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Abstract 
The thermal effects of problems involving deformable structures are 
essential to describe the behavior of materials in feasible terms. 
Verifying the transformation of mechanical energy into heat it is 
possible to predict the modifications of mechanical properties of 
materials due to its temperature changes. The current paper presents 
the numerical development of a finite element method suitable for 
nonlinear structures coupled with thermomechanical behavior; 
including impact problems. A simple and effective alternative 
formulation is presented, called FEM positional, to deal with the 
dynamic nonlinear systems. The developed numerical is based on the 
minimum potential energy written in terms of nodal positions instead 
of displacements. The effects of geometrical, material and thermal 
nonlinearities are considered. The thermodynamically consistent 
formulation is based on the laws of thermodynamics and the 
Helmholtz free-energy, used to describe the thermoelastic and the 
thermoplastic behaviors. The coupled thermomechanical model can 
result in secondary effects that cause redistributions of internal 
efforts, depending on the history of deformation and material 
properties. The numerical results of the proposed formulation are 
compared with examples found in the literature. 
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1 INTRODUCTION 

The current paper presents the study of thermomechanical response for frictionless impact problems, 
considering the nonlinear behavior through a simple formulation based on FEM, called positional. 
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The formulation is described in Total Lagrangian reference using as unknowns the nodal positions 
instead of the displacement. This formulation shows a simple language in respect to nonlinear 
geometric approach where the main advantage is the absence of co-rotational axes (the formulation 
can be carried on directly with global axes only) (Coda and Greco, 2004; Greco and Coda, 2006; 
Carrazedo and Coda, 2010; Coda and Paccola, 2011; Coda et al., 2013). 

Duhamel in 1837 and Neumann in 1885 identified the modification need of the mechanical models 
to consider the temperature differences to accurately represent the behavior of the materials (Sherief 
et al., 2004). The thermomechanical theory investigates the interaction between temperature and 
structural strains. In many cases, the influence of the strains in relation to the thermal field may be 
neglected. This results in thermomechanical uncoupled system, for which only the effect of 
temperature modifies the strains field. The experimental studies and theoretical models of 
thermomechanical have advanced simultaneously. The use of more sophisticated experiments results 
in more accurate and efficient mathematical models. 

The thermoelasticity and thermoplasticity are defined as part of the thermomechanical theory 
that determines the behavior of elastic and plastic bodies, respectively, submitted to thermal and 
mechanical efforts. The first studies were devoted to static problems. Danilovskaya (1950) was the 
first researcher that tried to include the effects of inertia in thermoelastic transient problems. These 
problems presented simple nature, but the solution explained the process of transmission of the 
thermal stresses. The theory of uncoupled thermoelasticity may not be satisfactory for some transient 
problems, because experimental observations that shown the thermal field modified by the strains 
field. Several experiments emphasize the influence of strains on thermal field (Rittel, 1998; Benzerga 
et al., 2005; Stanley, 2008). 

Biot (1956) developed the classical theory of coupled thermoelasticity. The equations of elasticity 
and heat conduction are interdependent. The equations used to describe this theory are a combination 
between the elasticity theory and the laws of thermodynamics. The equations that represent the heat 
conduction are parabolic and heat propagation velocity in an elastic system is infinite. The theory of 
generalized thermoelasticity came to deal with these inconsistencies observed in experimental results. 

The general theory of thermoelasticity has been modified over the years. The first theory proposed 
by Lord and Shulman (1967) considers that the heat conduction law is altered to consider the heat 
flux and its rate. It was considered a time parameter relaxation to ensure finite velocity of propagation 
of heat. The second theory developed by Green and Lindsay (1972) considers that the constitutive 
equations are modified by insertion of two time parameters relaxation. Green and Naghdi (1993) 
presented a new theory of generalized thermoelasticity based on the balance of energy and entropy, 
where energy dissipation is not allowed. Subsequently, Green and Naghdi (1995) presented the most 
general case for the theory of generalized thermoelasticity, where energy dissipation was taken into 
account. 

