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Abstract 
In this paper, authors present the study of free vibration of bending 
multiple cracked functionally graded material (FGM) beam. Vibra-
tion equations of multiple cracked FGM beam were established by 
using the rotational spring model of cracks, dynamic stiffness 
method (DSM) and actual position of neutral plane. The frequency 
equation obtained was in a simple form, that provides an effective 
approach to study not only free vibration of the beams but also 
inverse problems like identification of material and crack parame-
ters in structure. The obtained numerical results show good agree-
ment with other previous published results. Thence, numerical 
computation has been carried out to investigate the effect of each 
crack, the number of cracks, material and geometric parameters on 
the natural frequencies of multiple cracked Timoshenko FGM 
beams. 
 
Keywords 
Timoshenko beam; FGM; Crack; Rotational spring model; DSM; 
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1 INTRODUCTION 

Functionally graded materials (FGMs) are inhomogeneous composites characterized by smooth and 
continuous variations in both compositional profile and material properties. FGMs are widely used 
in many scientific and engineering fields, such as aerospace, automobile, electronics, optics, chemis-
try, biomedical engineering, nuclear engineering and mechanical engineering. FGMs have been 
proved to be advanced materials by their advantaged properties compared to the laminate compo-
sites and by the wide application in the high-tech industries.  

Crack in a structure usually leads to reduction of stiffness and consequently to change the dy-
namic characteristics of structure. The cracked problem in FGM is greatly important to evaluate 
FGM structure serviceability and integrity. Based on fracture mechanics (F. Erdogan, B.H. Wu 
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1997), the stiffness reduction of FGM beam caused by the presence of cracks can be modeled by 
continuous stiffness model (A.S.J. Swamidas, X. Yang, R. Seshadri 2004) and rotational spring 
model (L.L. Ke, J. Yang, S. Kitipornchai, Y. Xiang 2009).  

Various methods have been developed for free vibration analysis of cracked FGM beam. The 
analytical methods have been shown to be most accurate and efficient for dynamic analysis of FGM 
beam-like structures. A number of authors have developed approximate methods such as Finite 
Element Method (FEM), Galerkin and Ritz method, dynamic stiffness method. 

Yang et al. (2008) used an analytical method to calculate natural frequencies of cracked FGM 
beam based on Euler-Bernoulli theories and spring model of cracks. Authors also studied free and 
forced vibration of inhomogeneous Euler-Bernoulli beams under an axial force and a transverse 
moving load. Ke et al. (2009) studied effects of open edge cracks to vibration of FGM Timoshenko 
beam with different boundary conditions. This method also solved the discontinuity caused by the 
presence of cracks in (J. Yang, Y. Chen, Y. Xiang, X.L. Jia 2008; J. Yang, Y. Chen 2008). For 
FGM Timoshenko beam, Wei et al. (2012) established equations of motion with rotary inertia and 
shear deformation included. Because of ignoring axial inertia, the bending vibration was still inde-
pendence from axial vibration. Authors used the transfer matrix method to obtain frequency equa-
tions of beam with arbitrary number of cracks only in the form of third-order determinant. This is a 
remarkable improvement in order to study free vibration of multiple cracked FGM beam. Aydin 
(2013) presented analytical expression for bending vibration of FGM Euler-Bernoulli beam. Author 
established frequency equations in the form of third-order determinant without using the transfer 
matrix method in position of cracks. Sherafatnia et al. (2014) analyzed natural frequencies and 
mode shapes of cracked beam according to Euler-Bernoulli, Rayleigh, shear deformation and Timo-
shenko theories. Rakideh et al. (2013) used an analytical method to obtain natural frequencies of 
the cracked Timoshenko beam. The obtained data have used to design a neural network which can 
identify characteristics of cracks on beam. 

