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Two efficient hybrid-Trefftz elements for plate bending analysis

Abstract

This study is devoted to the analysis of the Reissner-Mindlin

plate bending. In this paper, the hybrid-Trefftz strategy will

be utilized. Two novel and efficient elements are formulated

in details. They are a Triangular element (THT) and a

quadrilateral element (QHT), which have 9 and 12 degrees

of freedom, respectively. In this approach, two independent

displacement fields are defined; one within the element and

the other on the edges of the element. The internal field

is selected in such a manner that the governing equation of

thick plates could be satisfied. Boundary field is related to

the nodal degree of freedoms by the boundary interpolation

functions. To calculate these functions, the edges of the ele-

ment are assumed to behave like a Timoshenko beam. The

high accuracy and efficiency of the proposed elements and

absence of the shear locking in these formulations are all

proven, using various numerical tests.
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1 INTRODUCTION

Since the early days of the finite element method era, many elements have been proposed

for the analysis of thick plates bending. Some of these elements have been formulated based

on Rayleigh-Ritz method, i.e. the orthodox scheme. Routinely, polynomial functions have

been used for displacement field in this technique, which do not satisfy the related governing

differential equation. In this version of formulation, efficiency of the finite element is increased

by enlarging the element’s degrees of freedom [8, 28]. As a result, extending the degrees of

freedom leads to more complex elements. It is obvious that not only the analysts would dislike

this complexity, but it also adds to the costs of calculation. Between years 1965 to 1975,

researchers’ main concern was to achieve high accuracy by complex elements. On this base,

numerous elements with various specifications have been developed to analyze thin and thick

plates bending. Through these years, the ideas of the multi-field methods, such as the hybrid

approach and mixed scheme, emerged and flourished considerably [11, 23].

The hybrid procedure has a vast ability to formulate efficient elements for analysis of

the plate bending structures. Based on this methodology, the hybrid-Trefftz strategy (HT),
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were developed. Like the Ritz’s process, the hybrid-Trefftz technique is suitable to solve

solid mechanic problems. However, dissimilar to the Ritz’s method, the assumed polynomial

for the internal field establishes the governing equation of the structure. In other words,

homogeneous and particular solution of the governing equation is used to set up the finite

element formulation.

The hybrid-Trefftz method was first applied in examining distorted meshes by Jirousek

and Leon in 1970s [15]. Because of high accuracy and efficiency, this technique soon caught

the attention of other researchers as well. The mentioned approach has been successfully uti-

lized in solving plane elasticity problems [9, 32], thin plates [14, 19], Reissner-Mindlin plates

[7, 13, 22], shells [24], Helmholtz problem [33], heat conduction [10], contact problems [26],

and three-dimensional structures [21]. In 1995, Jirousek and his colleagues presented a fam-

ily of quadrilateral hybrid-Trefftz (HT) p-elements for moderately thick plates [16]. These

researchers utilized the modified Bessel function of the first kind, and took advantage of the

edge shear equilibrium for their derivation.

In hybrid-Trefftz method, weak form of compatibility between elements is achieved by

applying independent boundary displacement field and using variational principles. The Main

advantage of this formulation is that it allows for the integration on the boundary, which is

not only easier than integration on the surface, but also makes it possible to create polygon

elements. Advantages of this technique over conventional ways of the finite element procedures

are as follows [14, 25]:

1. There is continuity between elements in the hybrid method, and there is no need to

establish continuity as an additional condition.

2. It is possible to define numerous degrees of freedom on the boundary for the element,

without involving further new and complex formulation.

3. Because of using polynomials, which establish the governing equation, it enjoys high

levels of accuracy.

In this study, the edges of the suggested element are designed according to Timoshenko

beam, and its deflection and torsion fields are determined. In fact, the boundary interpolation

function is considered as a beam component. Interpolation functions for displacement and

rotation fields are cubic and quadratic functions, respectively. The boundary field is depended

on the nodal displacements by shape functions. By depicting these fields in the general co-

ordinates, x-y, the interpolation functions could be acquired. With the use of this boundary

field, two new triangular and quadrangular elements are proposed. Accuracy and efficiency of

these formulations are proven by utilizing several numerical tests.

2 HYBRID-TREFFTZ FORMULATION

To analyze the plate bending structures, governing finite element equation is required. First,

the hybrid-Trefftz functional will be defined. In hybrid-Trefftz functional, internal displacement
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of (u) and boundary displacement of (ũ) are employed independently. The following equation

is the hybrid functional of total energy [7, 13]:

Π(u, ũ) = U −W = ∫
π
W (u) dΩ − ∫

Ω
biui dΩ − ∫

ΓT

T̄iũi dΓt − ∫
Γ
Ti (ui − ũi) dΓ (1)

In this relation, W , bi, Ti, and T̃i are strain energy density function, body force, tractions,

and prescribed traction along ΓT , respectively. The strain-energy density function W (u) is
written by W (u) = 1/2σijεij . In functional (1), (u) is so selected that the governing equation

would be satisfied. Besides, ũ provides the continuity and the compatibility between the ele-

ments in the weak form. In order to achieve a useful formulation for finite elements, functional

(1) must be stationary in terms of the independent fields, u and ũ. The process of functional

(1) stationary will lead to the following formulas:

δΠ (u, ũ)∣δu = −∫
Γ
δTi (ui − ũi) dΓ = 0 (2)

δΠ (u, ũ)∣δũ = ∫
Γ
TiδũidΓ − ∫

ΓT

T̄iδũidΓ = 0 (3)

It should be added that for utilizing these formulas, ui, ũi, and Ti must be specified. In

addition, ui and Ti could be written as the total of two homogeneous and particular parts.

