy − (M+

ux −mx) × (M+
uy −my) = 0 (2)

f2 (σ) =m2
xy − (M−

ux +mx) × (M−
uy +my) = 0 (3)

In Equations (2) and (3), M+
ux, M+

uy, M−
ux and M−

uy are respectively the positive and

negative ultimate moments of resistance. These ultimate moments of resistance are moments

per unit of length in the x and y directions.

The Equation (2) is associated to the positive yield line [16] and Equation (3) is associated

to the negative yield line [16]. The Equations (2) and (3) represent two conical surfaces that

combined define the yield surface of Johansen. The surface of Johansen is presented in the

Figure 2.

3 ELASTO-PLASTIC ANALYSIS USING THE FINITE ELEMENTMETHOD ANDMATH-
EMATICAL PROGRAMMING

The equations presented in this item are valid for materials with perfect elasto-plastic behavior.

In the determination of the efforts in a structure through a perfect elasto-plastic analysis is

necessary to consider the plastic behavior of the material depending on the applied loading

history. In this work the constitutive model applied to the reinforced concrete is perfect elasto-

plastic with associative flow rule. The condition that limits the stresses space [3] is presented

as follows:

f (σ) ≤ 0 (4)
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Figure 2 Yield surface of Johansen.

The Equation (4) represents a convex surface in the generalized stresses space. The interior

region of this surface is formed by points belonging to the elastic regime. The plasticity theory

allows only the existence of points in the interior (f < 0 ) or in the frontier of the yield surface

(f = 0 ). Points placed out of this surface are inadmissible.

The perfect elasto-plasticity equations that govern the plastic behavior of the material after

the yield are presented as follows:

dεεε = dεεεe + dεεεp (5)

dσ =Cdεεεe =C (dεεε − dεεεp) (6)

dεεεp = dλ ∂

∂σ
f (σ) (7)

dλ ≥ 0 (8)

dλ f(σ) = 0 (9)

dλ df(σ) = 0 (10)

The Equation (5) assumes that the strain increment tensor dεεε can be decomposed into

an elastic part and a plastic part, indicated for dεεεe and dεεεp, respectively. The Equation (6)

represents the incremental relation between stress and elastic strain where the stress increment

tensor dσ is related with the elastic strain increment tensor dεεεe. The Equation (7) represents

the dependence of the plastic strain increment tensor dεεεp with the associative flow rule. The

Equation (8) represents that the consistency parameter is non-negative. The Equation (9)

represents the complementarity condition that indicates that either the consistency parameter

(dλ) or the strength criterion equation must be zero, so that the product of the two is vanished.

The Equation (10) is the consistency condition which means that if dεεεp is different from zero,

the stress state must “persist” in the surface, that is, df (σ(t)) = 0. This expression is

already represented by the Equation (9) for the perfect plasticity, once the yield surface does

not change.
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Analyzing the Equations (9) and (10) we verified the existence of three possible loading

conditions that are indicated in the Table 1.

Table 1 Loading conditions in the perfect plasticity.

f < 0 dλ = 0 Elastic Loading

f = 0 df < 0 λ = 0 Elastic Unloading

f = 0 df = 0 λ > 0 Plastic Loading

In this work the elasto-plastic consistent tangent stiffness matrix is used [17, 18] for the

update of the elasto-plastic stiffness matrix with the goal of improving the convergence of the

Newton-Raphson method [20].

3.1 Used algorithms in nonlinear analyses with discretization by the Finite Element
Method

The return mapping algorithms used in nonlinear physical analyses generally intend to solve

the following problem: given a field of displacements, strains and stresses (u0, εεε0 and σ0) of a

structure, determine the new field of displacements, strains and stresses (u, ε and σ) due to

a load increment. In this solution the compatibility and equilibrium relations defined in the

solid mechanics and the constitutive relations defined in the plasticity theory are used.

The formulation generally adopted is to solve the equilibrium equations, deduced starting

from the principle of virtual work and discretized by the finite element method [1, 4], at global

level of the structure. The relations of the plasticity theory are solved at local level, that is,

for each Gauss point of the discretized structure.

