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Functionally Graded Timoshenko Beams

Abstract

In this paper, authors present the study of free vibration of bending
multiple cracked functionally graded material (FGM) beam. Vibra-
tion equations of multiple cracked FGM beam were established by
using the rotational spring model of cracks, dynamic stiffness
method (DSM) and actual position of neutral plane. The frequency
equation obtained was in a simple form, that provides an effective
approach to study not only free vibration of the beams but also
inverse problems like identification of material and crack parame-
ters in structure. The obtained numerical results show good agree-
ment with other previous published results. Thence, numerical
computation has been carried out to investigate the effect of each
crack, the number of cracks, material and geometric parameters on
the natural frequencies of multiple cracked Timoshenko FGM
beams.

Keywords
Timoshenko beam; FGM; Crack; Rotational spring model; DSM;
Natural frequency.

1 INTRODUCTION

Free Vibration Analysis of Multiple Cracked

Tran Van Lien® "
Ngo Trong Duc ®
Nguyen Tien Khiem ©

* National University of Civil Engineer-
ing; LienTV@nuce.edu.vn

b Design Consultant and Investment of
Construction, trongduc.4s@gmail.com

¢ Institute of Mechanics, Vietnam Acad-
emy of Science and Technology,
ntkhiem@imech.ac.vn

* Corresponding author
http://dx.doi.org/10.1590,/1679-78253693
Received 19.01.2017

In revised form 02.07.2017

Accepted 03.07.2017
Available online 10.07.2017

Functionally graded materials (FGMs) are inhomogeneous composites characterized by smooth and

continuous variations in both compositional profile and material properties. FGMs are widely used

in many scientific and engineering fields, such as aerospace, automobile, electronics, optics, chemis-

try, biomedical engineering, nuclear engineering and mechanical engineering. FGMs have been

proved to be advanced materials by their advantaged properties compared to the laminate compo-

sites and by the wide application in the high-tech industries.

Crack in a structure usually leads to reduction of stiffness and consequently to change the dy-

namic characteristics of structure. The cracked problem in FGM is greatly important to evaluate

FGM structure serviceability and integrity. Based on fracture mechanics (F. Erdogan, B.H. Wu
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1997), the stiffness reduction of FGM beam caused by the presence of cracks can be modeled by
continuous stiffness model (A.S.J. Swamidas, X. Yang, R. Seshadri 2004) and rotational spring
model (L.L. Ke, J. Yang, S. Kitipornchai, Y. Xiang 2009).

Various methods have been developed for free vibration analysis of cracked FGM beam. The
analytical methods have been shown to be most accurate and efficient for dynamic analysis of FGM
beam-like structures. A number of authors have developed approximate methods such as Finite
Element Method (FEM), Galerkin and Ritz method, dynamic stiffness method.

Yang et al. (2008) used an analytical method to calculate natural frequencies of cracked FGM
beam based on Euler-Bernoulli theories and spring model of cracks. Authors also studied free and
forced vibration of inhomogeneous Euler-Bernoulli beams under an axial force and a transverse
moving load. Ke et al. (2009) studied effects of open edge cracks to vibration of FGM Timoshenko
beam with different boundary conditions. This method also solved the discontinuity caused by the
presence of cracks in (J. Yang, Y. Chen, Y. Xiang, X.L. Jia 2008; J. Yang, Y. Chen 2008). For
FGM Timoshenko beam, Wei et al. (2012) established equations of motion with rotary inertia and
shear deformation included. Because of ignoring axial inertia, the bending vibration was still inde-
pendence from axial vibration. Authors used the transfer matrix method to obtain frequency equa-
tions of beam with arbitrary number of cracks only in the form of third-order determinant. This is a
remarkable improvement in order to study free vibration of multiple cracked FGM beam. Aydin
(2013) presented analytical expression for bending vibration of FGM Euler-Bernoulli beam. Author
established frequency equations in the form of third-order determinant without using the transfer
matrix method in position of cracks. Sherafatnia et al. (2014) analyzed natural frequencies and
mode shapes of cracked beam according to Euler-Bernoulli, Rayleigh, shear deformation and Timo-
shenko theories. Rakideh et al. (2013) used an analytical method to obtain natural frequencies of
the cracked Timoshenko beam. The obtained data have used to design a neural network which can
identify characteristics of cracks on beam.

