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Abstract 
An assessment of the efficiency and convergence characteristics of a 
four-node quadrilateral plate finite element in the analysis of lami-
nated composites is performed. The element, which is suitable for 
global response analysis, is developed in the framework of the strain 
gradient notation such that its modeling capabilities as well as 
modeling deficiencies can be physically interpreted by the analyst 
during the formulation process. Thus, shear locking typically en-
countered in four-noded plate elements is identified as caused by 
spurious terms which appear in the shear strain polynomial expan-
sions. These identified spurious terms are removed a priori such 
that shear locking does not occur during numerical analysis and 
numerical remedies do not need to be applied. Stress solutions for 
different laminated plates are presented to demonstrate that the 
corrected model converges well to reference solutions. 
 
Keywords 
Laminated composite plates, First-order shear deformation theory, 
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1 INTRODUCTION 

Composite materials are formed by the combination of two or more materials on a macroscopic 
scale such that they have better engineering properties than conventional materials. For instance, 
increase in stiffness and strength, and reduction in weight are usually desirable when designing a 
composite material for structural applications. The most common type of composite  material is 
that which is comprised of reinforcement fibers embedded in a matrix material. Modern composites 
are manufactured in the shape of thin laminae or layers. When two or more laminae are stacked to 
form a single structure the composite material is called laminated composite. Laminated composites 
find structural applications in various industry sectors such as aerospace, aeronautic, automotive, 
and sports equipment among others. 
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The finite element method has been widely used for analyzing laminated composite structures. 
Early isoparametric models based on the first-order shear deformation theory (FSDT) were devel-
oped by Mawenya and Davies (1974), and by Panda and Natarajan (1979). FSDT is the simplest 
theory which is capable of modeling laminated composites accurately because transverse shear plays 
an important role in such structures. Thorough descriptions of FSDT are found in the books of 
Vinson and Sierakowski (2002) and Reddy (2004). The theory is summarized later in this article. 

Higher-order shear deformation theories (HSDT) have also been developed in order to improve 
the accuracy in modeling laminated composites. Accounts on the development of such theories and 
finite element models associated to them can be found in the works of Lo et al. (1977), Reddy 
(1989), Singh and Rao (1995), and Bose and Reddy (1998). The reader is also referred to the works 
of Sheikh and Chakrabarti (2003) and Aagaah et al. (2003) for finite element models based on 
HSDT. 

Most works cited above associate a first or higher-order plate theory to the equivalent-lamina 
assumption. Under this assumption, the laminated composite is modeled as a single-lamina plate 
having as its properties averages of the properties of the various laminae that comprise the lami-
nate. As this assumption is considered limiting depending on the purpose of the analysis, layerwise 
theories were built and computational models associated to them have been developed. Layerwise 
models consider each lamina of the laminate and its properties discretely, and they may be FSDT 
or HSDT-based. As example of plate elements developed according to layerwise theories, we cite the 
works of Botello et al. (1999), Moleiro et al. (2010), Mantari and Soares (2013), and Pandey and 
Prandyumna (2015). The drawback of these and layerwise models in general is that they become 
too costly when the laminate is composed of many laminae. Thus, other alternatives for analyzing 
laminated composites accurately and efficiently have been sought. We find appealing the Refined 
Zigzag Theory (RZT). RZT is FSDT-based and employ piecewise-linear zigzag functions that pro-
vide better representations of the deformation states of transverse shear-flexible plates. RZT has 
very likely been introduced by Tessler et al. (2010), and follow-up results have been done by Gher-
lone et al. (2011), Versino et al. (2013), and Eijo et al. (2013). 

The plate element discussed in this article is formulated according to FSDT and the single-lamina 
assumption. No refined theories or strategies are employed, but accuracy and efficiency are sought 
here via a non-conventional finite element formulation procedure. The element is formulated using 
strain gradient notation, a physically interpretable notation, which has been developed by Dow 
(1999). The objective here is to show that the model is capable of producing accurate stress results for 
laminated composite plate problems once the inherent spurious terms which are responsible for shear 
locking are removed. In the remaining of the article, the FSDT and equivalent-lamina assumption for 
laminated composites are briefly reviewed, the four-node plate element is formulated and its modeling 
characteristics are discussed, results are presented and conclusions are drawn. 
 