Boundary field of ũi could be also associated with nodal displacements by interpolation func-

tions:

{u} = {up} +
m

∑
j=1
{ϕj} cj = {up} + [Φ] {c} (4)

{ũ} = [Ñ] {d̃} (5)

{T} = {Tp} + [Θ] {c} (6)

In these formulas, {up} is the particular solution of the governing equation, and [Φ] {c}
is its homogeneous solution. Moreover, {d̃} is the nodal displacement and [Ñ] is boundary

interpolation function. Also, {Tp} represents tractions resulted from {up} and [Θ] {c} repre-
sents tractions resulted from homogeneous solution of the governing equation. By inserting

functions (4), (5), and (6) into formulas (2) and (3), the following equations will be available:

δ {c}T [∫
Γ
[Θ]T {up}dΓ + ∫

Γ
[Θ]T [ϕ]dΓ {c} − ∫

Γ
[Θ]T [Ñ]dΓ {d}] = 0 (7)

δ {d}T [∫
Γ
[Ñ]

T
{Tp}dΓ + ∫

Γ
[Ñ]

T
[Θ]dΓ {c} − ∫

ΓT

[Ñ] {T̄}dΓ] = 0 (8)

By finding {c} from the formula (7), and putting it in the equality (8), the succeeding

result can be achieved:

{g} − [G]T [H]−1 {h} + [Θ]T [H]−1 [Θ] {d} = 0 (9)
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In this equation, {h},{g}, [H] and [G] are defined in the below form:

{h} = ∫
Γ
[Θ]T {up}dΓ (10)

{g} = ∫
Γ
[Ñ]

T
{Tp}dΓ − ∫

ΓT

[Ñ]
T {T̄} dΓ (11)

[H] = ∫
Γ
[Θ]T [ϕ]dΓ (12)

[G] = ∫
Γ
[Θ]T [Ñ]dΓ (13)

Kd = f (14)

Eventually, the stiffness matrix [K] and the nodal forces {f} are obtained, as follows:

[K] = [G]T [H]−1 [G] (15)

{f} = [G]T [H]−1 {h} − {g} (16)

These formulas are applicable to plane stress, bending plates, and shell problems. In the

subsequent sections, the plates bending structures, based on the Reissner-Mindlin theory, will

be analyzed.

3 THICK PLATE PROBLEM

One of the most widely-used theories in analyzing thick plates is Reissner-Mindlin hypothesis.

This theory utilizes first order shear deformation for analysis. Furthermore, because of using

independent displacement and rotation fields, it is only needed to establish compatibility of C○

among the elements. Finite element users are aware that establishment of such a connection

is by far easier than fulfilling compatibility of C1, which is necessary in Kirchhoff’s theory.

Equations of displacement, stress, strain, and the relationship between them, and also tractions

in thick plate could be expressed as in the next formulas:

{u} = { w θx θy }
T

{ε} = { κx κy κxy γx γy }
T = [L] {u}

{σ} = { Mx My Mxy Qx Qy }
T = [D] {ε}

{T} = { Qn −Mnx −Mny }
T = [A] {σ} (17)

Tractions of {T}are displayed in Figure 1. In addition, matrices [L], [D ], and [A] are

obtained in the following manner:
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[L] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∂/∂x 0

0 0 ∂/∂y
0 ∂/∂y ∂/∂x

∂/∂x −1 0

∂/∂y 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, [A] =
⎡⎢⎢⎢⎢⎢⎣

0 0 0 nx ny

−nx 0 −ny 0 0

0 −ny −nx 0 0

⎤⎥⎥⎥⎥⎥⎦

[D] = [ [DM ] 0

0 [DS]
] ; [DM ] = −

Et3

12 (1 − ν2)

⎡⎢⎢⎢⎢⎢⎣

1 ν 0

ν 1 0

0 0 1−ν
2

⎤⎥⎥⎥⎥⎥⎦
, [DS] = Gtks [

1 0

0 1
] (18)

In these equations, ks is shear correction factor, which is usually, assumed 5/6. The

direction cosines of the element’s side, in the x and y directions, are nx and ny, respectively:

{
nx = cosα = y2−y1

l21
= y21

l21

ny = sinα = −x2−x1

l21
= x21

l21

(19)

Figure 1 Boundary forces on an arbitrary direction.

The static equilibrium equation for plates is given below:

[L]T {σ} = [L]T [D] [L] {u} = −{P} (20)

The vector {P} in the present formula, is actually the vector of external loads entering the

plate, and is defined as follows:

{P} = { p 0 0 }T (21)

By inserting the formula (21) into the equation (20) and simplifying it, the governing

equations of thick plate are obtained in the following appearance [22]:

∇4w = p

D
− 1

ksGt
∇2p (22)
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( t2

12ks
∇2 − 1) ( ∂p

∂x
−D∇4θx) = 0

( t2

12ks
∇2 − 1) (∂p

∂y
−D∇4θy) = 0

Present formulas are based on the Reissner-Mindlin theory. The solution of the homoge-

neous part of the differential equation (22), which is independent of loading, could be found

by solving the bi-harmonic one, ∇4wc = 0. After solving the last equation in polar coordinates,

the homogeneous solution is obtained in the below shape [12]:

wc =
∞
∑
n=0
[anrn cosnθ + bnrn sinnθ + cnrn+1 cos (n − 1) θ + dnrn+1 sin (n − 1) θ] (23)

It is suitable to utilize the following complex variables:

z= reiθ = r [cos (θ) + i sin (θ)]

zn= (reiθ)
n
= rn [cos (nθ) + i sin (nθ)]

(24)

Substituting these equations into (23) leads to the below solution [25]:

wc=
∞
∑
n=0
{Re [(an + r2bn) zn] + Im [(cn + r2dn) zn]}

r2= x2 + y2, z = x + iy
(25)

Therefore, the values of wj are accessible by applying the equations below. These formulas

were first introduced by Herrera [12].