The theories of thermoelasticity cannot accurately describe the behavior of elastoplastic bodies. 
Thus, Dillon Jr. (1963) developed the theory of thermoplasticity with the purpose of represent the 
evolution of plastic strains. Since then, heat conduction problems with elastoplastic characteristics 
have been studied extensively and various exact and numerical solutions can be found in the literature, 
such as McKnight and Sobel (1977), Dargush and Banerjee (1991), Hakansson et al. (2005) and 
Carrazedo and Coda (2010). 
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Although the solution of a heat conduction problem does not present major complexity for most 
materials, the modeling strategy of thermal and mechanical interdependence continues to be a 
challenge for nonlinear problems. The study nonlinear thermomechanical behavior problems remains 
subject of many researches in different fields, such as Rajagopal (1995), Rajagopal et al. (1996), 
Canadija and Brnic (2009), Canadija and Brnic (2010), Ozakin and Yavari (2010) and Yavari and 
Goriely (2013). 
 
2 THE COUPLED THERMOMECHANICAL 

The thermoelasticity has been used in several areas, especially for the application of static problems 
(Copetti, 1999; Shahani and Nabavi, 2007) and dynamic problems (Chen and Dargush, 1995; Norris, 
2006; Shahani and Bashusqeh, 2014). Other analysis methods have been adopted to deal with coupled 
thermoelastic problems. As an example, Soler and Brull (1965) used perturbation techniques and 
more recently Lychev et al. (2010) determined a closed form solution by an expansion of functions 
generated by the heat conduction and equations of motion. 

Several studies described the thermoelastic behavior of orthotropic materials, such as Lu and 
Pister (1975), Vujosevic and Lubarda (2002) e Lubarda (2004). Another field of research is the study 
of anisotropic materials (Deb et al., 1991; Li, 1992; Clayton, 2013; Mahmoud et al., 2015). Numerical 
approximations for thermoelastic equations are commonly found using the FEM. Models for transient 
thermoelastic FEM are developed and compared with analytical solutions, as presented in Nickell and 
Sackman (1968) and Ting and Chen (1982). Rand and Givoli (1995) developed a dynamic model 
thermoelastic for FEM. Formulations of finite elements for thermoelastic damping are obtained from 
an irreversible entropy flux due to the heat fluxes caused by the variations of volumetric stresses, as 
presented in Serra and Bonaldi (2009). 

The determination of the temperature field in an elastic body is obtained by solving the 
differential equation of heat conduction, subject to initial and boundary conditions. The 
thermomechanical behavior of an elastic and heat conducting body is described by the heat conduction 
equation (Eq. (1)) and local dynamic equilibrium (Eq. (2)), which are the main equations of the 
theory of coupled thermoelasticity. 
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where G  is the transverse modulus of elasticity, n  is the Poisson coefficient, r  is the density, e  are 

the deformations, dij  is the Kronecker delta and iF  are the external forces applied. The Eqs. (1) and 

(2) also show the coefficient of thermal expansion of material (a ), specific heat ( ec ), coefficient of 

thermal conductivity (k ), internal heat source (R ), reference temperature ( 0q ) and temperature 

variation ( q ). 
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The heat variation is defined by the heat flux and the heat generated internally. The equation of 
thermoplasticity firm in the first and second law of thermodynamics. In the form of the inequality of 
Clausius-Duhem, one has: 
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where u  is the internal energy, sij  are the axial stress, q  is the heat flux and S  the entropy. 

For all energy transformations there is an increase in the entropy. The total energy involved in 
the process can not vary, and the entropy increase is a way to measure the energy that can be 
converted into mechanical work. The Helmholtz free-energy measures the energy of a system that can 
be transformed into work. The Eqs. (5) and (6) define, respectively, the Helmholtz free-energy (Φ ) 
and its rate ( Φ ) as a function of temperature (T ). 
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Combining the concept of Helmholtz free-energy with Eqs. (3) and (4), it is possible to obtain the 
equation that defines the energy conservation equation in terms of the internal dissipation, defined 
by: 
 

,rq r= L - +
i iS q R  (7)

 

Where, 
 

r r q s e- - + = L Φ ij ijS  (8)
 

With L  representing the internal dissipation of energy. 
 