Using Galerkin’s procedure with theoretical formulations based on mode shapes of FGM Timo-
shenko beam and combined with Newmark direct integral method, Yan et al. (2011) obtained dy-
namic deflections of cracked FGM beam on an elastic foundation under a transverse moving load.
Authors showed that the elastic foundation makes dynamic deflections of FGM beam more sensitive
to the presence of cracks. Matbuly et al. (2009) investigated the free vibration of an elastically sup-
port cracked FGM beam rests on Winkler-Pasternak foundation. Differential quadrature method
was employed to determine the natural frequencies and the mode shapes of the beam. Besides, Ritz
method was used to analyze nonlinear vibration of cracked FGM Timoshenko beam in (S. Kitiporn-
chai, L.L. Ke, J. Yang, Y. Xiang 2009).

Ziou (2016) used FEM to analyze the response of isotropic and FGM beam. Akbas (2014) stud-
ied free vibration and wave propagation analysis of an cracked FGM cantilever beam. However,
these results were only applied to Euler-Bernoulli beam. FEM (Z.G. Yu, F.L. Chu 2009; A.
Banerjee, B. Panigrahi, G. Pohit 2015) was also used to calculate frequency paragraphs based on
the location and size of cracks which is called frequency contours. These paragraphs were not only
used to analysis changes of frequencies because of cracks but also employed to identify the crack in
FGM beam by measuring natural frequencies.
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As the FEM was formulated by using frequency independent polynomial shape function, the
FEM could not capture all necessary high frequencies and shape modes of interest. An alternative
approach improved the solution accuracy was to use the shape functions that depended on vibration
frequency. This elegant concept has led to the so - called dynamic stiffness method (DSM) (N.T.
Khiem, T.V.Lien 2002; H.Su, J.R. Banerjee 2015; N.T.Khiem, N.D.Kien, N.N. Huyen 2014; T.V.
Lien, N.T. Duc and N.T. Khiem 2016). DSM has used the frequency dependent shape functions
obtained from the exact solution of the governing differential equations of free vibration, so the
obtained frequencies and mode shapes are accurate. Although finding solutions of the differential
equations of motion is very difficult but it is the basic difference between DSM and FEM.

Because of grading material properties, the neutral plane and mid plane of the FGM beam are
different. The effect of neutral plane position on static and dynamic behavior of the beam was in-
vestigated in some studies. Eltaher et al. (2013) studied free vibration of FGM beam base on Euler-
Bernoulli theory include variation of neutral plane position. The numerical results showed that the
natural frequencies of the beam are higher when ignoring effect of neutral plane. Moreover, it is
emphasized that for the neutral plane theory the governing differential equations of FGM beam
were simplified so that the axial and flexural vibration could be uncoupled likely to those of homo-
geneous beam.

In this paper, authors present free vibration analysis of multiple cracked FGM Timoshenko
beam. Vibration equations of multiple cracked FGM beam were established base on rotational
spring model of cracks, DSM method and actual position of neutral plane. The frequency equation
obtained provides a simple and effective approach to study not only free vibration of the beam but
also inverse problem like identification of material and crack parameters in structures.