The global equilibrium is obtained through algorithms that solve nonlinear equations sys-

tems and that determine the load-displacement curves [20]. Among other algorithms, there are

the Newton-Raphson algorithm, the displacement control and the arch length. In this work

the algorithm of Newton-Raphson is used.

The return mapping algorithm intends to solve the following problem: given an initial

state of allowable stress σ0, determine the new stress state σ due to a strain increment dε,

respecting the equations of the plasticity theory. The integration of the plasticity equations

can be viewed as the solution of an initial value problem with constraints. This problem can

be transformed in a mathematical programming problem with constraints through the use of

an integration method of differential equations like implicit backward Euler [18].

The trial of a stress state σe considering the behavior of the material in elastic regime,

obtained starting from an allowable stress state σ0 after a strain increment dεεε, is determined

through the equation presented as follows:

σe = σ0 +Cdεεε (11)

Applying the strength criterion: If f (σe) = 0, the assumption of linear-elastic regime

is correct. There was not plastic strain and the total strain increment is elastic, dεεε = dεεεe.
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The trial elastic stress σe is the solution stress state σ. If f (σe) > 0, the regime is perfect

elasto-plastic. The solution stress state is on the yield surface, that is, f (σ) = 0 and it can

be determined solving the mathematical programming problem presented as follows:

min s (σ) = 1
2
[(σ −σe)T C−1 (σ −σe)]

subject to f (σ) ≤ 0
(12)

Where C is the elastic stiffness modules matrix and f (σ) is the adopted strength criterion.

The function s(σ) represents an ellipsoid in the stresses space. The problem consists

of determining the smallest ellipsoid with center in σe that touches f in σ. The graphic

representation of this problem is presented in the Figure 3.

Figure 3 Graphic representation of the return mapping algorithm.

The Lagrangian function [21] of the mathematical programming problem presented by the

Equation (12) is presented as follows:

L(σ, dλ) = 1

2
[ (σ −σe)T C−1 (σ −σe)] + dλT f (13)

The necessary 1st order conditions for the existence of a local minimum or Karush-Kuhn-

Tucker conditions [11] are determined starting from the Equation (13) and are described as

follows:

C−1(σ −σe) + dλT ∂f

∂σ
= 0 (14)

f (σ) ≤ 0 (15)

dλ ≥ 0 (16)

dλTf(σ) = 0 (17)

Where f (σ) and ∂f
∂σ

are appraised in the solution stress state σ. This point minimizes the

mathematical programming problem indicated by the Equation (12).

Substituting the Equations (6) and (11) in the Equation (14) and after some algebraic

manipulations, it is obtained the equation presented as follows:

dεεεp = dλT ∂f

∂σ
(18)
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An important observation to make is that the Karush-Kuhn-Tucker [11] equations of this

mathematical programming problem correspond exactly to the perfect elasto-plasticity equa-

tions with associative flow rule developed previously. The Equation (16) corresponds to the

non-negativity condition of the consistency parameter represented by the Equation (8). The

Equation (18) corresponds to the associative flow rule represented by the Equation (7). The

Equations (15) and (17) correspond respectively to the strength criterion condition represented

by the Equation (4) and to the complementarity condition represented by the Equation (9).

The solution of this mathematical programming problem [12] is the stress state σ and

the Lagrange multipliers dλ. Therefore, starting from a viable stress state σ0, it is obtained

the stress solution state σ and the Lagrange multipliers dλ after a strain increment dεεε. The

solution of this problem satisfies the Karush-Kuhn-Tucker conditions and consequently the

perfect elasto-plasticity equations. The plastic strain is also determined since that the Lagrange

multipliers correspond to the consistency parameters.

In this work the strength criterion of Johansen is used. Using this criterion, the mathemat-

ical programming problem results in a nonlinear programming problem with constraints. Both

the objective function and the constraints of this problem are nonlinear. For the solution of

the mathematical programming problem represented by the Equation (12), the Feasible Arch

Interior Points Algorithm is used [8]. This algorithm uses the Karush-Kuhn-Tucker equations

of the mathematical programming problem indicated by the Equation (12). The advantage of

this algorithm in relation to the others is its efficiency [8] for solving directly the Karush-Kuhn-

Tucker equations, thereby solving a system of nonlinear equations. In addition, the unbounded

number of constraints can be used in this problem without the need of significant change in

the computational code, facilitating the treatment of yield multi-surfaces.