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w4k = r2Re (zk)
w4k+1 = r2Im (zk)
w4k+2 = Re (zk+2)
w4k+3 = Im (zk+2)

k = 0,1,2, . . . (26)

The first eleven terms of the expression can be found by using k = 0,1,2. As a result, the

succeeding solutions are obtained:

k = 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w0 = 0
w1 = x2 + y2
w2 = 2xy
w3 = x2 − y2

; k = 1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w4 = x3 + xy2
w5 = x2y + y3
w6 = 3x2y − y3
w7 = x3 + 3xy2

; k = 2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w8 = x4 + y4
w9 = 2x3y + 2xy3
w10 = x4 − 6x2y2 + y4
w11 = 4x3y − 4xy3

(27)

Particular solution of the governing equation, without dependence on support conditions,

is easily calculated for known loads. For the uniformly distributed load, a particular solution

of the equation (22) is obtained in the below shape [22].
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wp =
pr2

64D
(r2 − 16D

Gtks
) (28)

To find the homogeneous solution for the equation (3), Petrolito supposed θx and θyin the

following manner [22]:

θx=
∂w

∂y
+ D

Gtks
f1 (x, y)

θy= −
∂w

∂x
− D

Gtks
f2 (x, y)

(29)

The unknown functions, f1 and f2, are obtained by inserting the present relationships in

the governing equation (3). Therefore, the homogeneous solution of equation (3) could be

expressed as in below:

θx=
∂w

∂y
+ D

Gtks

∂

∂y
∇2w

θy= −
∂w

∂x
− D

Gtks

∂

∂x
∇2w

(30)

It is obvious that the internal rotation functions, θx and θy, are dependent on the deflec-

tion w. Consequently, the field function of particular solution is accessible in the following

appearance:

{up} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

wp

θxp
θyp

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pr2

64D
(r2 − 16D

Gtks
)

yr2p
16D

−xr2p
16D

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(31)

In the particular and homogeneous solution, there is no advantage over x and y, and

therefore, the element will be rotational invariant.

The minimum of terms which are selected from homogeneous solution depends on the

element’s degrees of freedom. Number of necessary terms (and not adequate) to prevent

numerical instability and deficiency of the rank of the stiffness matrix is acquired through the

next condition [14, 25]:

m ≥ n − r (32)

Here, n and r are numbers of the nodal degrees of freedom of the element under consid-

eration and of the discarded rigid body motion terms, respectively. It should be mentioned

that using modes of the rigid body motion, product spurious strain energy in the element.

Therefore, these modes should be removed. Number of modes of the rigid body motion in

the plate is three (r = 3). This includes a transitive mode and two rotational modes in the
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direction of the x -axis and y-axis. Taking these points in consideration, the formula (32) for

the plate changes to the following form:

m ≥ NDOF − 3 (33)

It was stated that use of the minimum number (m=n-r) of the Trefftz functions in Eq.

(4) does not always guarantee a stiffness matrix with full rank. Moreover, the full rank may

always be achieved by suitably augmenting m. The optimal value of m for a given type of

element should be found by numerical experimentation [25].

4 BOUNDARY DISPLACEMENT FIELD

The boundary displacement functions are related to the nodal degrees of freedom by shape

functions. In order to find boundary shape functions, the edges of the element are assumed to

behave like a Timoshenko beam. This beam element was utilized by other researchers for plate

bending analysis [6, 29, 30, 35]. The shape functions of the Timoshenko beam are calculated

based on Figure 2. Linear field is also used for torsion of this beam. In order to compute shape

function of the beam in Figure 2, a cubic displacement polynomial and a quadratic rotational

field are selected. Moreover, it is assumed that shear strain has the constant value of γ0. Based

on these assumptions, the following equations can be written:

w = wi

2
(1 − s) +

wj

2
(1 + s) + β0l (1 − s2) + β1ls (1 − s2)

θ = θi
2
(1 − s) +

θj

2
(1 + s) + α0 (1 − s2)

γ = γ0

s = 2x

l
− 1 (34)

Figure 2 Timoshenko beam.

In these relations, β1, β0, α0 and γ0 are unknown parameters. In order to determine their

values, the equation of shear strain for Timoshenko beam is first established. By utilizing the

shear strain value equal to γ0, the subsequent equalities will be available:
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γ = dw

dx
− θ = 2

l
⋅ dw
ds
− θ

γ0 =
2

l
(−wi

2
+
wj

2
− 2β0ls + β1l − 3β1ls

2) − θi (
1 − s
2
) − θj (

1 + s
2
) − α0 (1 − s2) (35)

In the present formula, coefficients of the terms s and s2 are equivalent to zero. Therefore,

in the succeeding lines, α0, β1 are determined in terms of the unknown parameter γ0:

Γ = 2

l
(wj −wi) − (θi + θj)

β0 =
1

8
(θi − θj)

α0 = −
3

2
(γ0 −

1

2
Γ)

β1 =
1

6
α0 (36)

At this stage, there is only one unknown constant γ0, which can be determined from the

condition of minimum strain energy. It should be added that the structural strain energy is the

sum of bending and shear strain energy. Bending strain energy is calculated in the following

way:

Ub =
D

2
∫

l

0
κ2dx = Dl

4
∫

1

−1
κ2ds

D = Et3

12 (1 − ν2)
(37)

In this equation, κ represents curvature and is determined below:

κ = −2
l
⋅ dθ
ds
= κ0 − 6

sγ0
l

κ0 =
1

l
(θi − θj + 3sΓ) (38)

Substituting these equations into (37) leads to the below bending strain energy:

Ub = U0 + 6(−
DΓγ0

l
+ Dγ2

0

l
)

U0 =
Dl

4
∫

1

−1
κ2
0 ds (39)
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Besides, the next equation determines the energy of shear strain:

Us =
C

2
∫

l

0
γ dx = Cl

4
∫

1

−1
γ0 ds =

Cl

2
γ2
0

C = Gtks (40)

By adding the bending and shear strain energy together, total strain energy is found, as

follows:

U = Ub +Us = U0 −
6DΓ

l
γ0 +

6D

l
γ2
0 +

Cl

2
γ2
0 (41)

Implementing ∂U/∂γ0 = 0 will give the following results:

γ0 =
6DΓ

Cl2 + 12D
= δΓ

δ = 6λ

1 + 12λ
, λ = D

Cl2
(42)

By substitution β1, β0, α0 and γ0 into (34), the succeeding shape functions for Timoshenko

beam can be found:

{ w̃

θ̃n
} = [ N1

N5

N2

N6

N3

N7

N4

N8
]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wi

θni
wj

θnj

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(43)

N1 =
1

4
[2 + s3 (1 − 2δ) + s (−3 + 2δ)]

N2 =
l

4
[0.5 (1 − s2) + (s3 − s) (0.5 − δ)]

N3 =
1

4
[2 − s3 (1 − 2δ) − s (−3 + 2δ)]

N4 =
l

4
[−0.5 (1 − s2) + (s3 − s) (0.5 − δ)]

N5 =
1

4l
[6 (1 − s2) (−1 + 2δ)]

N6 =
1

4
[−1 + s (−2 + 3s) + 6 (1 − s2) δ]

N7 =
1

4l
[−6 (1 − s2) (−1 + 2δ)]

N8 =
1

4
[−1 + s (2 + 3s) + 6 (1 − s2) δ] (44)
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By assuming a linear interpolation for torsion field, the next results will be in hand:

θ̃s =
1

2
(1 − s) θs1 +

1

2
(1 + s) θs2 (45)

{ N ′1 = (1 − s) /2
N ′2 = (1 + s) /2

(46)

By transferring these fields to the general coordinates, x-y, the shape functions for the

element in Figure (3-2) can be written in the following form:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x21 = x2 − x1

y21 = y2 − y1
x = x1 + (s + 1)x21/2
y = y1 + (s + 1) y21/2

(47)

Figure 4 leads to the subsequent equations:

{ cosα = y21/l21
sinα = −x21/l21

(48)

Figure 3 Degrees of freedom on the element’s side.

Consequently, the next relationship can be written:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θn1 = θx1 cosα + θy1 sinα
θs1 = θy1 cosα − θx1 sinα
θn2 = θx2 cosα + θy2 sinα
θs2 = θy2 cosα − θx2 sinα

(49)

Furthermore, the boundary field’s θ̃x and θ̃y have the following equations:

{ θ̃x = θ̃n cosα − θ̃s sinα
θ̃y = θ̃n sinα + θ̃s cosα

(50)

Latin American Journal of Solids and Structures 9(2012) 43 – 67



54 M. Rezaiee-Pajand et al / Two efficient hybrid-Trefftz elements for plate bending analysis

Figure 4 Position of axes on the side.

Boundary displacement field is determined by multiplying shape functions in the nodal

displacements, as follows:

{ũ} = [Ñ] {d̃} (51)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

w̃

θ̃x
θ̃y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎣

N11 N12 N13 N14 N15 N16

N21 N22 N23 N24 N25 N26

N31 N32 N33 N34 N35 N36

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃1

θ̃x1
θ̃y1
w̃2

θ̃x2
θ̃y2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(52)

All entries of the shape function matrix are presented in the appendix one.

5 NUMERICAL TESTS

The performance of the proposed elements will be assessed in this section. To evaluate the

accuracy, convergence rate, and robustness of the new formulation several plate problems will

be solved. In order to demonstrate the properties of the proposed elements in details, the

results of THT and QHT, will be compared to the following famous elements:

1. The triangular element of Kirchhoff’s discrete plate (DKT) [3].

2. The triangular element of Mindlin’s discrete plate (DKMT) [18].

3. The triangular element according to Reissner-Mindlin’s theory (ARS-T9) [31].

4. The triangular 3-node element with 9 DOF (T3BL) [34].

5. The triangular element with reduced integration (T3BL(R)) [34].

6. The triangular element according to Mindlin’s theory (RDKTM) [6].

7. The quadrilateral element of Kirchhoff’s discrete plate (DKQ) [4].
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8. The quadrilateral element of Mindlin’s discrete plate (DKMQ) [17].

9. The quadrilateral element with reduced integration (Q4BL) [36].

10. Bathe-Dvorkin quadrilateral element (MITC4) [2].

11. The quadrilateral element for Reissner-Mindlin’s plates (ARS-Q12) [30].

12. The quadrilateral 4-node element (AC-MQ4) [5].

5.1 Study of Trefftz function effect

In this part, the number of Trefftz functions will be examined carefully through various nu-

merical examples in view of accuracy and efficiency of computation. For this purpose, a square

plate with simply support is solved under a uniformly distributed load q. The obtained solu-

tions confirm a typical pattern of accuracy when the number of function terms will increase.

To demonstrate the effect of Trefftz function terms, the integer n represents the number of the

used terms, in THT-n and QHT-n. Table 1 reveals the minimum number of Trefftz function

terms, which are sufficient for present formulation, and compatible with the necessary condi-

tion of Eq. (33). The findings of this study show that the triangular element THT with 7

Trefftz functions and the quadrangular element QHT with 11 Trefftz functions have the highest

level of accuracy for plate analysis.

Table 1 Accuracy test for varying Trefftz terms in simply support plate (Wc/ (qa 4/100D)).