2 GOVERNING EQUATIONS

Consider a FGM beam of length L, cross section area 4 =bxh (Fig. 1). It is assumed that the
material properties of FGM beam vary along the thickness direction by power law distribution as
follows

E(Z) Eb Et - Eb n
z 1
G(z2) =G, +1G, -G, (Z+Ej ,—h/2<z<h/2 (1)
p(2) Py Pr = Py
Where E, G and g stand for Young’s, shear modulus and material density, n is power law exponent,
z is co-ordinate of point from the mid plane at high h/2. Suppose that the beam is subjected to
distributed loads: axial n(z,t), flexural p(z,t) and bending moment m(z,t). Based on the Hamilton’s

principle, the equations of motion can be established in the time domain (N.T.Khiem, N.D.Kien,
N.N. Huyen 2014) as follow

(4,1 — Allu”) - (]ué - Alzgﬂ) = n(x,1)
(1,0 — Au")— (1,0 — 4,0") + Ay (W — 0) = m(x,t) (2)
Iyw— A4y (W"=0") = p(x,1)
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where {U, 0, W}T is the amplitudes of axial displacement, rotation, deflection and loads

{U,0,W} = T {uy (x,0),0(x,1), w, (x,t) e dt

- ®)
(N (.0, (x.0), P(x,0)} = [ n(x.0m(x.0). plx.o)le™ d

z E: Gt pr pue Neutral, axis

i

Ebv Gb p v

A A

L
Figure 1: A multiple cracked FGM beam.

Then, vibration equations (2) with amplitudes of displacement, rotation and deflection are in
the form

(@ 1,U+A,U")-0’1,0-A4,0"=-N
(@0°1,0+ 4,0") - &’ 1,,U - A,U"+ A,;(W' - @) =-M (4)
@’ LW+ A,(W"-0")=-P

Using the following matrices and vector notations

4, -4, 0 0 0 0 o'l -’ 0
A=|-4, A4, 0 ;II=|0 0 A, | C(w)=| - a)zl12 a)2]22 - A, 0 (5)
0 0 A, 0 -4, O 0 0 o'l

z={U,0,W}",q={N,M,P}’ (6)

Equations (4) are rewritten in form

Az"+TIZ'+Cz=—q (7)
In the case of free vibration, equation (7) is

Az"+Mz'+Cz=0 (8)

A continuous solution of equation (8) can be sought in the form z, = de™ that yields

det{ A + AIT + C] =0 (9)
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In fact, a cubic algebraic equation with respect to 77:12 that can be elementarily solved and
gives three roots 771,173,773. Therefore, solutions of equation (9) are

My =t Ay g =2k Ay g =thsk; = [, =123 (10)

Now, general continuous solution of Eq. (8) can be represented as

6
y;
z,(x,0)=Y d " (11)
j=1
or
zy(x, ) = G(x,w)C (12)
With C =(C,,..,C,)" are constants and G(X, CO):[GI(X, C()) G2(X, CO)] are function matri-
ces:
eklx ekzx ek3x e—klx e—kzx e—k3x
G (x,0)=| e a,e™ o [;G,(x,0)=| ™ ™ ™ (13)

ﬂleklx ﬂzekzx ,Bsekzx _ﬂle_klx — pre * _:B3e_k3x

It is assumed that the beam has been cracked at different position €,...,€, and the cracks are
modeled by equivalent springs of stiffness K ;e Therefore, conditions that must satisfied at the crack

are (L.L. Ke, J. Yang, S. Kitipornchai, Y. Xiang 2009; N.T. Khiem, T.V.Lien 2002)
U(e; +0)=U(e; —0);0(e; +0)=0(e, —0)+ M(e;)/ K;; W(e, +0)=W(e, - 0)

14

N(e;)=N(e; +0)=N(e, —0);0(e; +0)=0(e, —0);M(e; +0)=M(e, —0)=M(e,) (14)
where N, Q, M are internal axial, shear forces and bending moment respectively

N = A”U; - A12®,;M = Ale; - A22®;;Q =4, (va' -0) (15)