4 FEASIBLE ARCH INTERIOR POINTS ALGORITHM

Feasible Arch Interior Points Algorithm [8] is an iterative algorithm to solve the nonlinear

programming problem [12]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mim
x

f (x)
s.t. g (x) ≤ 0

h (x) = 0
(19)

Where x ∈ Rn and f ∈ R, g ∈ Rm, h ∈ Rp. Ω = {x ∈ Rn/g(x) = 0}. The following

assumptions on the problem are required:

1. The functions f(x), g(x) and h(x) are continuous in Ω, as well as their first derivatives.

2. For all x ∈ Ω the vectors ∇gi(x), for i = 1,2,...,m such that gi(x)=0 and ∇hi(x), for i =
1,2,...,p are linearly independent.

At each point the proposed algorithm defines a “feasible descent arc”. A search is then

performed along this arc to get a new interior point with a lower potential function.
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We denote ∇g(x) ∈ Rnxm and ∇h(x) ∈ Rnxp the matrix of derivatives of g and h respec-

tively and call λ ∈ Rm and µ ∈ Rp the corresponding vectors of Lagrange multipliers. G(x)

denotes a diagonal matrix such that Gii(x) = gi(x). The Lagrangian is presented as follows:

L (x,λ,µ) = f (x) + λtg (x) + µth (x) (20)

The Hessian of the Lagrangian is presented as follows:

Lh (x,λ,µ) = ∇2f (x) +
m

∑
i=1

λi∇2gi (x) +
p

∑
i=1

µi∇2hi (x) (21)

Let us consider Karush–Kuhn–Tucker, (KKT), first order optimality conditions:

∇f (x) +∇g (x)λ +∇h (x)µ = 0 (22)

G (x)λ = 0 (23)

h (x) = 0 (24)

λ ≥ 0 (25)

g (x) ≤ 0 (26)

A point x∗ is a stationary point if there exists λ∗ and µ∗ such that the Equations (22), (23)

and (24) are true and is a KKT Point if KKT conditions (Equations (22), (23), (24), (25) and

(26)) hold.

KKT conditions constitute a nonlinear system of equations and inequations on the un-

knowns (x,λ,µ). It can be solved by computing the set of solutions of the nonlinear system of

Equations (22), (23) and (24) and then, looking for those solutions such that Equations (25)

and (26) are true. However, this procedure is useless in practice.

The proposed algorithm makes Newton-like iterations to solve the nonlinear Equations (22),

(23) and (24) in the primal and the dual variables. With the object of ensuring convergence

to KKT points, the system is solved in such a way as to have the inequalities Equations (25)

and (26) satisfied at each iteration.

Let S = Lh(x,λ,µ). A Newton iteration for the solution of the Equations (22), (23) and

(24) is defined by the following linear system:

⎡⎢⎢⎢⎢⎢⎣

S ∇g (x) ∇h (x)
Λ∇gT (x) G (x) 0

∇hT (x) 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x0 − x
λ0 − λ
µ0 − µ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

∇f (x) +∇g (x)λ +∇h (x)µ
G (x)λ
h (x)

⎤⎥⎥⎥⎥⎥⎦
(27)

Where (x,λ,µ) is the current point and (x0,λ0,µ0) is a new estimate. We call Λ = diag(λ).

We can also take S = B, a quasi-Newton approximation of Lh(x,λ,µ), or S = I (identity) [7].

Iterative methods for nonlinear problems in general include a local search procedure to

force global convergence to a solution of the problem. This is the case of line search and
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trust region algorithms for nonlinear optimization [12, 15]. The present method includes a line

search procedure, in the space of the primal variables x only, that enforces the new iterate to

be closer from the solution.

Let d0 ∈ Rn such that d0 = x0 –x. From Equation (27), we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sd0 +∇g (x)λ0 +∇h (x)µ0 = −∇f (x)
Λ∇gT (x)d0 +G (x)λ0 = 0
∇hT (x)d0 = −h (x)

(28)

Which is independent of the current value of µ. Then Equation (28) gives a direction in

the space of primal variables x and new estimates of the Lagrange multipliers.

