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Abstract 
The present paper deals with free vibration of functionally graded 
fiber reinforced rectangular plates subjected to thermal loads. The 
rectangular plates are assumed orthotropic. The continuous grading 
fiber reinforced plates have a smooth variation in matrix volume 
fraction in the thickness direction. Two different types of volume 
fraction profiles through the thickness of plate are proposed: classic 
and symmetric. As the plate is thick, the equations of motion are 
derived based on three dimensional theory of elasticity. Inevitably, 
3D General differential quadrature method is used instead of regu-
lar solving methods in order to discretize equations of motion equa-
tions as linear set of algebraic equations. The effects of tempera-
ture, volume fraction profiles, and boundary conditions are investi-
gated. Some interesting conclusions obtained when the material 
properties were assumed to be temperature-dependent. It has been 
observed that temperature and functionality of FG plate have 
significant effect on the natural frequencies of the plate.  
 
Keywords 
Three dimensional differential quadrature method; Fiber reinforced 
plates; Thermal vibration; Thermal load; Three dimensional  
general. 
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1 INTRODUCTION 

Functionally Graded Materials (FGMs) was introduced in order to avoid problems associated with 
material mismatch at the layer interfaces in compare with composite materials. The FGM struc-
tures are characterized by variable mechanical properties due to the through-the-thickness variation 
of the volume fraction distribution of the two constituents and the arbitrary thickness profile. By 
assigning a continuous gradual variation of the mechanical properties along a specified direction, 
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these composites do not show discontinuities in the material. As a consequence, the residual stresses 
and the stress concentrations that commonly affect a laminated structure can be reduced by mixing 
two or more constituents according to a specific graded distribution of the volume fraction 
[Tornabene et al. (2017)]. 

Functionally graded fiber reinforced composites materials have been widely used in the aero-
space marine, and other engineering industries, recently. These new type of FGMs are often pro-
posed to utilize in high temperature as well as corrosive environments. The effect of environment, 
temperature distribution and other aspects on the material properties of FGM composites and non-
homogeneous materials were studied by many researchers; some focused on reinforcement  by fiber 
or carbon nanotube (Suresh et al. (1998); Nejati et al. (2016); Nejati et al. (2016); Yas et al. (2016), 
Yas et al. (2010)). Studies depicted that higher temperature and especially corrosive conditional 
work decrease the elasticity constants and degrade the strength of composites.  Using FGMs have 
been based on this hypothesis that it can produce a material with good resistance on high tempera-
ture and corrosive environment. 

Many researchers have concentrated their investigation on plate and beam structure (Jafari et 
al. (2016); Arani et al. (2011); Shishesaz et al. (2016); Shahrjerdi et al. (2011); Ansari et al. (2016)). 
They analyzed free vibration of functionally graded fiber reinforced plates via three dimensional 
elasticity theory.  

Some studies have been done focusing on thermal analysis and temperature effects on FGM 
plates by Yang et al. (2001). Khalili et al. (2012) focused on this effect on free vibration analysis of 
the FG properties which were assumed temperature dependent. 

Within these analyses, some research are based on the classical plate theory i.e. neglecting the 
effect of transverse shear deformation whereas some others have used elasticity approach to obtain 
free frequency of laminated and functionally graded composites plates and shells by Matsunaga 
(2009).  

There are limited works about the mechanical stress analysis, free and forced vibration analysis 
subjected to thermos mechanical loading. A closed-form solution for vibration frequencies of simply 
supported thick plates was presented by Xiang et al. (1996).  

Hosseini-Hashemi et al. (2010) presented analytical solution for free vibration of moderately 
thick rectangular plates which are composed of particle reinforced FGM and supported on elastic 
foundation. The analysis was performed based on first-order shear deformation plate theory.  

In the recent years, analytical and numerical methods have been applied by the research work-
ers in order to study the plate vibration for different shapes. Moreover, the differences between nu-
merical and analytical methods have been investigated. Finite element method is beneficial but ex-
pensive to implement as it is time consuming. Isvandzibaei et al. (2014) study on vibration behavior 
of functionally graded material cylindrical shell. The FGM shell equations have been established 
based on strain-displacement relationship using Love-Kirchhoff shell theory. The governing equa-
tions of motion were solved by energy functional and applying Ritz method. 