Substituting (15) into (14), one can rewrite the conditions (14) as follows
Ue; +0)=U(e; —0);0(e, +0) = O(e, —0)+}/f®;(ej); W(e, +0)=W(e,; -0)
U;(ej +0) = U;(ej —0);@;(61. +0) = @;(ej —0);Wx'(ej +0) = W;(ej —0)+7/J.®;(ej) (16)
v, =An/K;;j=123,.,n
Magnitudes 7 introduced in (16) are function of the material properties such as Young’s modu-

lus, power law exponent n and cross sectional dimensions. With the FGM beam, we can present
crack magnitudes in the form (L.L. Ke, J. Yang, S. Kitipornchai, Y. Xiang 2009)
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7; =7,0,(Rg,n)
3RE+n_2RE+na+RE+na2 : Ezi (17)
33+n) (2+n) (I+n) E,

v, =E,J/R;I=bh*/12;60,(R,,n) =12(

In case of homogenous beam Ei=FEy=Fy (Rg=1), the crack magnitudes can be calculated from

crack depth a; as
Vo =Ed /R, =6x(1-v*)h.f(2);z=a,/h
f(z)=27(0.6272 —1.04533z + 4.5948z> —9.9736z° +20.2948z* (18)
—33.0351z° +47.1063z° —40.7556z" +19.6z*)

Therefore, for modal analysis of cracked FGM beam, we can choose crack magnitudes of equiva-
lent spring in the form (12), it means

vy, =F()=6x(- v2).hO,(R,,n)f(2) (19)

These functions would be used below for determining spring stiffness from given crack depth.
First, we seck solution S(x) of equation (8) in the form (12) with the left boundary condition

S(0) = (0,1,0)";8'(0) = (0,0,)" (20)
Then we have to solve equations [II]{C} = {v}, where

- [Gl(o, o) G,(0,0)

G (0.0) G0, a))} ;{v}=1{0,1,0,0,0,1}

These equations have solutions

C,=C,=6,/2C,=C,=6,/2,C,=C, =6,/2 (21)
where
S = kZﬁZ _k3ﬂ3 +(Ol3 —0!2). S. = k3ﬂ3 _klﬂl +(0£1 _a3) 5. = klﬂl _kzﬂz +(0{2 —0{1)
: 5 s ) P 5 (22)

o=k pa;—a,)+k,p,(a, —a;) +k fy(a, —a))
So, we obtained
S,(x) = 0, coshk,x + 5, coshk,x + 5, cosh k;x
S,(x) =96,a, coshk,x + d,a, coshk,x + 6,a; coshk,x (23)

S,(x) = 5,8, sinhk,x + &, 8, sinh k, x + 5, 3, sinh k,x

Denoting solutions of equation (8) in the interval (e ) by z,(x), it is easy to verify that

72 €+l
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Zj(x) :Zj—l(x)+7j®’j—1(ej)s('x_ej) (24)

where z, (x) is solution in (e, ,e;) being continuously expended to the subsequent interval

(e;,e;,) and S(x) is solution of equation (8) conducted in the form (23). Namely, since both

functions z,_,(x), S(x —e,) are solutions of equation (8) in (e,,e,,,) , so their combination in (24)
would be solution of that equation in the interval. Moreover, solution (24) satisfies also the condi-
tions

Ui(e))=U, (e); O,(e)=0,,(e;)+7,0" (e;); W, (e;,)=W,_(e,) )

Uj"(ej) = U;—l (ej);®_’/(ej) = ®’j—l (ej);Wj'(ej) = Wj'—l (ej) + )/J®'J(e/)

These conditions ensure that solution of equation (8) in the form of (24) satisfy condition at

crack position (16). Based on the recurrent connection, one can express solution of equation (8) for
beam with n cracks in the form

zc(x):zo(x)+z,qu(x—ej) (26)
=1
j-1
wu; =7,[0q(e;)+ Z,ukS;(ej -e),j=123,.,n (27)
k=1

In above equations, Z,(X) is continuous solution in the form (12) and function K(x) is

0 for x<0
S(x) for x>0~

0 for x<0

S'(x) for x>0 (28)

K(x) = { K'(x) = {

To complete solving Eq. (8), solution obtained in (26) must satisfy boundary conditions in the

beam ends
BO{ZHx:OZO;BL{ZHx:L:O (29)

where Bo, BL are differential matrix operators of dimension 3x3. Since the second term of solution

(26) satisfy any trivial condition at x =0, the first condition in (29) is only applied for Z,(x).
Separating constant vector C= {CI,CZ}T into C, = {CI,CZ,C3}T;C2 = {C4,C5,C6}T , the

boundary condition at left end of the beam can be presented as
B,C +B,C, =0 (30)
where