Let the potential function be

ϕ (c, x) = f (x) +
p

∑
i=1

ci ∣hi (x)∣ , (29)

Where, at the iteration k, cki is such that

sg [hi (xk)] (ci + µk
0i) < 0; i = 1,2, ..., p. (30)

Where sg(.) = (.)/|(.)|. dk0 is a descent direction of ϕ(ck,x) [5, 7].

However, d0 is not useful as a search direction since it is not necessarily feasible. This is

due to the fact that as any constraint goes to zero, d0 goes to a direction tangent to the feasible

set [7].

To obtain a feasible direction, a negative vector -ρλ is added in the right hand side of the

Equation (28). A perturbed linear system in d and λ̄ is then obtained:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sd +∇g (x) λ̄ +∇h (x) µ̄ = −∇f (x)
Λ∇gt (x)d +G (x) λ̄ = −ρλ
∇ht (x)d = 0

(31)

Where ρ ∈ R is positive. The new direction is d and λ̄ and µ̄ are the new estimate of the

Lagrange multipliers. We have now that d is a feasible direction, since ∇gt (x)d = −ρ < 0 for

the active constraints.

The addition of a negative number in the right hand side of the Equation (28) produces a

deflection on d0, proportional to ρ, in the sense of the interior of the feasible region. To ensure

that d is also a descent direction, we establish an upper bound on ρ in order to have

dt∇ϕ (c, x) ≤ αdt0∇ϕ (c, x) (32)

With α ∈ (0,1), that implies dt∇ϕ (c, x) < 0. Thus, d is a descent direction of the potential

function.

In general, the rate of descent of ϕ along d will be smaller than along d0. This is a price

that we pay to get a feasible descent direction.

To obtain the upper bound on ρ, we solve the auxiliary linear system in (d1,λ1,µ1).
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sd1 +∇g (x)λ1 +∇h (x)µ1 = 0
Λ∇gt (x)d1 +G (x)λ1 = −λ
∇ht (x)d1 = 0

(33)

It follows from Equations (28), (31) and (33) that d = d0 + ρd1. Then, we have that

Equation (32) is true for any ρ > 0, if dt1∇ϕ (c, x) < 0. Otherwise, we take

ρ < (α − 1)d
t
0∇ϕ (c, x)

dt1∇ϕ (c, x)
(34)

And Equation (32) holds.

However, when there are highly nonlinear constraints, the length of the feasible segment

supported by the feasible descent search direction d can be not enough to accept a step equal

to one.

The basic idea to avoid this problem consists on making the line search along a second order

arc, tangent to the feasible descent direction d and with a curvature “close” to the curvature

of the feasible set boundary.

The arc at x is defined by the following expression:

x (t) ∶= x + td + t2d̃ (35)

Where d̃ is obtained by solving:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sd̃ +∇g (x) λ̃ +∇h (x) µ̃ = 0
Λ∇gt (x) d̃ +G (x) λ̃ = −Λw̃I

∇ht (x) d̃ = −w̃E

(36)

This linear system is similar to the system presented in Equation (33) being w̃I
i and w̃E

i

computed as follows:

w̃I
i = gi (x + d) − gi (x) −∇gti (x)d; i = 1, ...,m

w̃E
i = hi (x + d) − hi (x) −∇ht

i (x)d; i = 1, ..., p (37)

The arc employed in the proposed algorithm is represented in Figure 4 for the case when

the constraint gi(x) = 0 is active at the iterate xk. Since dk0 and dk are descent directions of

the potential function ϕ(x) at xk, their angle with -∇ϕ(xk) is acute.

5 ARMIJO’S LINE SEARCH

The Feasible Arc Interior Point Algorithm requires at each iteration a constrained line search

looking for a step-length corresponding to a feasible point with a lower potential. The first

idea consists on solving the following optimization problem on t :

⎧⎪⎪⎨⎪⎪⎩

mim
t

ϕ (xk + tdk + t2d̃k)
s.t. g (xk + tdk + t2d̃k) ≤ 0

(38)
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Figure 4 The feasible arc.