On the other hand, meshless approaches have found efficient for FG materials since they require 
nodal connectivity. Betwixt current numerical approaches, differential quadrature method (DQM) 
has been considerably attended by researchers since it is straightforward to implement as well as 
quick to analyze. Moreover, it can overcome the most common programming difficulties, such as 
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complex algorithm and excessive use of memory and calculation time. In DQM, the term quadra-
ture applies to the appropriate evaluation of the integral. This technique could be utilized in a sim-
ple and systematic fashion to obtain the computational solution of nonlinear differential–integral 
equations. The DQ method approximates a derivative at a point as a linear weighted sum of all the 
functional values on the domain. How to evaluate the weighting coefficients is one of the key points 
of this technique [Tornabene et al. (2015)]. However, DQM is not always stable increasing the 
number of collocation points. For this reason Generalized Differential Quadrature (GDQM) 
[Tornabene et al. (2014)]. 

The applied boundary condition type directly influences on the solving method. In GDQ, solv-
ing method for conditions like SSSS can be one dimensional while for SCSC it can be 2D. But when 
3D elasticity theory is used, the only appropriate solving method for FFFF, CCCC and CFCF con-
ditions is to discretize the governing equation by 3D GDQ. Although for these cases, some are some 
other theories such as shear deformation theory in which 2D or 1D methods are feasible can be im-
plement, the solving method would be more complicated.  

There is not proper papers deal with thermo mechanical vibration analysis of fiber reinforced 
FGMs. There are several efforts in which mechanical and thermo mechanical dynamic response of 
FGMs have been studied; whereas in the case of vibration analysis of fiber reinforced FGM plate 
with different boundary condition and effect of temperature via 3D numerical solution, lack of 
knowledge is perceived. 

In the presented work, it is desired to study on the free vibration of fiber reinforced composite 
plates with functionally graded volume fraction of fiber resting on different types of boundary con-
dition under thermal-mechanical load. Fiber reinforced functionally graded plates are new type of 
FGMs in which fiber orientation or/and its density varies functionally through desired direction. 
The material properties of fiber reinforced FG orthotropic plate are estimated through microme-
chanical model based on simple rule of mixture and are assumed to be function of temperature.  

The governing equations are based on three dimensional elasticity theory (Sadd (2009)) and 
general Von-Karman type strain-displacement equations (Reddy (2004)) which include plate foun-
dation interaction. As various types of boundary conditions were investigated in this paper, 3D 
general differential quadrature method (GDQ) has been utilized to discretize the governing equation 
and consequently obtain natural frequencies of FG plate under different types of thermal conditions. 
Then, the effects of different parameters such as boundary condition, volume fraction as well as 
temperature are studied. 
 
2 MICROMECHANICS OF ORTHOTROPIC FGM 

The micro mechanic of FG fiber reinforced composites is obtained based on a micromechanical 
model which is able to calculate effective properties when the volume fraction is changed. Fig. 1 
demonstrates schematic of FG fiber reinforced rectangular plates. 
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Figure 1: Schematic of fiber reinforced FG rectangular plate with fibers` volume fraction variation along thickness. 

 
Here, two functions are considered to present the variations of fibers’ volume fraction through 

the thickness (Nejati et al. (2015)). The first model is according to Eq. (1) in which V depends on P 
and z simultaneously. For even power (n), fibers volume fraction variations are symmetric: 
 

2
( 1)P
Z

V V
h

= -  (1)

 

Where V which has values that range from 0 to 1. The exponent n controls the volume fraction 
profile through the plate’s thickness. According to symmetrical model, changes in fiber`s volume 
fraction occurs from 0.75 in internal surface ( 0z = ) to 0 in mid-surface, and again reaches to 0.75 
in periphery z h=  of the plate. The variations incline toward 0 volume fraction of fibers in total 
thickness of the plate for high even power indices cause the plate to be similar to a homogenous 
orthotropic plate with 0% volume fraction of  fiber and 100% matrix in total thickness. 
In the second model distribution of fibers is according to conventional (classic) form according to 
Eq. (2): 
 

( )( )P
i o i

Z
V V V V

h
= + -  (2) 

 

Based on Classical model, fibers` volume fraction continuously reaches from zero in one surface 
of the plate to 0.75 in the other one. According to this relation, 

i
V  and 

o
V which have values that 

range from 0 to 1, denote the volume fractions (matrix or fiber) on the inner and outer surfaces, 
respectively. Fibers volume fraction is zero in 0z = and 0.75 inz h= . 