B (w) =B, {Gl (x, a))}| =05 B (@) =By {Gz(x, a))}|x:0

Latin American Journal of Solids and Structures 14 (2017) 1752-1766
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Eq. (30) allows eliminating one of the vectors C,,C,. And as the result the solution Z,(X) can
be reassembled as Zy(x,®) =G, (x, @)D with G,(x,®) is 3x3 dimension matrix function and

arbitrary constant vector D = {D,, D,, D,}" . In particular, one has
O (%) =[821(x, @) D; + g5, (x, @)D, + 853 (x, ®) D] (31)

where g, (x, ),k =1,2,3 are element on second row of matrix Go(x, ) . So, solution (26) can

be rewritten as

2.0 = Gy(x. @)D+ i K(x—e)) )

J=1

In order to solution of (32) satisfy boundary condition at right end of the beam, we have
[B,,(@)]{D} + > p1,{b(e;)} =0
j1
B, (0)=B, {Go (x, w)H w3b.(e;) =B, {S(x —¢; )}‘ =L
In case of intact beam, when u, =0, j =1,..,n , equation (30) is reduced to
[Bo(2)]{D} =0 (34)
That enables to determine undamaged natural frequencies by solving the equation

Ly(@) = det[B ()] =0 (35)

Each roots a)ﬁ) of this equation is related to mode shape
0 0 0\TY
@ (x)=C;G((x,0;)D; (36)

where C ;) is an arbitrary constant and D j is the normalized solution of (34) corresponding to a);) .
n
For cracked beam, the constant vector D is sought in the form D = Z,u jD j that leads the

j=1
equation (33) to [B,,(@)]{D,} = —{b_(e,)} - Hence, one is able to calculate

D, =B, (@) {b.(e,)} =~(1/L,){b,(e,)} (37)

Latin American Journal of Solids and Structures 14 (2017) 1752-1766
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Therefore, solution (32) gets the form

2.(0) = (/L)Y 1 [Ly(@)K(x—e,) Gy (x )b, (e,)] (38)

J=1

The above solution still contains unknown parameters u ;, j =1,..., n . Substituting (31) together

with constant vector D found above into (27), one gets

u =, /ng ULy (@K (e, — )~ gy ] j =123
g = ghle;, b, (e)+ g5 (e, )b,y (e,) + gl (e, )b ()
The above equation can be rewritten in the matrix form
[Ly (@)1 =T(y)A(e, ®)]{n; =0

F(Y) = diag{yl,"'a yn}’A(e’ w) = [ajk = LO(a))KZ’ (ej - ek) - g;k;]ak = 172""a n] (39)
W=l 1,35 = {7, Y s0 = {0, )

Condition for existence of non-trivial solution of equation (39) is

f(@,y,e) = det[Ly(@)I =T (y)A(e, )] =0 (40)

This is so-called frequency equation for FGM beam with arbitrary number of cracks, solution of
which gives natural frequencies (wj, j=1,2,3,...). With each obtained natural frequency, we can de-
termine one parameter vector pj from the equation (39).

3 ANALYSIS OF THE FREE VIBRATION OF MULTIPLE CRACKED FGM TIMOSHENKO BEAM
3.1 Comparison with published numerical results
3.1.1 Homogeneous beam with an open edge crack

Consider a homogeneous beam with material parameters: Et=FEbr=210GPa, p:7800kg/m3, p=0.3
and geometric parameters: L=0.8m, b=0.02m, h=0.02m. Beam has one open edge crack with varia-
ble location and crack depth/height ratio is a/h=0.2.