Instead of making an exact minimization on t, it is more efficient to employ inexact line

search techniques [6, 9, 12, 15]. In this work the Armijo’s line search technique was imple-

mented.

Armijo’s line search defines a procedure to find a step-length ensuring a reasonable decrease

of the potential function. In our case, we add the condition of feasibility of the inequality

constrains. Armijo’s line search is stated as follows:

Define the step-length t as the first number of the sequence {1,ν, ν2, ν3,. . . },
satisfying

ϕ (x + td + t2d̃) ≤ ϕ (x) + tη1∇ϕt (x)d (39)

And

g (x + td + t2d̃) ≤ 0 (40)

Where η1∈(0,1) and ν∈(0,1).

6 STATEMENT OF THE FEASIBLE ARC INTERIOR POINT ALGORITHM

The pseudocode of the Feasible Arc Interior Point Algorithm is presented on the next page.

The present algorithm is very general in the sense that it converges to a Karush–Kuhn–

Tucker point of the problem for any initial interior point. We work with the following updating

rule for λ.

Set, for i=1,...,m.

λi ∶=max [λ0; ε ∥d0∥22] (49)

If gi (x) ≥ −ḡ and λi<λI , set λi=λI .
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Parameters. α ∈ (0,1) and φ > 0.
Data. Initial values for x ∈ Rn such that g(x) < 0, λ ∈ Rm, λ > 0, S ∈ Rnxm symmetric and
positive definite and c ∈Rp, c ≥ 0.
Step 1. Computation of a feasible descent direction.

(i) Solve the linear systems:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sd0 +∇g (x)λ0 +∇h (x)µ0 = −∇f (x) ,
Λ∇gT (x)d0 +G (x)λ0 = 0,
∇hT (x)d0 = −h (x)

(41)

And ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sd1 +∇g (x)λ1 +∇h (x)µ1 = 0,
Λ∇gt (x)d1 +G (x)λ1 = −λ,
∇ht (x)d1 = 0,

(42)

Let the potential function be

ϕc (x) = f (x) +
p

∑
i=1

ci ∣hi (x)∣ , (43)

(ii) If ci<-1.2µ0(i), then set ci=-1.2µ0(i); i=1,...,p

(iii) If dt1∇ϕc (x) > 0, set

ρ =min [φ ∥d0∥22 ; (α − 1)d
t
0∇ϕc (x) /dt1∇ϕc (x)] (44)

Otherwise, set

ρ = φ ∥d0∥22 (45)

(iv) Compute the feasible descent direction: d=d0+ρd1

Step 2. Computation of a “restoring direction” d̃
Compute:

w̃I
i = gi (x + d) − gi (x) −∇gti (x)d; i = 1, ...,m

w̃E
i = hi (x + d) − hi (x) −∇ht

i (x)d; i = 1, ..., p (46)

Solve:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sd̃ +∇g (x) λ̃ +∇h (x) µ̃ = 0,
Λ∇gt (x) d̃ +G (x) λ̃ = −Λw̃I ,

∇ht (x) d̃ = −w̃E ,

(47)

Step 3. Arc search – Employ a line search procedure to get a step-length t based on the
potential function ϕc (x + td + t2d̃). In this work the Armijo’s line search technique was im-
plemented.

Step 4. Updates
(i) Set the new point:

x ∶= x + td + t2d̃ (48)

(ii) Define new values for λ>0 and S symmetric and positive definite.
(iii) Go back to Step 1.
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The parameters ϵ, ḡ and λI are taken positive.

7 EXAMPLE – DETERMINATION OF THE REINFORCED CONCRETE SLABS ULTI-
MATE LOAD

In the determination of the slabs ultimate load using the finite element method and mathe-

matical programming we used the following values.

• Slab height: h=0.1 m;

• Young modulus: E=23800 MPa;

• Poisson ratio: ν=0.2.

In this paper, it was used the strength criterion of Johansen and also the finite element soft-

ware FEMOOP [13]. The Feasible Arc Interior Point Algorithm was implemented in FEMOOP

using the programming language C++ [19] that uses the technique of object-oriented program-

ming. This technique allows quickly and located implementation of the proposed methods and

also facilitates the code expansion.