2.1 Internal Variables 

In accordance with experimental results it was observed that part of the plastic work was converted 
into heat (Farren and Taylor, 1925; Taylor and Quinney, 1934). Dillon Jr. (1963) and Perzyna and 
Sawzcuk (1973) presented the first attempts to develop constitutive models considering the interaction 
between the plastic work and thermal effects. Subsequently, formulations have been developed 
considering with large deformations (Lemonds and Needleman, 1986; Simo and Miehe, 1992; Canadija 
and Brnic, 2004). 

Simo and Miehe (1992) present an approach to thermoplasticity analysis, considering a 
thermodynamically consistent formulation of the problem coupled and detailing the performance and 
numerical aspects involving the implementation by FEM. Continuing the development of energy 
conservation equation is necessary to develop the internal dissipation term. Two variables are 
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introduced: the plastic deformation ( epij ) and the hardening variable ( xi ). The decomposition of the 

strain tensor is defined additively, where the total strain is the result of the sum of elastic and plastic 
parts: 
 

e e e= -e p
ij ij ij  (9)

 

where eeij  is the elastic deformation. 

From Eq. (9), the rate of Helmholtz free-energy can be expressed by Eq. (10). For reasons of 
convenience, from that moment the temperature gradient ,q i  is defined by Θ . 
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Substituting Eq. (10) into (4) one has: 
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According to Carrazedo and Coda (2010), by demanding that (11) holds for all admissible 
thermomechanical process which means that it must satisfy all independent variations of e , q  and 
Θ , Eq. (11) is satisfied if and only if: 
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Considering Eqs. (12), (13) and (14) and substituting Eq. (11) into Eq. (7) gives: 
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Deriving the first term of Eq. (15), one has: 
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In the plastic regime, a large amount of plastic mechanical energy is dissipated as heat. However, 
the plastic work is not completely transformed into thermal energy. Part of this work is dissipated 
due to interaction between the interfaces of the microstructures that constitute the material. The 
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absorbed energy due to generation and rearrangement of imperfections in the process of plasticity is 
defined as stored energy of cold work (E ), given by: 
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Based on the law of Fourier, specific heat settings and stored energy of cold work, the Eq. (16) is 
rewritten as follows: 
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The Eqs. (19), (20) and (21) represent, respectively, the heat generation due to elastic 
deformation, the dissipated plastic working and the stored energy of cold work. 

The dissipation mechanisms are of several studies. Referring the stored energy of cold work, is 
possible to highlight the theoretical and the experimental studies of Bever et al. (1973), Oliferuk et 
al. (1993), Rosakis et al. (2000), Mroz and Oliferuk (2002), Rittel et al. (2012) and Kolupaeva and 
Semenov (2015). These studies emphasize the complexity of characterizing E , because it is dependent 
on the accumulated plastic deformations. In the absence of information on the microstructural 
behavior of materials about the variables influence the process and in what quantity, it is convenient 
to use a constant factor to represent the energy dissipation. 

Therefore, it is assumed that the relationship between the plastic working and stored energy of 
cold work is defined by a constant factor, here denoted by b  (Simo and Miehe, 1992; Zhou et al., 

1996; Kapoor and Nemat-Nasser, 1998). Thus, we have the following simplification: 
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Combining Eqs. (22) and (18), has the final expression that defines the heat transfer to 
thermoplastic problems, given by: 
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2.2 The Heat Conduction Discrete Equation 

The energy balance presented at Eq. (23) is solved adopting as a reference the initial configuration of 
the structure, rewritten as: 
 

, 0q r q r- + + =
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In that mR  defines the heat generated due to mechanical deformations, expressed as: 
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The heat problem is solved before the mechanical problem. Therefore, employ the heat source 
from the previous time step t . Thus, for the current time step +Dt t , the expression (24) is rewritten 
as follows: 
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The numerical procedure starts by substituting the function q  by a finite element approximation 
as: 
 

q q f= i i  (27)
 

where qi  and fi  defined temperature and shape function in node i , respectively. 