2 FSDT AND EQUIVALENT-LAMINA ASSUMPTION FOR LAMINATED COMPOSITES 

The first-order shear deformation theory (FSDT) of plate analysis, also known as Reissner-Mindlin 
theory, considers transverse shear effects, as opposed to the classical plate theory (CPT), also 
known as Kirchhoff theory, in which such an effect is neglected. Therefore, CPT is adequate for 
thin plates, while FSDT is suitable for moderately thick to thick plates. However, although lami-
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nated composites are usually thin structures, transverse shear effects are important and have to be 
accounted for in the description of the behavior of laminates (for instance, transverse shear is a key 
factor in delamination). Thus, FSDT must be adopted in the modeling of laminated composites as 
opposed to CPT.  

The laminate is modeled as a single, orthotropic lamina with averaged mechanical properties 
under the equivalent-lamina assumption. Thus, all laminae must be assumed to be completely 
bonded together, and relative slippage cannot occur. As a result, the behavior of the laminate can 
be represented by the behavior of its middle surface. Also, the normal-to-the-middle surface compo-
nent of stress is neglected and the laminate is thus in a state of plane stress.  

Figure 1 represents a FSDT laminated plate where the displacements that the laminate can un-
dergo are indicated in the corner number 2. In-plane displacements in the x- and y-direction are 
represented by u and v, respectively, while the displacement in the z-direction is represented by w. 
Rotations in the x and y directions are represented by q and p, respectively. The kinematic rela-
tions of the plate are the following: 
 

     yxzqyxuzyxu ,,,, 0  (1) 
 

     yxzpyxvzyxv ,,,, 0  (2) 
 

  owyxw , (3)
 

   
z
zyxuyxq





,,,  (4)

 

   
z
zyxvyxp





,,,  (5) 

 
where uo and vo are the middle surface in-plane displacements, and z is the coordinate which is 
associated to the thickness of the laminate. 
 

 

Figure 1: Displacements of the FSDT laminated plate. 

 
The strains can be arranged in vector form as: 

 



2180     J.E. Abdalla Filho et al. / On a Four-Node Quadrilateral Plate for Laminated Composites 

Latin American Journal of Solids and Structures 14 (2017) 2177-2197 

 
























































































qw
pw
pqz

zp
zq

vu
v
u

x

y

xy

y

x

xoyo

yo
xo

xz

yz

xy

y

x

,
,

,,
,

,

0
0

,,

,

,







 (6)

 
where the first vector on the right-hand side represents membrane strains while the second vector 
represents plate bending strains. 
 
3 FOUR-NODE PLATE ELEMENT 

The element is formulated using the strain gradient notation procedure. Strain gradient notation is 
a physically interpretable notation which explicitly relates the displacements to the kinematic quan-
tities of the continuum. Such kinematic quantities are rigid body modes, strains, and first-order and 
higher-order derivatives of strains, and they are generally referred to as strain gradients. The rela-
tionships between displacement components and strain gradients are obtained via an algebraic pro-
cedure in which the physical contents of the coefficients of the approximating functions are deter-
mined. The procedure is fully described and results are tabulated in Dow (1999). Such procedure 
has been applied to the four-node plate element in an earlier paper (Abdalla Filho et al., 2008). In 
that paper, the formulation was presented in great level of detail where the algebraic procedure 
which led to the identification of the physical contents of the polynomial coefficients was performed. 
In the present paper, a comprehensive discussion on the procedure for identifying and eliminating 
the spurious terms is provided. A close relation between the procedure and the procedure of re-
duced-order integration used in the four-node isoparametric plate element is also provided. The 
limitation of the one-point integration strategy is pointed out as it induces another type of error. 
The new numerical solutions presented here make very clear that the results for thin plates are very 
accurate after the correct elimination of the spurious terms is performed. Other references of strain 
gradient notation are the doctoral thesis of Byrd (1988), Abdalla Filho (1992) and Hamernik (1993) 
at the University of Colorado Boulder, and the articles of Dow et al. (1985), Dow and Byrd (1988), 
Dow and Byrd (1990), Dow and Abdalla Filho (1994), Abdalla Filho and Dow (1994), and Abdalla 
Filho et al. (2006). 

Due to the physically interpretable character of the strain gradient notation, modeling charac-
teristics of the finite element are made apparent since the early steps of the formulation. This allows 
for the identification of spurious terms which are responsible for modeling errors. Sources of shear 
locking in the four-node plate element will be shown in this section. 
The four-node plate element is defined as having five degrees-of-freedom per node; namely, the in-
plane displacements uo and vo, the out-of-plane displacement wo, and the rotations q and p, as 
shown in Figure 2. 
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Figure 2: Four-node plate element. 