7.1 Square simply supported slab

In this example the ultimate load of the square simply supported slab on all edges with

uniformly distributed load is determined. The slab is solid concrete. The span of the slab is

l=5m. Figure 5 presents the reinforced concrete slab.

Figure 5 Reinforced concrete slab.

The slab is isotropically reinforced with ultimate positive moments of resistance per unit

width presented as follows:

M+
ux =M+

uy =M+
u = 25KN m/m (50)

According to the yield line theory the ultimate load [16] of the slab without considering

the corner effects is:

qu =
24 ×M+

u

l2
= 24.0KN/m2 (51)
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Considering the corner effects and assuming that the yield line pattern is composed of

corners levers in the form of circular fans the ultimate load [16] is:

qu =
21.7 ×M+

u

l2
= 21.7KN/m2 (circular fans) (52)

Considering the corner effects and assuming that the yield line pattern is composed of

corners levers in the form of hyperbolic fans the ultimate load [16] is:

qu =
21.4 ×M+

u

l2
= 21.4KN/m2 (hyperbolic fans) (53)

In the perfect elasto-plastic analysis [18], it was used isoparametric elements with eight

nodes, Q8 [4]. The used mesh was a bilinear-quadrilateral mesh with 20 elements in x direction

and 20 elements in y direction. The integration order used was 2x2.

Using the perfect elasto-plastic analysis, it is obtained the ultimate load presented as

follows:

qu = 24.0KN/m2 (perfect elasto − plastic analysis) (54)

Figure 6 presents the distribution of the principal moments (M2) in the ultimate configu-

ration.

Figure 6 Distribution of the principal moments.

7.2 Rectangular simply supported slab

In this example the ultimate load of the rectangular simply supported slab on all edges with

uniformly distributed load is determined. The slab is solid concrete. The spans of the slab

in the direction x is lx=7m and in the direction y is ly=5m. Figure 7 presents the reinforced

concrete slab.

The slab is isotropically reinforced with ultimate positive moments of resistance per unit

width presented as follows:

M+
ux =M+

uy = 25KN m/m (55)
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Figure 7 Reinforced concrete slab.

According to the yield line theory the ultimate load [16] of the slab is:

qu =
24 ×M+

uy

l2y {[3 + (
M+

ux

M+
uy
) ( ly

lx
)
2
]

1
2

− ( ly
lx
)(M

+
ux

M+
uy
)

1
2}

2
= 17.858KN/m2 (56)

In the perfect elasto-plastic analysis [18], it was used isoparametric elements with eight

nodes, Q8 [4]. The used mesh was a bilinear-quadrilateral mesh with 28 elements in x direction

and 20 elements in y direction. The integration order used was 2×2.
Using the perfect elasto-plastic analysis, it is obtained the ultimate load presented as

follows:

qu = 17.858KN/m2 (perfect elasto − plastic analysis) (57)

Figure 8 presents the distribution of the principal moments (M2) in the ultimate configu-

ration.

7.3 Hexagonal slab fixed around the edges

In this example the ultimate load of the hexagonal slab fixed around the edges with uniformly

distributed load is determined. The slab is solid concrete. The length of each side is l=5m.

The inclined sides have an inclination of the 45○ with respect to the axis x. Figure 9 presents

the reinforced concrete slab.

The slab is isotropically reinforced in the top and in the bottom with ultimate positive and

negative moments of resistance per unit width presented as follows:

M+
u =M−

u = 25KN m/m (58)

According to the yield line theory the ultimate load [16] of the slab is:

qu =
8 × (M+

u +M−
u )

l2
= 16.0KN/m2 (59)
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Figure 8 Distribution of the principal moments.

Figure 9 Reinforced concrete slab.

In the perfect elasto-plastic analysis [18], it was used DKT elements [4]. The used mesh

was a triangular mesh with 554 elements. The integration order used was 2×2.
Using the perfect elasto-plastic analysis, it is obtained the ultimate load presented as

follows:

qu = 16.0KN/m2 (perfect elasto − plastic analysis) (60)

Figure 10 presents the distribution of the principals moments (M2) in the ultimate config-

uration.