The alteration inclines toward 0 volume fraction of fiber for high power indices, and the plate 
looks like a homogenous orthotropic plate with 0% of fibers and 100% of the matrix volume fraction 
for the total plate thickness in this model. 

In the present analysis, it is assumed that fiber angle of the fiber reinforced plate are constant 
with respect to the x-axis in the x y- surface. The effective mechanical properties of the fiber rein-
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forced plate are obtained based on a micromechanical model as follows (Shen (2009), Vasiliev et al. 
(2001)): 
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Where , ,f f f

ii ij
E G v and fr are elasticity modulus, shear modulus, Poisson’s ratio and density of the 

fiber respectively, and , ,m m m

ii ij
E G v and mr are corresponding properties for the matrix. 

f
V and 

m
V are 

the fiber and matrix volume fractions in order and are related by 1
f m
V V+ = . 

 
3 CONSTITUTIVE EQUATIONS 

The equations of motion for free vibration analysis of fiber orientation FG rectangular plate can be 
obtained by using 3D elasticity theory in conjunction with Hamilton principle which is (Reddy 
(2004)). 
 

2

1

( ) 0
t

t

KE PE dtd d- =ò  (4)

 

Where KE is the kinetic energy of the rectangular plate and PE is the elastic potential energy of it. 
The kinetic energy of the plate is obtained as following: 
 

2 2 2

0 0 0

1
2

h b a u v w
KE dxdydz

t t t

                         

    (5)

 

The elastic potential energy of plate is comprised of strain energy due to vibration and primary 
stresses resulting from temperature increase respectively which both are obtained as follows:  
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p TPE PE PE  (6)
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Where PEP is the strain energy due to vibratory stresses and PET is the strain energy caused by 
the initial stresses due to temperature rise 

0
( , , , )
ij
i j x y zs = is pre-stress components due to applied 

temperature field and 
ij

s  is stress tensor. L

ij
g and L

ij
e  are linear term of shear and normal strain 

tensor respectively, whereas NL

ij
g and NL

ij
e  are nonlinear terms of shear and normal strain tensor 

respectively. 
Strain-displacement relations are considered according to the 3D elasticity theory including non-

linear terms that originally was proposed by Karman and Von (Reddy (2004)). The constitutive 
relation for orthotropic rectangular plate is according to general form of Hook’s law.  

The plate is initially stressed free at temperature to hence pre-stress components should be in-
cluded by increasing the temperature. The pre-stress components due to temperature rise ΔT are 
defined by: 
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It is assumed that temperature varies uniformly and non-uniformly through the thickness. The 
elements of Off-axis stiffness matrix [C] are given in (Reddy (2004)). 
 
3.1 The Equations of Motion 

By substituting strain-displacement and constitutive relations and Eq. (9) into elastic potential 
energy, Eqs. (5) and (6) respectively then combining with Hamilton principle the equations of mo-
tion with boundary conditions are extracted for fiber reinforced FG plate as follow: 
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Also, the boundary conditions of the plate are described at the ends z=0 and h as follow: 
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at x=0, a: 
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at y=0, b: 
 

0 66 66

0 12 22 23

0 44 44

0

0

0

x y

y y

z y

u u v
F C C

y y x
v u v w

F C C C
y x y z
w v w

F C C
y z y

s

s

s

¶ ¶ ¶
= + + =

¶ ¶ ¶
¶ ¶ ¶ ¶

= + + + =
¶ ¶ ¶ ¶
¶ ¶ ¶

= + + =
¶ ¶ ¶

 (15)

 
Where, 

x
F  ,

y
F  and 

z
F  are generalized forces along x, y and z directions. For normal mode analysis, 

the following solution is assumed for the displacement components x, y and z. 
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Where coefficients U, V and W, are unknown displacement functions of x, y and z orientations, 
respectively. Combination of Eqs. (10-15) with Eq. (16) will result the equations of motion as a set 
of coupled partial differential equations in terms of displacement components. These set of equa-
tions have been solved by the general differential quadrature (GDQ) discretization procedure for 
spatial derivations.  