Mesh THT-7 THT-11 THT-15 QHT-11 QHT-15

2×2 0.3974 0.3556 0.3449 0.3906 0.3708

4×4 0.4020 0.3956 0.3920 0.4052 0.3985

6×6 0.4047 0.4017 0.4017 0.4061 0.4030

8×8 0.4055 0.4037 0.4037 0.4062 0.4045

10×10 0.4058 0.4047 0.4047 0.4062 0.4051

Exact solution [34] 0.4062

5.2 Analysis of square plate

In this section, the solution for the square plate bending is conducted under a uniformly

distributed load q, with simply and clamped supports. The thickness and side length of the

plate are denoted by h and l, respectively; and the Poisson’s ratioνof the material is assumed

to be 0.3. To reach a general conclusion, the results of the central displacements and moments

from the very thin plate (h/l = 0.001) to the thick plate (h/l = 0.2) are presented in Tables 2

to 9. According to the numerical results, it is obvious that the proposed elements, THT and

QHT, have a high precision and fast convergence behavior, whether it is used for thin or thick

plate analysis. It is important to note that no shear locking happens in the thin plate limit.
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Furthermore, the suggested elements are insensitive to mesh distortion. The comparisons of

the present results with those obtained by other authors are also presented in Tables 10 to 13.

Table 2 Central deflections for the simply supported square plate (Wc/ (ql 4/100D)).

Mesh 0.001=h/l
ARS-T9 T3BL Q4BL MITC4 ARS-Q12 AC-MQ4 THT QHT

2×2 0.3676 0.3798 0.4035 0.3969 0.4045 0.4052 0.4019 0.4052
4×4 0.3973 0.4005 0.4058 0.4041 0.4060 0.4062 0.4055 0.4062
8×8 0.4041 0.4054 0.4062 0.4057 0.4062 0.4062 0.4061 0.4062
16×16 0.4057 0.4063 0.4062 0.4061 0.4062 0.4062 0.4062 0.4062

Exact solution [34] 0.4062

Table 3 Central deflections for the simply supported square plate (Wc/ (ql 4/100D)).

Mesh 0.1= h/l
ARS-T9 T3BL Q4BL MITC4 ARS-Q12 AC-MQ4 THT QHT

2×2 0.3845 0.4036 0.4269 0.4190 0.4228 0.4139 0.4218 0.4265
4×4 0.4165 0.4212 0.4274 0.4255 0.4255 0.4206 0.4257 0.4266
8×8 0.4245 0.4257 0.4273 0.4268 0.4267 0.4251 0.4268 0.4270
16×16 0.4266 0.4269 0.4273 0.4272 0.4271 0.4267 0.4271 0.4272

Exact solution [34] 0.4273

Table 4 Central moments for the simply supported square plate (Mc/ (ql 2/10)).

Mesh 0.001= h/l
ARS-T9 T3BL Q4BL MITC4 ARS-Q12 AC-MQ4 THT QHT

2×2 0.4847 0.4285 0.5649 0.4075 0.5009 0.5106 0.4569 0.4786
4×4 0.4820 0.4672 0.5010 0.4612 0.4839 0.4872 0.4716 0.4788
8×8 0.4799 0.4767 0.4876 0.4745 0.4801 0.4810 0.4770 0.4789
16×16 0.4792 0.4788 0.4830 0.4778 0.4792 0.4794 0.4784 0.4789

Exact solution [34] 0.4789

Table 5 Central moments for the simply supported square plate (Mc/ (ql 2/10)).

Mesh 0.1= h/l
ARS-T9 T3BL Q4BL MITC4 ARS-Q12 AC-MQ4 THT QHT

2×2 0.4765 0.4484 0.4716 0.4075 0.5223 0.5025 0.4923 0.4729
4×4 0.4775 0.4744 0.4773 0.4612 0.4941 0.4842 0.4872 0.4766
8×8 0.4781 0.4785 0.4785 0.4745 0.4834 0.4803 0.4814 0.4783
16×16 0.4786 0.4789 0.4788 0.4778 0.4801 0.4792 0.4795 0.4787

Exact solution [34] 0.4789
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Table 6 Central deflections for the clamped supported square plate (Wc/ (ql 4/100D)).

Mesh 0.001= h/l
ARS-T9 T3BL T3BL(R) MITC4 ARS-Q12 AC-MQ4 THT QHT

2×2 0.1214 0.0931 0.1446 0.1211 0.1460 0.1245 0.1148 0.1239
4×4 0.1258 0.1180 0.1307 0.1251 0.1319 0.1263 0.1237 0.1264
8×8 0.1264 0.1246 0.1276 0.1262 0.1279 0.1265 0.1259 0.1265
16×16 0.1265 0.1261 0.1268 0.1264 0.1269 0.1265 0.1264 0.1265

Exact solution [34] 0.1265

Table 7 Central deflections for the clamped supported square plate (Wc/ (ql 4/100D)).

Mesh 0.1= h/l
ARS-T9 T3BL T3BL(R) MITC4 ARS-Q12 AC-MQ4 THT QHT

2×2 0.1392 0.1263 0.1691 0.1431 0.1678 0.1474 0.1367 0.1504
4×4 0.1473 0.1450 0.1552 0.1488 0.1548 0.1477 0.1470 0.1507
8×8 0.1495 0.1491 0.1516 0.1500 0.1515 0.1494 0.1494 0.1505
16×16 0.1502 0.1501 0.1508 0.1504 0.1507 0.1502 0.1502 0.1505

Exact solution [34] 0.1505

Table 8 Central moments for the clamped supported square plate (Mc/ (ql 2/10)).

Mesh 0.001= h/l
ARS-T9 T3BL T3BL(R) MITC4 AC-MQ4 THT QHT

2×2 0.2473 0.1408 0.1617 0.1890 0.2712 0.2391 0.2211
4×4 0.2347 0.2102 0.2122 0.2196 0.2407 0.2276 0.2284
8×8 0.2302 0.2248 0.2249 0.2267 0.2321 0.2284 0.2290
16×16 0.2293 0.2280 0.2280 0.2285 0.2298 0.2289 0.2291

Exact solution [34] 0.2291

Figure 5 Typical meshes (4×4) for 1/4 square plate.
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Table 9 Central moments for the clamped supported square plate (Mc/ (ql 2/10)).