Using Galerkin’s procedure with theoretical formulations based on mode shapes of FGM Timo-
shenko beam and combined with Newmark direct integral method, Yan et al. (2011) obtained dy-
namic deflections of cracked FGM beam on an elastic foundation under a transverse moving load. 
Authors showed that the elastic foundation makes dynamic deflections of FGM beam more sensitive 
to the presence of cracks. Matbuly et al. (2009) investigated the free vibration of an elastically sup-
port cracked FGM beam rests on Winkler-Pasternak foundation. Differential quadrature method 
was employed to determine the natural frequencies and the mode shapes of the beam. Besides, Ritz 
method was used to analyze nonlinear vibration of cracked FGM Timoshenko beam in (S. Kitiporn-
chai, L.L. Ke, J. Yang, Y. Xiang 2009). 

Ziou (2016) used FEM to analyze the response of isotropic and FGM beam. Akbas (2014) stud-
ied free vibration and wave propagation analysis of an cracked FGM cantilever beam. However, 
these results were only applied to Euler-Bernoulli beam. FEM (Z.G. Yu, F.L. Chu 2009; A. 
Banerjee,  B. Panigrahi, G. Pohit 2015) was also used to calculate frequency paragraphs based on 
the location and size of cracks which is called frequency contours. These paragraphs were not only 
used to analysis changes of frequencies because of cracks but also employed to identify the crack in 
FGM beam by measuring natural frequencies. 
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As the FEM was formulated by using frequency independent polynomial shape function, the 
FEM could not capture all necessary high frequencies and shape modes of interest. An alternative 
approach improved the solution accuracy was to use the shape functions that depended on vibration 
frequency. This elegant concept has led to the so - called dynamic stiffness method (DSM) (N.T. 
Khiem, T.V.Lien 2002; H.Su, J.R. Banerjee 2015; N.T.Khiem, N.D.Kien, N.N. Huyen 2014; T.V. 
Lien, N.T. Duc and N.T. Khiem 2016). DSM has used the frequency dependent shape functions 
obtained from the exact solution of the governing differential equations of free vibration, so the 
obtained frequencies and mode shapes are accurate. Although finding solutions of the differential 
equations of motion is very difficult but it is the basic difference between DSM and FEM. 

Because of grading material properties, the neutral plane and mid plane of the FGM beam are 
different. The effect of neutral plane position on static and dynamic behavior of the beam was in-
vestigated in some studies. Eltaher et al. (2013) studied free vibration of FGM beam base on Euler-
Bernoulli theory include variation of neutral plane position. The numerical results showed that the 
natural frequencies of the beam are higher when ignoring effect of neutral plane. Moreover, it is 
emphasized that for the neutral plane theory the governing differential equations of FGM beam 
were simplified so that the axial and flexural vibration could be uncoupled likely to those of homo-
geneous beam. 

In this paper, authors present free vibration analysis of multiple cracked FGM Timoshenko 
beam. Vibration equations of multiple cracked FGM beam were established base on rotational 
spring model of cracks, DSM method and actual position of neutral plane. The frequency equation 
obtained provides a simple and effective approach to study not only free vibration of the beam but 
also inverse problem like identification of material and crack parameters in structures. 
 
2 GOVERNING EQUATIONS 

Consider a FGM beam of length L, cross section area hbA   (Fig. 1).  It is assumed that the 
material properties of FGM beam vary along the thickness direction by power law distribution as 
follows 
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Where E, G and ρ stand for Young’s, shear modulus and material density, n is power law exponent, 
z is co-ordinate of point from the mid plane at high h/2. Suppose that the beam is subjected to 
distributed loads: axial n(x,t), flexural p(x,t) and bending moment m(x,t). Based on the Hamilton’s 
principle, the equations of motion can be established in the time domain (N.T.Khiem, N.D.Kien, 
N.N. Huyen 2014) as follow 
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where TWU },,{  is the amplitudes of axial displacement, rotation, deflection and loads 
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Figure 1: A multiple cracked FGM beam. 