Using the 3D-GDQ method for the spatial derivatives, the discretized form of the equations of 
motion (Eqs. 10-12) at each domain grid point can be obtained as Appendix A. 

For fully clamped boundary condition on four edges (CCCC_built-in edge), the discretized 
boundary conditions are obtained as: 
 

0, 0, 0
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For SCSC type boundary condition, two opposite sides are fully clamped and two others are 

simply supported, we have: 
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In the case of simply supported plate or when all edges are rested on simply supported founda-

tion (SSSS), boundary condition is expressed on the x-constant and y-constant edges as follows: 
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Nodes (or grids) distribute along three axes non-uniformly which is defined as Chebyshev- 

Gauss- Lobatto distribution as follow: 
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Fig. 2 shows DQ meshing with uniform distribution of nodes ( 71013  NzNyNx ) along 

three different sections of a three-dimensional domain. 
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Figure 2: Non-uniform distribution of GDQ meshes in three directions. (a) X-Y plan, (b) X-Z plan, (c) Y-Z plan. 
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Using this procedure for all of the governing equations and converting them into set of equation 
in terms of series form, leads to discretized equations. Then governing equations in the form of dif-
ferential quadrature relations is produced in terms of series and unknown variables U, V and W. 
The first and second derivatives of variable U with respect to x, y and z are computed as follows:  
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In the above relations, , ,x y z

il jp km
A A A  and , ,x y z

il jp km
B B B  are weighted coefficients of first and second 

order derivatives along the X, Y and Z directions respectively. 
The weighting coefficients for the first-order derivatives in x-direction are thus obtained as 

(Bert et al. (1996)): 
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Where 

x
L is the length of domain along the x-direction. 
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According to DQ method, for higher-order derivatives, higher-order weighting coefficient should 

be employed, i.e. for second order derivatives, weighting coefficient can be expressed as below: 
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In a similar way, the weighting coefficients for the y-direction and z-direction can be obtained. 

To perform the eigenvalue system of equations, the degree of freedom is separated into the domain 
and the boundary degree freedom. 
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In order to carry out the eigenvalue analysis, the domain and boundary degrees of freedom are 

separated into vector forms. They are denoted as { }d  and { }b , respectively. Based on this defini-

tion, the discretized form of the motion equations and the related boundary conditions take the 
following forms (Bert et al. (1996)): 

Equations of motion (Appendix A. (A1-A3)): 
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db dd

b
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d
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Boundary conditions (Eqs. (17-19)): 

 

{ } { } { }[ ] [ ] 0
bd bb
K d K b+ =  (26)

 
By eliminating the boundary degrees of freedom in Eq. (25), using Eq. (26), this equation turn 

into: 
 

{ } { }2([ ] [ ]) 0K M dw- =  (27)

 
Where 1[ ] [ ] [ ][ ] [ ]

dd db bb bd
K K K K K-= - . The above eigenvalue system of equations can be solved to 

find the natural frequencies and mode shapes of the plates. 
 
4 THERMAL ANALYSIS 

Here, the influence of a temperature filed on the behavior of the FGM is investigated. The tempera-
ture varies in the thickness direction. Two types of thermal boundary conditions are applied: uni-
form and non-uniform. 

In the case of uniform temperature rise, the temperature difference from the reference tempera-
ture

o
T , for both upper surface 

top
TD and lower surfaces 

top
TD  are equal, i.e. 

top bottom
T T TD = D = D . 

In non-uniform distribution, two different temperatures is imposed on the two surfaces while 
other sides are isolated. In this case, the temperature distribution along the thickness can be ob-
tained by solving a steady-state heat transfer equation through the thickness of the plate. The 
equation for the temperature through the thickness is given by: 
 

2

2

( )
( ) 0z
z

K zT T
K z

z zz

¶¶ ¶
+ =

¶ ¶¶
 (28)

 
Where ( )

z
K z  is the thermal conductivity. This equation is solved by imposing boundary condition 

as following: 
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¶
=  =  =

¶
¶

=  =  =
¶

=  =
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 (29)

 
5 RESULTS AND DISCUSSION 

To validate the current three dimensional GDQ formulations, the results for an isotropic and ho-
mogenous rectangular FGM plate are compared with similar ones obtained by FEM and in the 
literatures by 2D GDQ. 
 