To approximate Eq. (26) the method of weighted residues is adopted here. Specifically the 
Galerkin method, thus: 
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where V  is the volume, W  the work, jw  are the weighting functions and fj  represent arbitrary 

constants related to nodes j  of the elements. 

Through Eqs. (27), (28) and (29), for any value of jw  and qi  being constant, one has: 
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Manipulating Eq. (30), obtain a similar expression, defined by: 
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The application of the divergence theorem in the third term of Eq. (31) gives: 
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q f f q f f=ò òi i k j i i n jkV A
k dV k dA  (32)

 

The Eq. (32) expresses the thermodynamic forces applied on the boundary. Therefore, combining 
Eqs. (31) and (32) one has: 
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Developing the volume integrals, Eq. (33) can be written in a matrix form as: 
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3 POSITIONAL FINITE ELEMENT METHOD 

In particular, the study developed uses an alternative formulation, called positional FEM, considers 
node coordinate positions as variables instead of displacements. The positional formulation is classified 
as Total Lagrange Formulation (Wong and Tin-Loi, 1990). 

Although recent, there are many studies that use positional formulation. Greco and Coda (2006) 
present a nonlinear dynamic analysis of one-dimensional structures using Newmark's temporal 
integration algorithm. Coda and Paccola (2008) study the geometric nonlinear analysis of shells with 
thickness variation and use of curved elements. Carrazedo and Coda (2010) applied the positional 
formulation in the study of the thermomechanical coupling in nonlinear problems of impact between 
trusses and rigid obstacle, through the positional finite element method. Greco et al. (2012) compares 
the numerical results of the positional and co-rotational formulation for truss problems. It is also 
worth mentioning the following studies that use the proposed formulation in non-linear problems: 
Greco et al. (2006), Greco et al. (2013), Reis and Coda (2014), Sampaio et al. (2015) and Siqueira 
and Coda (2016). 

The positional formulation uses the Lagrangian description that describes the kinematics of the 
deformation in terms of a coordinate system, fixed in space. The principle of minimum potential 
energy, applying a total Lagrangian description, is applied (Greco et al., 2013). The total potential 
energy (П) is written by: 
 

 = - + +e C AU P K K  (38)
 

where eU  is the strain energy, CK  is the kinetic energy, AK  is the loss of energy due to damping 

and P  is the potential energy of concentrated forces applied to the body. The kinetic energy is zero 
for static problems. 
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According to Eqs. (39) and (40), the total deformation energy is defined by the integral of the 
specific strain energy ( eu ) over the initial volume and potential energy of the applied forces is 

expressed as a function of the external forces applied ( iF ) and position ( iX ). The index i  refers to 

the degree of freedom that are associated forces and positions. 
 

0
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The kinetic energy is given by: 
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Substituting Eqs. (39), (40) and (41) into (38) one has: 
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where mc  is the damping coefficient. 

This energy function can be evaluated substituting the exact position field for an approximate 
non-dimensional field ( x ). 
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Thus, the position of dynamic equilibrium is defined using the minimum potential energy theorem, 
by differentiating Eq. (44) regarding the generic nodal position sX , resulting in: 
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Substituting Eq. (43) into (45) one has: 
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The equilibrium Eq. (28) is nonlinear regarding iX . Thus, to dissipate the residual forces is 

inevitable to use a numerical strategy to solve this problem. In the current work, the Newton-Raphson 
procedure was used to reach the equilibrium. In order to solve it, a Taylor expansion regarding iX  is 

used as follows: 
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Neglecting higher-order errors 2O  one has: 
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In Eq. (49), the first term represents the Hessian matrix. Thus, the dynamic nonlinear problem 
is achieved by combining the iterative Newton-Raphson procedure with a temporal integration 
algorithm. 

The total deformation ( e ) of the problem is given by the sum of the elastic ( ee ), plastic ( ep ) 
and thermal ( qe ) parcels according to the equation: 
 

qe e e e= + +e p  (50)
 

The total energy potential strain, considering the nonlinear behavior material and thermal effects 
is defined by: 
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where E  is the elastic longitudinal modulus. 