Table 1 shows the fundamental frequency ratios between cracked beam and intact one. These
published results were taken from studies of Khiem & Lien (2002) and Aydin (2013). Khiem & Lien
(2002) used transfer matrix method to calculate natural frequencies of multiple cracked beam while
Aydin (2013) used analytical method to obtain natural frequencies of FGM beam. The obtained
numerical results show good agreement with previous announced results.
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Simple support beam X1/L=0.2 X1/L=0.4 X1/L=0.7
Khiem & Lien 0.995 0.991 0.998
Aydin 0.9959 0.9916 0.9985
Present 0.9953 0.9908 0.9986

Clamped end beam X1/L=0.1 X1/L=0.3 X1/L=0.4
Khiem & Lien 0.997 0.996 0.993
Aydin 0.9971 0.9963 0.9943
Present 0.9968 0.9959 0.9933

Cantilever beam X1/L=0.2 X1/L=0.4 X1/L=0.6
Khiem & Lien 0.990 0.996 0.998
Aydin 0.9906 0.9958 0.9982
Present 0.9920 0.9978 0.9998

Table 1: Fundamental frequency ratios between beam that has an open edge crack and intact beam.

3.1.2 Comparison with cracked FGM beam

Consider a FGM beam with geometric parameters: L=1.0m, b=0.1m, h=0.05m and material pa-
rameters: Ex=70GPa, pt=2780kg/m®, 11=0.33, En/Et=0.2, pb=7800kg/m*, n:=0.33, n=0.1 (Z.G. Yu,
F.L. Chu 2009).

Fig 2 and 3 present variation of the fundamental and the secondary frequency ratios of FGM

beam which has one open edge crack (a/h=0.2) and an intact one when crack location move from
the left end to the right end of the beam (hidden line) with announced results of Yu & Chu (2009)
(continuous line). The boundary conditions are simple support, clamped end and cantilever. The
present results are the same as announced ones using FEM in (Z.G. Yu, F.L. Chu 2009).

omegat/omega01

The relation of ratios of frequency No1 and the location of the last cracks
1

omegat/omega01

The relation of ratios of frequency No1 and the location of the last cracks

— g D

omegat/omega01

The relation of ratios of frequency No1 and the location of the last cracks
1

0.1 0.2 0.3 0.4 O 5 D 6 0.7 0. 8 0 9
Crack positions(m)

a. Simple support beam

02 03 04 05 06 07 os 09 1
Crack positions(m)

b. Clamped end beam

0 o1 02 03 04 05 us 07 oa T 09
Crack positions(m)

c. Cantilever beam

Figure 2: Variation of the fundamental frequency ratio of FGM beam which has one open edge crack

(a/h=0.2) and an intact one when crack location move along beam length.
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The relation of ratios of frequency No2 and the location of the last cracks The relation of ratios of frequency No2 and the location of the last cracks

— -+ -

o
2
8
T
- -

omega2/omega02
o
2
>
T
omega2/omega02

omega2/omega02

The relation of ratios of frequency No2 and the location of the last cracks

Crack positions(m) Crack positions(m)

a. Simple support beam b. Clamped end beam

Crack positions(m)

c. Cantilever beam

Figure 3: Variation of the secondary frequency ratio of FGM beam which has one open edge crack

(a/h=0.2) and an intact one when crack location move along beam length.

3.2 Effects of material parameters to natural frequencies of cracked FGM beam

Consider a FGM beam with geometric parameters: L=1.0m, b=0.1m, h=0.1m and material param-
eters: Et=70GPa, pt—2780kg/m®, 1t—0.33, Eb/Et=5, pp—7800kg/m?, u—0.33, n=0.5. Beam has one
crack that location move along beam length and crack depth/height ratios are a/h=0.1,0.2,0.3.

3.2.1 Effect of the crack depth

Fig 4 shows variation of the first three natural frequency ratios of simple support FGM beam that
has one open edge crack and an intact one when the crack depth/height ratios are a/h=0.1,0.2,0.3.
When crack depth increases, the natural frequencies of the beam decrease remarkable. A fact that
might be derived from graphics given in the figures is that there exist certain positions in the beam,
at which cracks do not affect certain natural frequencies. Such positions are called here critical

points for a given frequency.