5.1 Validation 

First of all, convergence and validation study of the normalized first six natural frequencies is con-
sidered for an isotropic FGM plate in Table 1 to compare with Malekzadeh (2009) and Matsunaga 
(2008). 

Fast rate of convergence of the method is evident for exponent index ‘‘p=1” and it is found that 
only 11 DQ grid for simply supported FGM plate in the three dimensions can yield accurate results. 
Good agreement is observed between the results.  

In order to evaluate accuracy of 3D GDQ method, non-dimensional natural frequency resulted 
from this method are compared with 2D GDQ formulations by Malekzadeh (2009) for as well as 
FEM method in Table 2 for different exponent index (p) for isotropic FGM simply supported plate 
and 1D GDQ formulation by Yas et al. (2010) in Table 3 in different thickness to width ratio (h/b) 
for orthotropic FGM simply supported plate while exponent index of 1 (p=1) and length to width 
ratio of 1 (a/b=1). Good agreement between all the data in Tables 2 and 3 proves the reliability of 
presented method. It should be noted that 13500 elements of second order 8 nodes with 250 sub-
layers were utilized in order to obtain slightly results. Moreover, in this example 13 GDQ grids were 
used to achieve adequate convergence and concordant results with Malekzadeh (2009). 

The comparison shows that the present results agreed well with those in the literature. 
 

3
W

2
W

1
Wx y z

N N N´ ´  

0.086 0.0442 0.0223 9×9×9 
0.0861 0.0443 0.0224 11×11×11 
0.0861 0.0443 0.0224 13×13×13 
0.08612 0.04426 0.02245 Malekzadeh (2009) 
0.08616 0.04439 0.02252 FEM 
0.08614 0.04427 0.02246 Matsunaga (2008) 

Table 1: Convergence and accuracy of first three frequency parameters of  

SS-SS FGM plate ( 1, / 1, / 0.1, / )
c c

P a b h b h Ew r= = = W = . 
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Temperature dependent properties of copper and tungsten are described in Eq. 30 by Gasik 
(2000). 
 

6

6 2 6

( ) 4.6[10 / ]

( ) 16.8 0.005 4 *10 [10 / ]

184.52

383.1

( ) 411.4 0.044 [ ]

( ) 128 0.029 [ ]

( ) 159.5 0.018 [ ]

( ) 47[ ]

w

Cu

w

cu

W

Cu

w

Cu

T K

T T T K

K

K

E T T GPa

E T T GPa

G T T GPa

G T GPa

a

a

-

- -

=

= + -

=
=

= -
= -

= -
=

 (30)

 

3
W

 2
W

1
WResult P 

1.3777 0.9742 0.94 3-D GDQ 

0 
1.3777 0.9742 0.94 Malekzadeh (2009) 
1.3784 0.9746 0.941 FEM 
1.3777 0.9742 0.94 Matsunaga (2008) 
1.2259 0.8708 0.8225 3-D GDQ 

0.5 
1.2259 0.8708 0.8225 Malekzadeh (2009) 
1.2363 0.874 0.8218 FEM 
1.2259 0.8709 0.8233 Matsunaga (2008) 
1.1168 0.8003 0.7475 3-D GDQ 

1 
1.1168 0.8003 0.7475 Malekzadeh (2009) 
1.1454 0.8098 0.7398 FEM 
1.1166 0.8005 0.7477 Matsunaga (2008) 
0.7884 0.5663 0.5458 3-D GDQ 

10 
0.7884 0.5663 0.5458 Malekzadeh (2009) 
0.8137 0.5753 0.5303 FEM 

0.7885 0.5664 0.546 
MatsunagaMatsunaga 

(2008) 

Table 2: Validation of natural frequencies for a FGM plate with SS-SS boundary  

condition in different volume fractions ( / 1, / 0.5, / )
c c

a b h b h Ew r= = W = . 