 
Then, vibration equations (2) with amplitudes of displacement, rotation and deflection are in 

the form 
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Using the following matrices and vector notations 
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Equations (4) are rewritten in form 
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In the case of free vibration, equation (7) is 
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In fact, a cubic algebraic equation with respect to =2 that can be elementarily solved and 
gives three roots 1,3,3. Therefore, solutions of equation (9) are 
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Now, general continuous solution of Eq. (8) can be represented as 
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With TCC ),...,( 61C  are constants and )],(),([),( 21  xxx GGG   are function matri-

ces: 
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It is assumed that the beam has been cracked at different position nee ,...,1  and the cracks are 

modeled by equivalent springs of stiffness jK . Therefore, conditions that must satisfied at the crack 

are (L.L. Ke, J. Yang, S. Kitipornchai, Y. Xiang 2009; N.T. Khiem, T.V.Lien 2002) 
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where N, Q, M are internal axial, shear forces and bending moment respectively 
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Substituting (15) into (14), one can rewrite the conditions (14) as follows 
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Magnitudes j introduced in (16) are function of the material properties such as Young’s modu-
lus, power law exponent n and cross sectional dimensions. With the FGM beam, we can present 
crack magnitudes in the form (L.L. Ke, J. Yang, S. Kitipornchai, Y. Xiang 2009) 
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In case of homogenous beam Et=Eb=E0 (RE=1), the crack magnitudes can be calculated from 
crack depth aj as 
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Therefore, for modal analysis of cracked FGM beam, we can choose crack magnitudes of equiva-
lent spring in the form (12), it means 
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These functions would be used below for determining spring stiffness from given crack depth. 
First, we seek solution S(x) of equation (8) in the form (12) with the left boundary condition 
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These equations have solutions 
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So, we obtained 
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Denoting solutions of equation (8) in the interval ),( 1jj ee by )(xjz , it is easy to verify that 
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These conditions ensure that solution of equation (8) in the form of (24) satisfy condition at 
crack position (16). Based on the recurrent connection, one can express solution of equation (8) for 
beam with n cracks in the form 
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In above equations, )(0 xz  is continuous solution in the form (12) and function K(x) is 
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To complete solving Eq. (8), solution obtained in (26) must satisfy boundary conditions in the 
beam ends 
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Eq. (30) allows eliminating one of the vectors 21,CC . And as the result the solution )(0 xz  can 

be reassembled as DGz ),(),( 00  xx   with ),(0 xG  is 3×3 dimension matrix function and 

arbitrary constant vector TDDD },,{ 321D . In particular, one has 
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In case of intact beam, when njμ j ,...,1,0   , equation (30) is reduced to 
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Therefore, solution (32) gets the form 
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000 )](),()()([)/1()( bGKz   (38)

 
The above solution still contains unknown parameters njμ j ,...,1,  . Substituting (31) together 

with constant vector D found above into (27), one gets 
 

)(),()(),()(),(

,...,3,2,1],)()([)/(

323222121

20
1

0

kcjkcjkcjjk

jkkj

n

k
kjj

ebegebegebegg

njgeeKLL







 


 
 

The above equation can be rewritten in the matrix form 
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 (39)

 
Condition for existence of non-trivial solution of equation (39) is 

 
0)],()()(det[),,( 0   eAγIeγ Lf  (40)

 
This is so-called frequency equation for FGM beam with arbitrary number of cracks, solution of 

which gives natural frequencies (j, j=1,2,3,...). With each obtained natural frequency, we can de-
termine one parameter vector j from the equation (39). 
 
3 ANALYSIS OF THE FREE VIBRATION OF MULTIPLE CRACKED FGM TIMOSHENKO BEAM 

3.1 Comparison with published numerical results 

3.1.1 Homogeneous beam with an open edge crack 

Consider a homogeneous beam with material parameters: Et=Eb=210GPa, =7800kg/m3, =0.3 
and geometric parameters: L=0.8m, b=0.02m, h=0.02m. Beam has one open edge crack with varia-
ble location and crack depth/height ratio is a/h=0.2. 