 
The displacement approximating functions already written in strain gradient notation are: 

 

           
       yzxyzxz

zqxyyrxuzyxu

oyxzxyzzxyoyzxozx

oxzoyxoxyoxo

2/

2/2/,,

,,,,,

,


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


 (7)

 

           
       xzxyzyz
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 (8)

 

           xyypxqwyxw oyxzxyzzxyoyzoxzo 2/2/2/, ,,,    (9)
 

           xyyxqyxq oyzxoyxzxyzzxyozxoxz ,,,,, 2/2/,    (10) 
 

           xyyxpyxp oxzyozyoyxzxyzzxyoyz ,,,,, 2/2/,    (11)
 

Inspection of these expressions reveals that the displacements are expressed in terms of rigid 
body movements, constant normal and shear strains, first-order and second-order derivatives of 
normal strains, and first-order derivatives of shear strains. These quantities comprise the set of 
twenty deformation modes that form the basis of the four-node plate element. For clarity, they are 
listed below: 
 

           oooooo qprwvu     ,,,,,   rigid body modes 

         oxzoyzoxyoyox  ,,,,      constant strains 
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oyxzoxyzozxy ,,, ,,     first-order shear strain gradients 

   xzyoyzx ,, ,     second-order normal strain gradients 
 

The strains are obtained by the derivatives of displacements according to elasticity definitions: 
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            xzyzzyx oyzxoxzyozxyoxyoyxoxyxy ,,,,,    (14)
 

        xyyx oxzyozyoxyzoyzyz ,,,    (15)
 

        xyxy oyzxozxoyxzoxzxz ,,,    (16)
 

Inspection of the strains expansions above will reveal a-priori the capabilities of the element in 
representing deformation, but also any deficiencies that might exist. The literature discusses broadly 
that four-node plate elements might behave poorly due to shear locking, which might be briefly 
explained as an artificial stiffening of the model that occurs when shear strain energy increases un-
duly. It appears that shear locking was first reported in Zienkiewicz et al. (1971), and reduced-order 
integration was devised to circumvent the problem. Reduced-order integration schemes have the 
purpose of not integrating the terms in the stiffness matrix which are associated to this spurious 
shear strain energy. As it was soon detected that uniform reduced-order integration schemes were 
not fully effective, selective reduced-order integration schemes were then proposed as an improve-
ment over the uniform schemes. The reader is referred to the pioneering works by Pawsey and 
Clough (1971), and by Hughes et al. (1978). However, such selective schemes introduced spurious 
zero-energy modes, which motivated the development of the “Heterosis” element by Hughes and 
Haroum (1978). Particularly for the case of four-node plates, the selective reduced integration pro-
cedure applied by Hughes et al. (1977) gave rise to two spurious zero-energy modes. One solution 
was presented by Belytschko et al. (1981) where a scaling of the shear stiffness matrix was applied. 
Following these initial endeavours, many other finite element formulation strategies have been de-
vised to this date to overcome shear locking. A review of such methodologies is not the purpose of 
the present article. 

It is our intention now to identify precisely what are the sources of shear locking in four-node 
plate elements as we make use of the strain gradient notation. This will be done considering the 
strain expansions expressed via Equation 12 through Equation 16. It is logical that the sources of 
shear locking reside in the strain expansions as the stiffness matrix stems from the strain energy. 
Consider that each term in a strain expansion should be a term of the Taylor series expansion asso-
ciated to that strain. That is, the terms should be that particular strain evaluated at a given origin 
and derivatives of that strain. This is what it is observed in inspecting Equation 12 and Equation 
13. The right-hand sides of these equations are composed of terms which belong to the Taylor series 
of the normal strains. Thus, we may assert that those expressions do not contain any erroneous 
terms. 

Let us next consider Equation 14, which expresses the in-plane shear strain. The expansion is 
seen to possess six terms, four of which are associated to normal strains. These terms are 
       

oxzyoyzxoxyoyx ,,,, ,,,     where the first two are in-plane flexural strains, and the last two are 

variations of these in-plane flexural strains along the plate´s thickness. Clearly, such terms are spu-
rious in the in-plane shear strain expression because they are activated when in-plane bending of 
the plate occurs. At such an instance, the in-plane shear strain energy of the plate increases unduly 
giving way to shear locking. Using analogous arguments, it can be stated that the last two terms of 
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Equation 15 and of Equation 16 are also spurious. That is,        
oxzyoyzxozyozx ,,,, ,,,    are sources 

of shear locking as they are flexural terms and will increase transverse shear strain energy unduly 
when activated during analysis. Thus, a total of six spurious terms are contained in the shear strain 
expansions of the four-node plate element. Due to their deleterious effects in finite element analysis 
and their nature, such terms are called parasitic shear terms. This a-priori identification of the 
number and accurate nature of those terms is very difficult if a conventional notation is employed. 
This shows that strain gradient notation gives us full understanding of the shear locking sources. 