 
h/b  (1,1)a  (2,2)  (3,3)  

0.01 Present 101.8335 203.6654 305.4978 
 Yas et al. (2010) 101.833 203.665 305.497 

0.1 Present 1.5141 6.9863 14.5332 
 Yas et al. (2010) 1.514 6.986 14.533 

0.5 Present 1.2983 3.2254 5.1346 
 Yas et al. (2010) 1.298 3.225 5.134 

a The number in brackets indicate the vibration mode (m,n) 

Table 3: Comparison of the first three non-dimensional natural frequencies of a simply supported FGM orthotropic 

plate with classic model (p=1, a/b = 1).
 

)1(12/,// 2322
ccccc vhEDDhb   .
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Convergence of current three dimensional GDQ approach is evaluated by obtaining first natural 
frequency of fiber reinforced orthotropic FGM plate with classic distribution, non-uniform tempera-
ture and temperature dependent properties. The plate is on SCSC foundation whose two opposite 
edges have same boundary conditions. Fig. 3 shows convergence rate of results achieved by different 
values of Nz when Nx and Ny has specified constant values. 
 
 

6 8 10 12 14 16 18 20 22 24
0.2432

0.2434

0.2436

0.2438

0.244

0.2442

0.2444
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0.2448

Nz


1

 

 
Nx=Ny=7

Nx=Ny=9

Nx=Ny=13

Nx=Ny=15

Nx=Ny=17

 

Figure 3: Convergence of first frequency parameter of fiber orientation with constant value of  

Nx and Ny 
0

( / , / 1, / 0.2, 1, 800, 0)m m
T top bottom

h E a b h b n T Tw rW = = = = D = D = . 

 
Reasonable convergence results and accurate natural frequency is obtained in at least a 

13×13×15 or 15×15×21 or 17×17×19 nodes grid. 
 
5.2 Effect of Temperature on the Natural Frequency 

Here natural frequency results, Ω, versus ΔT are evaluated; which ΔT is divergence between max-
imum temperature of the plate and ambient temperature. According to part 4, maximum tempera-
ture of an orthotropic FGM plate in non-uniform temperature distribution occurs in the upper side 
at z=h while in uniform temperature distribution, whole the plate has a unique temperature which 
is considered as maximum plate temperature. Fig. 4 demonstrates effect of temperature variation on 
the first natural frequency in the plate for uniform and non-uniform (see Eq. 28) temperature dis-
tributions in presence of three different types of boundary conditions (clamped-clamped, simply 
supported-simply supported and simply supported-clamped). Besides, effect of considering material 
property as temperature dependent or independent is evaluated.  
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Figure 4: Variation of first natural frequency of an orthotropic FG plate in different conditions  

of material property and temperature distribution by ΔT in presence of (a) CC-CC,  

(b) SC-SC, (c) SS-SS 
0

( / , / 1, / 0.2, 1, _ )m m
T

h E a b h b n Classic profilew rW = = = = . 

 
In this figure, natural frequency would reduce when the temperature rises. Also, including de-

pendency of material property to temperature generally causes the natural frequency to reduce 
more. Indeed, the results of natural frequency analysis for such these plates which would be consid-
ered without effect of temperature dependency in material property should be dealt with more care-
fully. 

In another point of view, regardless boundary condition type and temperature dependency, as-
suming uniform temperature distribution results in lower natural frequency. Comparing the graphs 
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in Fig. 4 shows CC-CC boundary condition causes that stiffness of the plate increases and natural 
frequency of SS-SS type boundary condition is the least. 
 
5.3 Effect of Profile of Fiber Volume Fraction on the Natural Frequency 

Fig. 5 compares the natural frequencies between classic and symmetric distribution of volume frac-
tion of fiber through the thickness. As the results show, natural frequency of the plate with a sym-
metric distribution of fiber is considerably higher than one with classic distribution. The other pa-
rameters such as distribution of temperature and type of boundary condition affected the plate with 
symmetric variation of volume fraction just as the classic one. 
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Figure 5: Variation of first natural frequency of an orthotropic FG plate in different conditions  

of volume fraction distribution, material property and temperature distribution by ΔT in  

presence of a) CC-CC, b) SC-SC, c) SS-SS 
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Tables 4 and 5 investigate over fiber volume fraction distribution influence on the natural fre-
quencies in another aspect. In these tables, the volume fraction power index of fiber varies for or-
thotropic FG reinforced plate subjected to different B.C. and in different situation of uniform and 
non-uniform temperature distributions. The natural frequencies were found for different tempera-
ture conditions. The results show that according to equation 2, when its power index increases, the 
natural frequencies would decrease; a result which is held for the first natural frequencies in all the 
considered conditions. 
 