In Eq. (51), qe  describes the thermal behavior, while the term ep  describes the plastic behavior 
of the element obtained from the constitutive material model. 

Here, it will be considered the impact scheme frictionless discussed in Simo et al. (1986), Greco 
et al. (2004) and Carrazedo and Coda (2010). The so-called scheme of null-penetration condition, 
having as its basic principle the position limitation of each node of the structure that are impacted. 
It is used the classic time integration algorithm of Newmark. 
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4 NUMERICAL EXAMPLES 

4.1 Thermal Loading on Rod 

In this example, presented by Copetti (2002) is studied the thermal behavior of a one-dimensional 
bar with thermal loading. The bar was divided into 100 elements of equal size. The author adopts 
the thermal conductivity, the specific heat and the density of the material equivalent to 1. The 
temporal discretization is performed with a time interval equal to 0.0001. 

The Figure 1 shows the thermal load along the bar, described by Equation: 
 

( ) 10cos(2 )p=p x x  (52)
 

The temperature and displacement are constrained at the position 0=x : 
 

( )0, 10q =t  (53)
 

( )0, 0=u t  (54)
 

The Figures 1 and 2 give a summary of the temperature variations over time. The results obtained 
are similar to the Copetti (2002). 
 

 

Figure 1: Temperature change. 

 

 

Figure 2: Temperature change in different positions. 
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As shown in Figure 1, because the boundary conditions the temperature of all nodes tend to 
remain in equilibrium when 4=t . It should be noted that over time the thermal load is dissipated 
between the nodes. Figure 2 illustrates the path of the thermal balance for different positions of the 
bar, where they tend to a common point ( 10q = ). 
 
4.2 Temperature Evolution in a Rod 

This example was originally presented by Kamlah and Haupt (1998), and subsequently by Carrazedo 
and Coda (2010), which consist in a cylindrical rod of 10 cm  length under elastoplastic loading and 
a reference temperature of 293 K , under the following initial and boundary conditions: 
 

( ), 0 0q =x  (55)
 

( ) ( )0, 10, 0q q= =t t  (56)
 

The following material properties were set:  
 

10 22 10=E kgf m  ( )20=k J K m s  

37800r = kg m  ( )480=ec J K kg  

7 22 10s =Y kgf m  ( )0.000016a = m K m  
 

It considered the kinematic hardening, with a value of 8 23 10 /=H kgf m . It is assumed that all 

plastic work is converted into heat, or neglects to stored energy of cold work. An important 
consideration used by the authors is that the temperature does not cause deformations. Furthermore, 
the loading history is given by a non-monotonic strain history with changing absolute value of the 
strain rate: 
 

( ) 10.0001e -= t s  for % %0 1.5e£ £    0 150£ £s t s  

( ) 10.0005e -= - t s  for % %1.5 1.5e£ £ -    150 210£ £s t s  

( ) 10.0002e -= t s  for % %1.5 1.0e- £ £    210 335£ £s t s  
 

With the aid of the mechanical model response, this process can be divided further in periods of 
elastic and elastoplastic loading: 
 

1. 0 10£ £s t s  Elastic tension 

2. 10 150£ £s t s  Elastoplastic tension 

3. 150 154£ £s t s  Elastic compression 

4. 154 210£ £s t s  Elastoplastic compression 

5. 210 220£ £s t s  Elastic tension 

6. 220 335£ £s t s  Elastoplastic tension 
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Confronting the results obtained with the work mentioned above. The different elastic and 
elastoplastic periods in the history of loading can be easily identified in Figure 3, which illustrates the 
thermomechanical heat source through time. It is noted that the elastoplastic hardening model has a 
heat source larger than the perfect elastoplastic model and therefore more relevant temperature 
changes. The Figure 4 shows the temperature variation in the center of rod. 
 

 
Figure 3: Mechanical heat source. 

 

 
Figure 4: Temperature variation in time. 

 

 

 
 (a) With hardening  (b) Without hardening 

Figure 5: Temperature change in the center of the bar. 