Table 1 shows the fundamental frequency ratios between cracked beam and intact one. These 
published results were taken from studies of Khiem & Lien (2002) and Aydin (2013). Khiem & Lien 
(2002) used transfer matrix method to calculate natural frequencies of multiple cracked beam while 
Aydin (2013) used analytical method to obtain natural frequencies of FGM beam. The obtained 
numerical results show good agreement with previous announced results. 
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Simple support beam X1/L=0.2 X1/L=0.4 X1/L=0.7 
Khiem & Lien 0.995 0.991 0.998 

Aydin 0.9959 0.9916 0.9985 
Present 0.9953 0.9908 0.9986 

Clamped end beam X1/L=0.1 X1/L=0.3 X1/L=0.4 
Khiem & Lien 0.997 0.996 0.993 

Aydin 0.9971 0.9963 0.9943 
Present 0.9968 0.9959 0.9933 

Cantilever beam X1/L=0.2 X1/L=0.4 X1/L=0.6 
Khiem & Lien 0.990 0.996 0.998 

Aydin 0.9906 0.9958 0.9982 
Present 0.9920 0.9978 0.9998 

Table 1: Fundamental frequency ratios between beam that has an open edge crack and intact beam. 

 
 
3.1.2 Comparison with cracked FGM beam 

Consider a FGM beam with geometric parameters: L=1.0m, b=0.1m, h=0.05m and material pa-
rameters: Et=70GPa, t=2780kg/m3, t=0.33, Eb/Et=0.2, b=7800kg/m3, t=0.33, n=0.1 (Z.G. Yu, 
F.L. Chu 2009). 

Fig 2 and 3 present variation of the fundamental and the secondary frequency ratios of FGM 
beam which has one open edge crack (a/h=0.2) and an intact one when crack location move from 
the left end to the right end of the beam (hidden line) with announced results of Yu & Chu (2009) 
(continuous line). The boundary conditions are simple support, clamped end and cantilever. The 
present results are the same as announced ones using FEM in (Z.G. Yu, F.L. Chu 2009). 
 
 

a. Simple support beam b. Clamped end beam c. Cantilever beam 

Figure 2: Variation of the fundamental frequency ratio of FGM beam which has one open edge crack  

(a/h=0.2) and an intact one when crack location move along beam length. 
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a. Simple support beam b. Clamped end beam c. Cantilever beam 

Figure 3: Variation of the secondary frequency ratio of FGM beam which has one open edge crack  

(a/h=0.2) and an intact one when crack location move along beam length. 

 
3.2 Effects of material parameters to natural frequencies of cracked FGM beam 

Consider a FGM beam with geometric parameters: L=1.0m, b=0.1m, h=0.1m and material param-
eters: Et=70GPa, t=2780kg/m3, t=0.33, Eb/Et=5, b=7800kg/m3, t=0.33, n=0.5. Beam has one 
crack that location move along beam length and crack depth/height ratios are a/h=0.1,0.2,0.3. 
 
3.2.1 Effect of the crack depth 

Fig 4 shows variation of the first three natural frequency ratios of simple support FGM beam that 
has one open edge crack and an intact one when the crack depth/height ratios are a/h=0.1,0.2,0.3. 
When crack depth increases, the natural frequencies of the beam decrease remarkable. A fact that 
might be derived from graphics given in the figures is that there exist certain positions in the beam, 
at which cracks do not affect certain natural frequencies. Such positions are called here critical 
points for a given frequency. 
 

 

a. Fundamental frequency b. Secondary frequency c. Third frequency 

Figure 4: Variation of first three natural frequency ratios of simple support FGM beam that has  

one crack and an intact one when the crack depths are 10%, 20%, 30% beam height. 
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3.2.2 Effect of power law index n, Eb/Et and L/h ratios 

Figs 5-7 show variation of the first three natural frequency ratios of simple support FGM beam that 
has one open edge crack (a/h=0.2) and an intact one with different power law index n, Eb/Et and 
L/h ratios. 