 

( )T KD
B.C. P 

500 400 300 200 100 0 
0.3285 0.334 0.3395 0.345 0.3506 0.3561 CC-CC 

0 0.2645 0.2707 0.2769 0.2831 0.2893 0.2954 SC-SC 
0.1951 0.2023 0.2095 0.2168 0.224 0.2311 SS-SS 
0.3141 0.32 0.326 0.332 0.338 0.344 CC-CC 

1/5 0.251 0.2578 0.2646 0.2715 0.2783 0.2851 SC-SC 
0.1844 0.1924 0.2005 0.2086 0.2166 0.2245 SS-SS 
0.3011 0.3076 0.3141 0.3207 0.3273 0.3338 CC-CC 

1/2 0.2392 0.2466 0.2542 0.2617 0.2693 0.2767 SC-SC 
0.1709 0.1801 0.1892 0.1984 0.2074 0.2162 SS-SS 
0.2933 0.3004 0.3075 0.3147 0.3219 0.329 CC-CC 

1 0.2327 0.2409 0.2491 0.2574 0.2656 0.2737 SC-SC 
0.1631 0.1734 0.1837 0.1939 0.2039 0.2136 SS-SS 

Table 4: First natural frequencies of an orthotropic FG plate in uniform temperature distribution and different  

B.C. for different volume fraction profiles in different ΔT 
0

( / , / 1, / 0.2)m m
T

h E a b h bw rW = = = . 

 
 

( )T KD
B.C. P 

500 400 300 200 100 0 
0.3421 0.3449 0.3477 0.3505 0.3533 0.3561 CC-CC 

0 0.2798 0.283 0.2861 0.2892 0.2924 0.2954 SC-SC 
0.2131 0.2167 0.2203 0.224 0.2276 0.2311 SS-SS 
0.3294 0.3324 0.3353 0.3382 .34110  0.344 CC-CC 

1/5 0.2687 0.272 0.2753 0.2786 0.2819 0.2851 SC-SC 
0.2053 0.2091 0.2130 0.2169 0.2207 0.2245 SS-SS 
0.3184 0.3215 0.3246 0.3277 0.3308 0.3338 CC-CC 

1/2 0.2592 0.2627 0.2662 0.2698 0.2732 0.2767 SC-SC 
0.1954 0.1996 0.2038 0.2080 1210.2  0.2162 SS-SS 
0.3125 0.3158 0.3192 0.3225 0.3257 0.3290 CC-CC 

1 0.2549 0.2587 0.2625 0.2663 0.2700 0.2737 SC-SC 
0.1911 0.1957 0.2002 0.2048 0.2092 0.2136 SS-SS 

Table 5: First natural frequencies of an orthotropic FG plate in non-uniform temperature distribution and different  

B.C. for different volume fraction profiles in different temperatures 
0

( / , / 1, / 0.2)m m
T

h E a b h bw rW = = = . 
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6 CONCLUSION 

In this study, natural frequency of a functionally graded fiber reinforced thick plate was investigat-
ed. Response of this plate to variation of some parameters such as volume fraction profile, boundary 
conditions and mainly temperature distribution was examined. Because the plate is thick, a 3D 
GDQ method was used to solve the equations. The following conclusions are drawn: 

 The results proved credibility and fast convergence of 3D GDQ method for heat transfer 
equation and equations of motions for such these plates. Besides, replacing this method by 
regular solving method such as FEM and combination of high order shear deformation (in-
stead of 3D elasticity) theory and 2D GDQ for thick FG fiber reinforced plates would not on-
ly save the time but also relived the solution from unnecessary complexity. 