Mesh
0.1= h/l

ARS-T9 T3BL T3BL(R) MITC4 AC-MQ4 THT QHT
2×2 0.2388 0.1596 0.1647 0.1898 0.2572 0.2424 0.2271
4×4 0.2313 0.2150 0.2155 0.2219 0.2377 0.2372 0.2310
8×8 0.2311 0.2277 0.2279 0.2295 0.2333 0.2335 0.2317
16×16 0.2317 0.2309 0.2310 0.2314 0.2323 0.2324 0.2319

Exact solution [34] 0.2310

Table 10 Central deflections for the simply supported square plate (Wc/ (ql 4/100D)).

h/l Mesh type Element type 2×2 4×4 8×8 16×16 Exact solution [34]

10−20

A

ARS-T9 0.3676 0.3973 .04041 0.4057

0.4062

ARS-Q12 0.4045 0.4060 0.4062 0.4062
THT 0.4019 0.4055 0.4061 0.4062
QHT 0.4052 0.4062 0.4062 0.4062

B

ARS-T9 0.3771 0.3994 0.4046 0.4058
ARS-Q12 0.4218 0.4102 0.4072 0.4065
THT 0.4010 0.4053 0.4060 0.4062
QHT .04037 0.4061 0.4062 0.4062

C

ARS-T9 0.3802 0.4003 0.4048 0.4059
ARS-Q12 0.4324 0.4131 0.4080 0.4067
THT 0.3993 0.4048 0.4059 0.4062
QHT 0.4020 0.4059 0.4062 0.4062

Table 11 Central deflections for the simply supported square plate (Wc/ (ql 4/100D)).

h/l Mesh type Element type 2×2 4×4 8×8 16×16 Exact solution [34]

0.2

A

ARS-T9 0.4370 0.4764 0.4867 0.4895

0.4904

ARS-Q12 0.4857 0.4859 0.4900 0.4903
THT 0.4804 0.4876 0.4897 .0.4902
QHT 0.4901 0.4900 0.4903 0.4904

B

ARS-T9 0.4592 0.4804 0.4878 0.4897
ARS-Q12 0.5003 0.4922 0.4908 .4905
THT 0.4780 0.4863 0.4892 0.4901
QHT 0.4887 0.4895 .4901 0.4904

C

ARS-T9 0.4594 0.4821 0.4882 0.4898
ARS-Q12 0.5099 0.4945 0.4913 0.4907
THT 0.4798 0.4866 0.4893 0.4901
QHT 0.4877 0.4892 0.4900 0.4903
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Table 12 Central deflections for the clamped supported square plate (Wc/ (ql 4/100D)).

h/l Mesh type Element type 2×2 4×4 8×8 16×16 Exact solution [34]

10−20

A

ARS-T9 0.1214 0.1258 0.1264 0.1265

0.1265

ARS-Q12 0.1460 0.1319 0.1279 0.1269
THT 0.1148 0.1237 0.1259 0.1264
QHT 0.1239 0.1260 0.1265 0.1265

B

ARS-T9 0.1361 0.1291 0.1272 0.1267
ARS-Q12 0.1601 0.1354 0.1288 0.1271
THT 0.1141 0.1229 0.1256 0.1263
QHT 0.1235 0.1259 0.1264 0.1265

C

ARS-T9 0.1443 0.1311 0.1276 0.1268
ARS-Q12 0.1700 0.1383 0.1295 0.1273
THT 0.1163 0.1231 0.1256 0.1263
QHT 0.1238 0.1260 0.1264 0.1265

Table 13 Central deflections for the clamped supported square plate (Wc/ (ql 4/100D)).

h/l Mesh type Element type 2×2 4×4 8×8 16×16 Exact solution [34]

0.2

A

ARS-T9 0.1931 0.2101 0.2152 0.2167

0.2167

ARS-Q12 0.2348 0.2217 0.2183 0.2175
THT 0.1971 0.2120 0.2158 0.2169
QHT 0.2216 0.2183 0.2175 0.2173

B

ARS-T9 0.2145 0.2160 0.2168 0.2171
ARS-Q12 0.2494 0.2253 0.2192 0.2177
THT 0.1930 0.2104 0.2154 0.2167
QHT 0.2201 0.2181 0.2174 0.21473

C

ARS-T9 0.2265 0.2191 0.2176 0.2173
ARS-Q12 0.2598 0.2281 0.2199 0.2179
THT 0.2001 0.2119 0.2158 0.2168
QHT 0.2196 0.2180 0.2174 0.2173

5.3 Circular plate test

A circular plate subjected to a uniformly distributed load q, with two different boundary

conditions, simply supported and clamped conditions, was analyzed with mesh subdivisions

shown in Figure 6. The radius, modulus of elasticity and Poisson’s ratio are, a, E, and ν,

respectively. The results obtained from the analyses are presented in Tables 14 through 19.

The accuracy and reliability of the proposed element answers are clearly illustrated by the

findings. As it is seen, these results obtained using meshes with 3, 12 and 48 elements. Similar

to the square plate case, the solutions obtained for THT and QHT elements, are close to exact

answers when they are compared to other well-known elements.
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Figure 6 Three mesh types for quadrant of a circular plate.

Table 14 Central deflections for the simply supported circular plate (Wc/ (qa 4/10D)).