When power law index n or L/h ratio increase or Eb/Et decrease, the beam is more sensitive to 
presence of crack. With n<1 (or Eb/Et>1), changing these parameters will make frequencies change 
much more than with n>1 (or Eb/Et<1). Especially, we can see that in Figs 7.b-c, there are hori-
zontal line (frequency ratio is 1) which mean the presence of crack at any position of the beam 
doesn’t effect to natural frequency because changing L/h ratio will change the order of axial fre-
quency. In case of simple support beam, with L/h=5, the axial frequency is the secondary frequency 
but with L/h=20 it is the third one. The same problems are met in clamped end and cantilever 
beam. 
 

 

a. Fundamental frequency b. Secondary frequency c. Third frequency 

Figure 5: Variation of the first three natural frequency ratios of simple support FGM beam that has one  

open edge crack (a/h=0.2) and an intact one with different power law index n=0.5, 5, 10. 

 

 

a. Fundamental frequency b. Secondary frequency c. Third frequency 

Figure 6: Variation of the first three natural frequency ratios of simple support FGM beam that has one  

open edge crack (a/h=0.2) and an intact one when n=0.5 and Eb/Et=0.2,1,5. 
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a. Fundamental frequency b. Secondary frequency c. Third frequency 

Figure 7: Variation of the first three natural frequency ratios of simple support FGM beam that has one  

open edge crack (a/h=0.2) and an intact one when n=0.5 and L/h=5,10,20. 

 
3.2.3 Effect of number of cracks 

Fig 8 shows variation of the first three natural frequency ratios of simple support FGM beam which 
has 3 cracks and an intact one. The first two cracks are located at 0.2L, 0.4L and crack 
depth/height ratio is 0.2. The third crack move along beam length and has different depth as: 10%, 
20%, 30% beam height. Compare to Fig 4, we can see that when number of crack increases frequen-
cy ratio decreases and paragraphs are not symmetric from the midpoint of the beam because of un-
symmetric presence of cracks. 
 

 

a. Fundamental frequency b. Secondary frequency c. Third frequency 

Figure 8: Variation of the first three natural frequency ratio of simple support FGM beam that has three  

open edge crack and an intact one when n=0.5. The first two crack locates at X1/L=0.2, X2/L=0.4  

(a/h=0.2), the third crack has the depth of 10%, 20%, 30% beam height. 

 
Fig 9 shows variation of the first three natural frequency ratios of simple support FGM beam 

that has 10 cracks and intact one. Equidistant cracks are located in left quarter part of the beam 
with the depth of 10%, 20%, 30% beam height. It is easy to see that when number of cracks on 
beam increases, the frequency will decrease significantly. 
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a. Fundamental frequency b. Secondary frequency c. Third frequency 

Figure 9: Variation of the first three natural frequency ratios of simple support FGM beam that has 10  

cracks and an intact one when n=0.5. Equidistant cracks are located in left quarter part of the beam  

with the depth of 10%, 20%, 30% beam height. 

 
4 CONCLUSIONS 

In this paper, authors established free vibration equation of multiple cracked FGM beam based on 
Timoshenko beam model, power law distribution of FGM material, rotation spring model, DSM 
and taking into account actual position of neutral axis. The frequency equation obtained is in a 
simple form, which provides an effective approach to study not only free vibration of the beam but 
also inverse problem like identification of material and crack parameter in structure. The obtained 
numerical results show good agreement with other previous announced results. 

Authors studied changes of natural frequencies of FGM beam with different material, geometric 
and crack parameters. Bending frequencies are more sensitive to cracks than axial one and much 
depend on material, geometric parameters of the beam. Increasing the depth and number of cracks 
on FGM Timoshenko beam significantly decreases natural frequencies. 
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