7.4 Rectangular slab bridge

In this example the ultimate concentrated load of the rectangular slab bridge is determined.

The concentrated load is acting alone anywhere on the transverse centerline at midspan. The

self-weight of the slab is neglecting. The slab is simply supported at two opposite edges and

is free at the remaining two edges. The slab is solid concrete. The spans of the slab in the
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Figure 10 Distribution of the principal moments.

direction x is lx=5m and in the direction y is ly=7m. Figure 11 presents the reinforced concrete

slab.

Figure 11 Reinforced concrete slab.

The slab is isotropically reinforced in the top and in the bottom with ultimate positive and

negative moments of resistance per unit width presented as follows:

M+
u =M−

u = 25KN m/m (61)

There are a number of possible yield line patterns, the critical pattern depending on the

aspect ratio of the slab and the position of the load on the transverse centerline. The coefficient

λ defines the position of the load on the transverse centerline. In this example is adopted

λ=0.25. Figure 12 presents all possible yield line patterns.

According to the yield line theory the ultimate load [16] of the slab for mode 1 is:

Pu =
4M+

u ly

lx
= 140.0KN (62)

According to the yield line theory the ultimate load [16] of the slab for mode 2a is:

Pu = 8
√
(M+

u +M−
u )M+

u = 282.843KN (63)
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According to the yield line theory the ultimate load [16] of the slab for mode 2b is:

Pu = 4M+
u

√
M−

u

M+
u

+ 4 (M+
u +M−

u )arc cot(
√

M−
u

M+
u

) = 257.08KN (64)

According to the yield line theory the ultimate load [16] of the slab for mode 3a is:

Pu = 4
√
(M+

u +M−
u )M+

u +
4M+

uλly

lx
= 176.421KN (65)

Figure 12 Yield line patterns.

According to the yield line theory the ultimate load [16] of the slab for mode 3b is:

Pu =
4M+

uλly

lx
+ 2M+

u

√
M−

u

M+
u

+ 2 (M+
u +M−

u )arc cot(
√

M−
u

M+
u

) = 163.54KN (66)

In the perfect elasto-plastic analysis [18], it was used isoparametric elements with eight

nodes, Q8 [4]. The used mesh was a bilinear-quadrilateral mesh with 20 elements in x direction
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and 28 elements in y direction. The integration order used was 2×2.
Using the perfect elasto-plastic analysis, it is obtained the ultimate load presented as

follows:

Pu = 140.0KN (perfect elasto − plastic analysis) (67)

Figure 13 presents the distribution of the principals moments (M2) in the ultimate config-

uration.

Figure 13 Distribution of the principal moments.

7.5 Rectangular slab with three edges supported and one edge free

In this example the ultimate load of the rectangular slab with three edges supported and one

edge free with uniformly distributed load is determined. The slab is solid concrete. The spans

of the slab in the direction x is lx=5m and in the direction y is ly=8m. Figure 14 presents the

reinforced concrete slab.

Figure 14 Reinforced concrete slab.
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The slab is isotropically reinforced in the top and in the bottom with ultimate positive and

negative moments of resistance per unit width presented as follows:

M+
u =M−

u = 25KN m/m (68)

There are two possible yield line patterns. The governing alternative collapse mode is the

one giving the lowest ultimate load. Figure 15 presents the two possible yield line patterns.

Figure 15 Yield line patterns.

According to the yield line theory the ultimate load [16] of the slab for mode 1 is:

qu =
6M+

u [1 + (4 l1
lx
)]

l2y [3 − (4 l1
lx
)]

= 24.881KN/m2 (69)

Where:

l1 = lx (
√
4+3K2−2

K2
)

K2 = 2 ( lxly )
2 (70)

According to the yield line theory the ultimate load [16] of the slab for mode 2 is:

qu =
12M+

u

l21
= 22.908KN/m2 (71)
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Where:
l1 = ly (

√
1+3K3−1

K3
)

K3 = 4 ( lylx )
2 (72)

In the perfect elasto-plastic analysis [18], it was used isoparametric elements with eight

nodes, Q8 [4]. The used mesh was a bilinear-quadrilateral mesh with 20 elements in x direction

and 32 elements in y direction. The integration order used was 2×2.
Using the perfect elasto-plastic analysis, it is obtained the ultimate load presented as

follows:

qu = 21.9KN/m2 (perfect elasto − plastic analysis) (73)

Figure 16 presents the distribution of the principals moments (M2) in the ultimate config-

uration.