Number of elements
0.02= h/a

ARS-T9 T3BL DKMT DKMQ MITC4 ARS-Q12 THT QHT
3 0.6056 0.6306 0.6056 0.6101 0.5829 0.6101 0.6548 0.6521
12 0.6306 0.6345 0.6304 0.6309 0.6246 0.6308 0.6420 0.6414
48 0.6367 0.6366 0.6357 0.6357 0.6342 0.6357 0.6385 0.6384

Exact solution [34] 0.6373

Table 15 Central deflections for the simply supported circular plate (Wc/ (qa 4/10D)).

Number of elements
0.2= h/a

ARS-T9 T3BL DKMT DKMQ MITC4 ARS-Q12 THT QHT
3 0.6314 0.6586 0.6314 0.6346 0.6101 0.6353 0.6813 0.6791
12 0.6575 0.6629 0.6575 0.6576 0.6524 0.6575 0.6695 0.6688
48 0.6650 0.6649 0.6636 0.6635 0.6623 0.6635 0.6665 0.6663

Exact solution [34] 0.6656

Table 16 Central moments for the simply supported circular plate (Mc/ (qa 2/10)).

Number of elements
0.02= h/a

ARS-T9 T3BL DKMT DKMQ MITC4 ARS-Q12 THT QHT
3 0.2105 0.1883 0.2104 0.2156 0.1892 0.2156 0.2100 0.2104
12 0.2095 0.2012 0.2092 0.2080 0.2040 0.2081 0.2079 0.2073
48 0.2078 0.2050 0.2072 0.2068 0.2056 0.2069 0.2067 0.2065

Exact solution [34] 0.2063

Table 17 Central deflections for the clamped supported circular plate (Wc/ (qa 4/10D)).

Number of elements
0.02= h/a

ARS-T9 T3BL DKMT DKMQ MITC4 ARS-Q12 THT QHT
3 0.1649 0.0968 0.1649 0.1723 0.1451 0.1723 0.1272 0.1244
12 0.1598 0.1404 0.1599 0.1615 0.1552 0.1613 0.1491 0.1485
48 0.1575 0.1524 0.1576 0.1578 0.1563 0.1577 0.1547 0.1545

Exact solution [34] 0.1565
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Table 18 Central deflections for the clamped supported circular plate (Wc/ (qa 4/10D)).

Number of elements
0.2= h/a

ARS-T9 T3BL DKMT DKMQ MITC4 ARS-Q12 THT QHT
3 0.1907 0.1286 0.1907 0.1968 0.1721 0.1975 0.1536 0.1514
12 0.1870 0.1696 0.1872 0.1882 0.1829 0.1881 0.1765 0.1759
48 0.1854 0.1808 0.1855 0.1856 0.1844 0.1856 0.1827 0.1825

Exact solution [34] 0.1848

Table 19 Central moments for the simply supported circular plate (Mc/ (qa 2/10)).

Number of elements
0.02= h/a

ARS-T9 T3BL DKMT DKMQ MITC4 ARS-Q12 THT QHT
3 09602 0.4875 0.9600 1.0160 0.7520 1.0183 0.7250 0.7317
12 0.8715 0.7275 0.8680 0.8600 0.8200 0.8600 0.7969 0.7909
48 0.8324 0.7909 0.8280 0.8240 0.8160 0.8260 0.8089 0.8069

Exact solution [34] 0.8125

5.4 Razzaque skew plate

Figure 7 shows a 60○ skew plate which was originally studied by Razzaque [27]. This plate

has simply supported on two opposite edges and free on the other two edges, and subjected

to a uniformly distributed load. The results obtained using the THT and QHT elements, are

shown in Tables 20 and 21. The referenced value was obtained by Razzaque with 16×16 finite

difference mesh.

Figure 7 Razzaque skew plate with mesh (4×4).

Table 20 Central deflections for Razzaque skew plate (Wc/ (qa4/100D)).

Mesh
0.001= h/a

DKT RDKTM DKQ DKMQ MITC4 ARS-Q12 THT QHT
2×2 - - 0.6667 0.6667 0.3856 0.6667 0.7224 0.7640
4×4 0.7527 0.7527 0.7696 0.7695 0.6723 0.7691 0.7700 0.7875
6×6 0.7742 0.7742 0.7830 0.7829 0.7357 0.7829 0.7808 0.7890
8×8 0.7822 0.7822 0.7877 0.7876 0.7592 0.7876 0.7848 0.7898
12×12 0.7881 0.7881 0.7909 0.7908 0.7765 0.7909 0.7901 0.7905

Razzaque [27] 0.7945
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Table 21 Central moments for Razzaque skew plate (My/ (qa2/10)).

Mesh
0.001= h/a

DKMQ MITC4 ARS-Q12 THT QHT
2×2 0.9220 0.4688 0.9246 0.8587 0.7521
4×4 0.9600 0.8256 0.9595 0.9457 0.9504
6×6 0.9610 0.8976 0.9609 0.9521 0.9416
8×8 0.9610 0.9242 0.9605 0.9553 0.9481
12×12 0.9600 0.9439 0.9602 0.9577 0.9545

Razzaque [27] 0.9589

5.5 Morley skew plate

The simply supported skew plate illustrated in Figure (8) has been solved by Morley. This

researcher used polar co-ordinates and a least-squares solution procedure to analyze an acute

skew plate subject to a uniformly distributed load. It is worth emphasizing that this problem

poses severe difficulties for numerical methods, since there is a singularity in the bending

moments at the obtuse corner. Despite these difficulties, in the case of the thin-plate theory,

Morley’s solution is assumed to be near exact. Babuka and Scapolla also solved this problem

as a 3-D elastic structure. The results were obtained using suggested elements, and compared

to some other famous formulations, as shown in Tables (22) through (24) and Figure (9).

Figure 8 Morley skew plate with mesh (4×4).

Table 22 Central deflection for the Morley skew plate (Wc/ (qa4/1000D)).