 Alteration of temperature in FG fiber reinforced plate significantly affects its natural frequen-
cy. An increase of temperature leads to a reduction in natural frequency for different types of 
boundary conditions. As property of the plate transforms in a wide range of temperature, 
evaluation of the FGFR plate would be complicated when the temperature changes. The re-
sults shows including dependency of material property to temperature generally causes the 
natural frequency to reduce more; in other words, FGFR plates which are more independent 
from temperature have higher natural frequency in high temperatures. 

 In comparison between uniform and non-uniform temperature distribution in the plate, the 
uniform one results in lower natural frequency. 

 CC-CC boundary condition causes stiffness of FGFR plate under temperature variation in-
creases that means natural frequencies are the highest among all considered boundary condi-
tions while SS-SS condition graphs demonstrates the lowest one.  

 Volume fraction profile affect the natural frequency of FGFR plates subjected to thermal 
loads. Natural frequency of the plate with a symmetric distribution of fiber is considerably 
higher than one with classic distribution and for higher power indexes, the natural frequen-
cies would be lower. 
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APPENDIX A 

Equations of motion (10-12) based on displacement field by 3D-GDQ method are discretized as:  
 

11 66 0 12
1 1 1 1 1

55
13 0 66

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Ny NyNx Nz Nx
x y z x y

ijk il ljk ijk jp ipk z ijk km ijm ijk il jp lpk
l p m l p

NyNx Nz Nx
x z y x x y

ijk il km ljm y ijk jp ipk ijk il ljk ijk il jp
l m p l

C B U C B U B U C A A V

C
C A A W B U AW C A A

z

s

s

= = = = =

= = = =

+ + + +

¶
+ + +

¶

å å å åå

åå å å
1 1

255
55 55 0

1 1 1 1 1

( ) ( ) ( ) ( )

NyNx

lpk
l p

Nz Nz Nx Nz Nx
z z x z x

ijk km ijm ijk km ijm ijk il km ljm x ijk il ljk ijk ijk
m m l m l

V

C
C B U A U C A A W B U U

z
s r w

= =

= = = = =

+

¶
+ + + =-

¶

åå

å å åå å

 (A1)

 

12 23 0 66
1 1 1 1 1 1

44
22 66 44

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Ny Ny NyNx Nz Nx
x y y z y x

ijk il jp lpk ijk jp km ipm y ijk jp ipk ijk il ljk
l p p m p l
Ny NyNx Nz

y x y z
ijk jp ipk ijk il jp lpk ijk km ijm i
p l p m

C A A U C A A W B V C B V

C
C B V C A A U C B V

z

s
= = = = = =

= = = =

+ + + +

¶
+ + +

¶

åå åå å å

å åå å
1

244
0 0 44

1 1 1 1 1

( ) ( ) ( ) ( )

Nz
z

jk km ijm
m

Ny NyNx Nz Nz
x y z y z

x ijk il ljk ijk jp ipk z ijk km ijm ijk jp km ipm ijk ijk
l p m p m

A V

C
B V A W B V C A A W V

z
s s r w

=

= = = = =

+

¶
+ + + =-

¶

å

å å å åå

 (A2) 

 

33
33 55 13

1 1 1 1 1 1

0 0 23 55
1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Nz Nz Nx Nz Nx Nz
z z x z x z

ijk km ijm ijk km ijm ijk il km ljm ijk il km ljm
m m l m l m

Ny NyNz Nz
z y y z

z ijk km ijm y ijk jp ipk ijk jp km ipm i
m p p m

C
C B W A W C A A U C A A U

z

B W B W C A A V Cs s

= = = = = =

= = = =

¶
+ + + +

¶

+ + +

å å åå åå

å å åå
1

13
44 0 44

1 1 1 1 1

223

1

( ) ( ) ( ) ( )

( )

Nx
x

jk il ljk
l

Ny NyNx Nx Nz
y x x y z

ijk jp ipk ijk il ljk x ijk il ljk ijk jp km ipm
p l l p m
Ny

y

ijk jp ipk ijk ijk
p

B W

C
C B W AU B W C A A V

z
C

A V W
z

s

r w

=

= = = = =

=

+

¶
+ + + +

¶
¶

=-
¶

å

å å å åå

å

 (A3)

 