Figure 16 Distribution of the principal moments.

7.6 Square slab with openings

In this example the ultimate load of the square uniformly loaded slab with a central square

opening is determined. The slab is fixed around the outside edges. The span of the slab is

l=5m. The size of the opening is defined by the value of k. In this example we use k=0.2. The

slab is solid concrete. Figure 17 presents the reinforced concrete slab.

The slab is isotropically reinforced with positive and negative ultimate moments of resis-

tance per unit width presented as follows:

M+
u =M−

u = 25KN m/m (74)
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Figure 17 Reinforced concrete slab.

According to the yield line theory the ultimate load [16] of the slab is:

qu =
24M+

u {1 + (
M−

u

M+
u
) [ 1
(1−k)]}

l2 (1 − k) (1 + 2k)
= 48.214KN/m2 (75)

In the perfect elasto-plastic analysis [18], it was used isoparametric elements with eight

nodes, Q8 [4]. The used mesh was a bilinear-quadrilateral mesh with 384 elements. The

integration order used was 2×2.
Using the perfect elasto-plastic analysis, it is obtained the ultimate load presented as

follows:

qu = 46.0KN/m2 (perfect elasto − plastic analysis) (76)

Figure 18 presents the distribution of the principals moments (M2) in the ultimate config-

uration.

Figure 18 Distribution of the principal moments.
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8 CONCLUSIONS

The values of ultimate loads of the examples presented above are presented in Table 2. This

table shows the values using the perfect elasto-plastic analysis [18] and the yield line theory

[16]. The percentage error between these two values is also presented.

Table 2 Ultimate loads.

Example
Ultimate Load

Error (%)
Perfect Elasto-Plastic Analysis Yield Line Theory

7.1 24.0 KN/m2 24.0 KN/m2 0.0

7.2 17.858 KN/m2 17.858 KN/m2 0.0

7.3 16.0 KN/m2 16.0 KN/m2 0.0

7.4 140.0 KN 140.0 KN 0.0

7.5 21.9 KN/m2 22.908 KN/m2 4.4

7.6 46.0 KN/m2 48.214 KN/m2 4.592

In all the examples presented in this paper the stress distribution in the ultimate configura-

tion determined using the perfect elasto-plastic analysis is according to the collapse mechanism

predicted by the yield line theory.

In example 7.1, the corner of the slab was held down and sufficient top steel was provided

to avoid the appearance of the corner effects. The ultimate load found in the perfect elasto-

plastic analysis and the ultimate load predicted by the yield line theory both have the same

value.

In examples 7.2, 7.3 and 7.4, the ultimate load found in the perfect elasto-plastic analysis

and the ultimate load predicted by the yield line theory both have the same value.

In example 7.5, the percentage error between the ultimate load found in the perfect elasto-

plastic analysis and the ultimate load predicted by the yield line theory is 4.4. The value

provided by perfect elasto-plastic analysis is in favor of safety.

In example 7.6, the percentage error between the ultimate load found in the perfect elasto-

plastic analysis and the ultimate load predicted by the yield line theory is 4.592. The value

provided by perfect elasto-plastic analysis is in favor of safety.

Taking into account the previous results, we can conclude that the values using the perfect

elasto-plastic analysis are very close to the values predicted by the yield line theory. Due to

the use of the Feasible Arc Interior Point Algorithm [8] the computational cost of the analyses

of the reinforced concrete slabs presented previously was not high. The perfect elasto-plastic

analysis [18] allows the determination of the stresses and displacements at each gauss point in

all loading stages. The yield line theory [16] does not allow to obtain these values. Therefore,

we can assert that the tool developed is efficient and robust to determine the ultimate load of

reinforced concrete slabs.
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