The next task is the elimination of shear locking, which is essential for the good behavior of the 
element. First, let us describe what happens if reduced-order integration were applied. The common 
approach would be the use of one-point integration to integrate the shear part of the stiffness ma-
trix. As noted by Byrd (1988), one-point integration eliminates the terms in x and y in the shear 
strain expressions. Thus, the four spurious terms in γxy are successfully eliminated, but also the 

terms  
oxyz,  and  

oyxz, in γyz and γxz, respectively, are eliminated. Clearly, such terms are legit-

imate and should not be eliminated. However, as the one-point quadrature is not capable of choos-
ing terms, it introduces two spurious zero-energy modes when those two shear strain terms are elim-
inated along with the parasitic shear terms. This is precisely what happened in the work of Hughes 
et al. (1977). Next, one major advantage in employing strain gradient notation is demonstrated. 
Inspection of Equations 14, 15 and 16 has precisely identified the parasitic shear terms of the four-
node plate. As those are the sources of shear locking, they must be eliminated. So, we simply re-
move those terms from the shear strain expansions to generate the following correct expressions: 
 

    zozxyoxyxy ,   (17)
 

    xoxyzoyzyz ,   (18)
 

    yoyxzoxzxz ,   (19)
 

When the strain energy is formulated using these expressions, a stiffness matrix free of parasitic 
shear terms is built, and shear locking effects do not occur. Further, spurious zero-energy modes are 
not introduced. 

Now that the parasitic shear terms have been eliminated, we proceed on with the formulation of 
the stiffness matrix of the four-node plate element for laminated composites. The strain energy of 
the laminate is obtained by the sum of the strain energies of the comprising laminae: 
 

ܷ ൌ
1
2
෍නሼߝሽ௞

்ሾܳሿ௞ሼߝሽ௞

௡

௞ୀଵ

௞ (20)ߗ݀

 

where k is a typical lamina of a laminate comprised of n laminae, ሼߝሽ௞ is the strain vector of lamina 
k, ሾܳሿ௞ is the constitutive matrix of lamina k, and ߗ௞ is the volume of lamina k. The twenty strain 
states that the element is capable of representing, or the element´s strain gradients, are generalized 
coordinates and they are cast in the strain gradient vector ൛ߝ௦௚ൟ. The relations expressed in Equa-
tions 7 through 11, and in Equations 12, 13, 17, 18 and 19 are written in compact form below: 
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    sgd    (21)
 

   sg sgT      (22)
 

where ሾ߶ሿ and ൣ ௦ܶ௚൧ are transformation matrices relating displacement coordinates and strains to 
the generalized coordinates, respectively. Matrix ሾ߶ሿ contains the linearly independent vectors 
which are associated to the twenty deformation modes of the element. Matrix ൣ ௦ܶ௚൧ may also be 
written before the elimination of the parasitic shear terms. That is, the element may be formulated 
in two versions, namely; a version containing parasitic shear terms, and a corrected version. This is 
actually what it is done in this work in order to show locking effects and the efficiency of the cor-
rected element. 

Equation 21 is inverted and substituted in Equation 22 to eliminate the explicit dependence on 
the strain gradient vector. The resulting equation is substituted into Equation 20 to yield the fol-
lowing form of the strain energy of the laminate in strain gradient notation: 
 

             ddTQTdU k
n

k k
ksgk

T
ksg

TT 1

12
1 

 
















     (23)

 

The term between parentheses is called strain energy matrix and it is usually represented by 
ሾܷெሿ. The terms in its principal diagonal quantify the strain energy content of each deformation 
mode while the off-diagonal terms quantify the strain energy content of the various coupling of de-
formation modes. ሾܷெሿ may be rewritten as: 
 

        dAdZTQTU kksgk
A

n

k

kZ

kZ
T
ksgM 

 


1 1
 (24)

 

where the limits Zk-1 and Zk represent the bottom and top coordinates of lamina k. Integration over 
the thickness of the laminate yields the laminated composite´s stiffnesses: 
 

   



n

k
kkkijij ZZQA

1
1  (25)

 

   



n

k
kkkijij ZZQB

1

2
1

2
2
1

 (26)

 

   



n

k
kkkijij ZZQD

1

3
1

3
3
1

 (27)

 

   



n

k
kkkijij ZZQKA

1
1

*  (28)

 

where A is the membrane stiffness, D  is the bending stiffness, B  is the membrane-bending stiff-
ness, and A*  is the membrane stiffness associated to the transverse shear effects and it is multi-



J.E. Abdalla Filho et al. / On a Four-Node Quadrilateral Plate for Laminated Composites     2185 

Latin American Journal of Solids and Structures 14 (2017) 2177-2197 

plied by the shear correction factor K. The usual value of K  is 5/6 (Reddy, 2004), which is adopted 
in this work. 