2452     J.P.B. Cavalcante et al. / A Simple FEM Formulation Applied to Nonlinear Problems of Impact with Thermomechanical Coupling 

Latin American Journal of Solids and Structures 14 (2017) 2439-2462 

The Figure 5 shows the temperature variation along the rod for different time instants. Changes 
in heating and cooling phases are defined by the state of the body changes. As expected, it is noted 
that the elastoplastic model with strain hardening kinematic presents higher temperature variations 
than the perfect elastoplastic model, due to the levels of stresses in the kinematic model are higher. 
 
4.3 Impact of a Bar on a Rigid Wall 

This example, approached initially by Armero and Petocz (1998), consists of uniaxial impact from a 
bar (with a constant velocity) and rigid wall, as shown in Figure 6. The problem is modified to 
consider the thermomechanical effects. The geometrical and material characteristics of both elements 
are given by: 1=E , 1=L , 1=A , 1r = , 1=k , 1=ec , 0.17a =  and 0.05d = . 

 

 

Figure 6: Impact of a rod on a rigid wall. Problem definition. 

 
Only the extremity node of the bar is impacted. It is investigated the behavior of contact forces, 

velocities, stresses and temperature changes of the bar. In this example it is investigated only 
geometric nonlinearity. The time discretization is done to 250 time steps of 0.01. The bar is discretized 
with 20 finite elements of the same dimension. 

The Figures 7 and 8 describe respectively the velocity and contact force, comparing the analytical 
response to the mechanical and thermomechanical numeric responses. In both figures, before the 
impact, mechanical and thermomechanical response are equal and the structure does not show 
deformations. 
 

 

Figure 7: Velocity on impact point. 
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Figure 8: Contact force on impact point. 

 
The velocity results of mechanical and thermomechanical models of the impactor node are 

practically identical up to the instant of 1.93. After this time instant, the difference between the 
models increases with time. As shown in Figure 8, the heat generation resulting in higher contact 
forces to mechanical response, and consequently the contact time is reduced.  

The Figure 9 shows the temperature field to the undeformed configuration of the bar. It is 
considered the coupled and the uncoupled problem, respectively. It is observed that the 
thermomechanical coupling causes a secondary effect and temperature variations were more relevant 
when considering that the temperature changes generate deformations. The bar has maximum 
temperatures between times instants of 1.0 and 1.5, approximatively. The bar begins to cool quickly 
after reflection. 
 

 

 (a) With hardening  (b) Without hardening 

Figure 9: Temperature field over time and space. 
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In the surface of Figure 10 it is possible to compare the stresses on the bar. It is observed a 
redistribution of stresses caused by thermomechanical coupling. In mechanical problem the stress 
varies between -0.50 and 0.20. While the problem coupled, has higher stress levels in compression and 
traction varying from -0.60 to 0.30. Consequently, the thermomechanical coupling increases the 
contact force and reduces the contact time. 
 

 

 (a) Mechanical  (b) Coupled 

Figure 10: Stress field over time and space. 

 
4.4 Unidirectional Impact Between Two Bars 

In this example it is studied the case of impact between two identical bars with the same initial 
velocity (Figure 11), however, moving in opposite senses. This example is present in the studies by 
Carpenter et al. (1991). The geometrical and physical characteristics of both elements are given by: 

30000.0=E ksi , 18.09 ( º )-=k BTU ft h F , 10.120 ( º )-=ec BTU lb F , 4 2 47.337 10 /r -= lb s in , 
21.0=A in  and 0.8b = . 

 

 

Figure 11: Problem description for one dimensional impact example. 

 
Due to the symmetry of the problem the problem can be reduced to an impact problem between 

a bar and rigid wall (Figure 12). 
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Figure 12: Impact of a rod on a rigid wall. Problem definition. 

 
The bar was discretized in 20 finite elements and the initial distance between the bars is 
0.002d = in . Plasticity is considered in the analysis. Adopts the model of hardening isotropic 

15000=K ksi  with 10s =Y ksi . The reference temperature is 68 ºF . The numeric responses are 

obtained with time intervals of 0.0000005D =t s . 