Mesh
0.001= h/a

T3BL Q4BL MITC4 DKMQ ARS-Q12 AC-MQ4 THT QHT
2×2 0.421 0.512 0. 358 0.760 0.756 0.431 0.423 0.422
4×4 0.415 0.439 0.343 0.507 0.506 0.409 0.406 0.409
8×8 0.414 0.429 0.343 0.443 0.442 0.405 0.406 0.408
16×16 0.413 0.424 0.362 0.425 0.424 0.405 0.407 0.408

Exact solution [20] 0.408
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Table 23 Central deflection for the Morley skew plate (Wc/ (qa4/1000D)).

Mesh
0.01= h/a

T3BL Q4BL MITC4 DKMQ ARS-Q12 AC-MQ4 THT QHT
2×2 0.422 0.513 0. 359 0.757 0.754 0.431 0.424 0.425
4×4 0.417 0.440 0.357 0.504 0.503 0.410 0.408 0.413
8×8 0.418 0.431 0.383 0.441 0.440 0.407 0.410 0.414
16×16 0.420 0.427 0.404 0.423 0.423 0.409 0.413 0.416

References
Morley solution [20] 0.408
Babuška and Scapolla [1] 0.423

Table 24 Maximum central moments for the Morley skew plate (Mmax/ (qa 2/10)).

Mesh
0.001= h/a

T3BL Q4BL MITC4 DKMQ ARS-Q12 AC-MQ4 THT QHT
2×2 1.723 2.012 1.669 2.339 2.314 2.142 2.057 1.872
4×4 1.893 1.990 1.733 2.074 2.069 2.001 1.818 1.879
8×8 1.912 1.967 1.717 1.984 1.985 1.928 1.898 1.903
16×16 1.918 1.953 1.777 1.950 1.950 1.903 1.902 1.905

Exact solution [20] 1.910

Table 25 Minimum central moments for the Morley skew plate (Mmin/ (qa 2/10)).

Mesh
0.001= h/a

T3BL Q4BL MITC4 DKMQ ARS-Q12 AC-MQ4 THT QHT
2×2 0.955 1.133 0.921 1.751 1.730 1.374 0.976 1.018
4×4 1.090 1.164 0.957 1.276 1.271 1.284 0.918 0.979
8×8 1.100 1.152 0.874 1.166 1.168 1.147 1.056 1.075
16×16 1.100 1.140 0.923 1.137 1.136 1.085 1.074 1.083

Exact solution [20] 1.080

(a) Displacement at centre (b) Bending moment Mmax at centre (c) Bending moment Mmin at centre

Figure 9 Morley’s acute skew plate: convergence.
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6 CONCLUSION

In this study, the triangular element THT and the quadrangular element QHT are proposed

for the analysis of the thick bending plates. Formulations of these elements are based on the

hybrid-Trefftz method. The two displacement fields, one within the element and the other

on the borders of the element, are supposed to be independent. The independent internal

field is defined by utilizing the Trefftz scheme. By assuming that the element’s edges are

Timoshenko beam, the required interpolation functions and the boundary displacement field

for this beam component are calculated. In order to examine the accuracy and efficiency of the

proposed elements, several numerical tests were conducted. As it was proven by the numerical

results, the answers of the suggested elements quickly converged in all the tests. The present

formulations lead to good answers, even when the coarse meshes are utilized. It should be

added that the accuracy and convergence rate of the element QHT is higher than the element

THT.
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APPENDIX: SHAPE FUNCTIONS FOR BOUNDARY DISPLACEMENT

In the following, the entries of the interpolation matrix for the boundary displacement field

are introduced:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

w̃

θ̃x
θ̃y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎣

N11 N12 N13 N14 N15 N16

N21 N22 N23 N24 N25 N26

N31 N32 N33 N34 N35 N36

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃1

θ̃x1
θ̃y1
w̃2

θ̃x2
θ̃y2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

N11 =
1

4
[2 + s (−3 + s2) + 2s (1 − s2) δ]

N12 =
1

4
[0.5 (1 − s2) + s (1 − s2) (−0.5 + δ)] y21

N13 =
1

4
[−0.5 (1 − s2) − s (1 − s2) (−0.5 + δ)]x21

N41 =
1

4
[2 − s (−3 + s2) − 2s (1 − s2) δ]

N51 =
1

4
[−0.5 (1 − s2) + s (1 − s2) (−0.5 + δ)] y21

N61 =
1

4
[0.5 (1 − s2) − s (1 − s2) (−0.5 + δ)]x21

N21 =
1

4l2
[6 (1 − s2) (−1 + 2δ)] y21

N22 =
1

4l2
[2 (1 − s)x2

21 + (−1 + s (−2 + 3s) + 6 (1 − s2) δ) y221]

N23 =
1

4l2
[3 (1 − s2) (1 − 2δ)]x21y21

N24 =
1

4l2
[−6 (1 − s2) (−1 + 2δ)] y21

N25 =
1

4l2
[2 (1 + s)x2

21 + (−1 + s (2 + 3s) + 6 (1 − s2) δ) y221]

N26 =
1

4l2
[3 (1 − s2) (1 − 2δ)]x21y21

N31 =
1

4l2
[−6 (1 − s2) (−1 + 2δ)]x21

N32 =
1

4l2
[3 (1 − s2) (1 − 2δ)]x21y21

N33 =
1

4l2
[2 (1 − s) y221 + (−1 + s (−2 + 3s) + 6 (1 − s2) δ)x2

21]
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N34 =
1

4l2
[6 (1 − s2) (−1 + 2δ)]x21

N35 =
1

4l2
[3 (1 − s2) (1 − 2δ)]x21y21

N36 =
1

4l2
[2 (1 + s) y221 + (−1 + s (2 + 3s) + 6 (1 − s2) δ)x2

21]
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