The relation of ratios of frequency No2 and the location of the last cracks
1

omegat/omega01

=====2-3h=0.2
-ah=0.3

Crack positions(m) Crack positions(m)

a. Fundamental frequency b. Secondary frequency

Crack positions(m)

¢. Third frequency

Figure 4: Variation of first three natural frequency ratios of simple support FGM beam that has

one crack and an intact one when the crack depths are 10%, 20%, 30% beam height.
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3.2.2 Effect of power law index n, Eb/Et and L/h ratios

Figs 5-7 show variation of the first three natural frequency ratios of simple support FGM beam that
has one open edge crack (a/h=0.2) and an intact one with different power law index n, En/E¢ and
L/h ratios.

When power law index n or L/h ratio increase or Eb/Et decrease, the beam is more sensitive to
presence of crack. With n<1 (or Ep/Et>1), changing these parameters will make frequencies change
much more than with n>1 (or En/Et<1). Especially, we can see that in Figs 7.b-c, there are hori-
zontal line (frequency ratio is 1) which mean the presence of crack at any position of the beam
doesn’t effect to natural frequency because changing L/h ratio will change the order of axial fre-
quency. In case of simple support beam, with L /h=5, the axial frequency is the secondary frequency
but with L/h=20 it is the third one. The same problems are met in clamped end and cantilever
beam.

The relation of ratios of frequency No1 and the location of the last cracks The relation of ratios of frequency No2 and the location of the last cracks The relation of ratios of frequency No4 and the location of the last cracks
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Figure 5: Variation of the first three natural frequency ratios of simple support FGM beam that has one

open edge crack (a/h=0.2) and an intact one with different power law index n=0.5, 5, 10.
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Figure 6: Variation of the first three natural frequency ratios of simple support FGM beam that has one

open edge crack (a/h=0.2) and an intact one when n=0.5 and En/Et=0.2,1,5.
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Figure 7: Variation of the first three natural frequency ratios of simple support FGM beam that has one

open edge crack (a/h=0.2) and an intact one when n=0.5 and L/h=5,10,20.

3.2.3 Effect of number of cracks

Fig 8 shows variation of the first three natural frequency ratios of simple support FGM beam which
has 3 cracks and an intact one. The first two cracks are located at 0.2L, 0.4L and crack
depth/height ratio is 0.2. The third crack move along beam length and has different depth as: 10%,
20%, 30% beam height. Compare to Fig 4, we can see that when number of crack increases frequen-
cy ratio decreases and paragraphs are not symmetric from the midpoint of the beam because of un-
symmetric presence of cracks.
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Figure 8: Variation of the first three natural frequency ratio of simple support FGM beam that has three
open edge crack and an intact one when n=0.5. The first two crack locates at X1/L=0.2, X2/L=0.4
(a/h=0.2), the third crack has the depth of 10%, 20%, 30% beam height.

Fig 9 shows variation of the first three natural frequency ratios of simple support FGM beam
that has 10 cracks and intact one. Equidistant cracks are located in left quarter part of the beam
with the depth of 10%, 20%, 30% beam height. It is easy to see that when number of cracks on
beam increases, the frequency will decrease significantly.
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Figure 9: Variation of the first three natural frequency ratios of simple support FGM beam that has 10
cracks and an intact one when n=0.5. Equidistant cracks are located in left quarter part of the beam
with the depth of 10%, 20%, 30% beam height.

4 CONCLUSIONS

In this paper, authors established free vibration equation of multiple cracked FGM beam based on
Timoshenko beam model, power law distribution of FGM material, rotation spring model, DSM
and taking into account actual position of neutral axis. The frequency equation obtained is in a
simple form, which provides an effective approach to study not only free vibration of the beam but
also inverse problem like identification of material and crack parameter in structure. The obtained
numerical results show good agreement with other previous announced results.

Authors studied changes of natural frequencies of FGM beam with different material, geometric
and crack parameters. Bending frequencies are more sensitive to cracks than axial one and much
depend on material, geometric parameters of the beam. Increasing the depth and number of cracks
on FGM Timoshenko beam significantly decreases natural frequencies.
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