In Figure 13, verifies the plasticizing effect of heat generation at 9.5=x in . It is observed that 
the evolution of temperature changes is very dependent on the accumulation of irreversible 
deformations. The Figures 14, 15 and 16 compare the temperature changes obtained with different 
coefficient of thermal expansion. 
 

 

Figure 13: Hardening effect on the temperature changes (coupled). 

 

 
 (a) Uncoupled  (b) Coupled 

Figure 14: Temperature field over time and space ( 0.00000096a = ). 
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 (a) Uncoupled  (b) Coupled 

Figure 15: Temperature field over time and space ( 0.0000046a = ). 

 
 

 

 (a) Uncoupled  (b) Coupled 

Figure 16: Temperature field over time and space ( 0.0000096a = ). 

 
It is noted that smaller coefficients of thermal expansion result in smaller temperature changes 

and small difference between the uncoupled and coupled responses. The thermomechanical coupled 
generates a secondary effect which causes larger variations in temperature and changes in the 
structural behavior. 

The results presented in Figure 16 show high levels of temperature. In this case, due to 
redistribution efforts, the field of temperatures for coupled problem varies between 6.3 º- F  and 
69.4 ºF , while the uncoupled problem varies between 2.8 º- F  and 29.7 ºF . The larger coefficients 
of thermal expansion result in larger changes in temperature and contact forces and, consequently, 
the lower the contact time. 
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4.5 Impact Between a Plane Truss and a Rigid Wall 

This example is the impact between a circular truss and rigid wall (Figure 17). The structure has 264 
bars and 97 nodes. The time discretization is done through the Newmark method with 

0.00001D =t s . The geometrical and material data of both elements are given by: 
 

11 22.1 10 /=E N m  20.0036=A m  8 25.0 10 /=H N m  

27 / ( )=k J K m s  8 21.0 10 /s =Y N m  480 / ( )=ec J K kg  
37850 /r = kg m  0.000011 / ( )a = m K m   

 
It is assumed that all plastic work is converted into heat. It adopts a reference temperature 

equivalent to 300 K . The structure moves with velocity of 35 /m s , with 0.01d = m . 

 

 

Figure 17: Impact between a plane truss and a rigid wall. Problem definition. 

 
Five nodes are impacted (Figure 17). The Figure 18 shows the evolution of temperature changes 

of the nodes impacting over time. The temperature of these nodes begin to increase rapidly from the 
moment of impact. It is observed a small decrease in the variations of temperatures from a certain 
moment, characterized by Gough-Joule effect and the dissipation of temperatures between nodes. The 
Figure 19 shows for different time, the temperature distribution of the structure in the deformed 
configuration. 

Therefore, in Figures 18 and 19 emphasize the importance of considering the thermomechanical 
behavior in impact problems because the high strain rates can cause changes in the structural 
configuration. 
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Figure 18: Temperature change of impact points. 

 
 

 

 (a) 0.01=t s   (b) 0.02=t s  (c) 0.04=t s  

 

 (a) 0.05=t s   (a) 0.07=t s  (a) 0.10=t s  

Figure 19: Distribution of temperatures. 
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5 CONCLUSIONS 

A simple and effective alternative formulation to deal with the dynamic nonlinear systems, written 
in relation to nodal positions has been successfully applied to coupled thermomechanical problems. 
The formulation includes a complete treatment of the analysis of elastoplastic materials for simple 
configurations. 

Through the numerical examples it is possible to observe the difference between the mechanical 
and the thermomechanical responses. Therefore, it is necessary to consider the interaction between 
thermal and mechanical behavior, which can cause redistributions of stress. The reference temperature 
is a determining factor in thermomechanical analysis, and high reference temperatures imply high 
temperature variations. The study of structures with elastoplastic behavior is important because 
depending on the history of deformation and accumulation of irreversible deformations, has a 
significant part in the generation of heat. 

It emphasizes the consideration of thermomechanical coupling in impact problems, because the 
interaction between the mechanical and thermal response cause significant secondary effects due to 
high strain rates by modifying the structural behavior. Therefore, depending on the material, loading 
and initial conditions, the thermomechanical coupling can result in predominant contributions in 
structural response. 
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