Finally, as the strain energy in terms of the stiffness matrix is given by: 
 

    dKdU T
2
1

  (29)

 

it can be concluded that the stiffness matrix in strain gradient notation is computed as: 
 

       1  M
T UK  (30)

 

whose components can be (and usually are) obtained symbolically, avoiding numerical integration 
procedures during the finite element analysis. This is another advantage of the strain gradient nota-
tion as it renders the analysis computationally more efficient. For brevity, we do not present the 
explicit form of the stiffness matrix. The formulation just presented has been implemented in a 
Fortran code named LAMFEM, which was developed in Abdalla Filho (1992), and it is employed in 
the analyses to be presented and discussed in the following section. 
 
4 NUMERICAL EXPERIMENTS 

Three numerical experiments are performed here. In each, a square plate having edges equal to 1.0 
m is analyzed. In the first experiment, an isotropic single-layer plate with material properties E = 
75 GPa and ν = 0.30 is analyzed whereas laminated composite plates are analyzed in the other two 
experiments. Laminae in the latter two experiments are made of Graphite-Epoxy. The correspond-
ing material properties are: Ex = Ey = 175 GPa,  Gxy = Gxz = 3.5 GPa, Gyz = 1.4 GPa, and νxy = 
0.25. As shear locking is more evident for thin structures, we have chosen to analyze plates with 
aspect ratio (side length/thickness) a/h = 100. Exception is made in the first experiment where 
transverse displacement results are also computed for the relations a/h = 20 and 50. Five uniform 
meshes are used, namely; 2x2, 4x4, 8x8, 16x16, and 32x32, and solutions for displacements and 
through-the-thickness stresses are provided both with the model containing parasitic shear terms 
and with the corrected model. Only a few stress components are selected as they are representative 
of the overall behavior of the laminated composite models. Comparison between both solutions is 
made to show the convergence characteristics of the corrected model and the effectiveness of the 
procedure described for the elimination of parasitic shear terms. Solutions are compared to analyti-
cal solutions as well. Such analytical solutions are indicated in the plots as FSDT, while solutions 
with parasitic shear terms are indicated as with/PS, and solutions corrected for parasitic shear are 
indicated as wout/PS. 
 
4.1 Experiment #1 

As a first numerical experiment, we analyze a simply-supported, single-layered isotropic plate (E = 
75 GPa and ν = 0.30) which is subjected to a concentrated load of 10 N applied at its center point.  
Solutions for maximum transverse displacements are computed and compared to analytical solu-
tions. Table 1 contains transverse displacement results using both the model corrected for parasitic 
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shear and the model containing parasitic shear. Numbers in parentheses are those which correspond 
to the model containing parasitic shear. 
 

Maximum transverse displacements  

a/h 
Analytical 
solution 

2x2 4x4 8x8 16x16	 32x32	

20 0.023570 
0.024562 0.024686 0.025055 0.025384 0.025384 

(0.005592) (0.012940) (0.020303) (0.023966) (0.023966) 

50 0.368286 
0.372085 0.370535 0.372085 0.373837 0.373837 

(0.016582) (0.055057) (0.150426) (0.272009) (0.272009) 

100 2.946286 
2.963164 2.946400 2.952242 2.957830 2.957830 

(0.034102) (0.123088)  (0.429235)  (1.188999)  (1.188999) 

Table 1: Transverse displacements for isotropic plate. 

 
In general, it may be stated that results provided by the corrected model approximate reasona-

bly well the analytical solution values for all three side length-thickness relations. Taking the results 
of the last column (32x32 mesh), percent errors are 7.69%, 1.51% and 0.39%. Now, results provided 
by the model containing parasitic shear are inferior (except for the relation a/h = 20), and they get 
worse as the plate gets thinner. Percent errors are now 1.68%, 3.86% and 40.35%. Another im-
portant result is obtained when we look at the values provided by the coarse meshes. For example, 
values associated with the 2x2 mesh show how deleterious the effects of parasitic shear are. Values 
in parentheses are totally in error. However, after elimination of parasitic shear, the coarse mesh 
provides very good displacement results. 
 
4.2 Experiment #2 

Here we analyze a simply-supported, symmetric cross-ply laminated plate with lamination scheme -
0°/90°/0°. The plate is loaded by a uniform load of value qo = 10 N/m2. Solutions are obtained for 
the normal stresses σxx, which are calculated at the plate´s center point, for the in-plane shear 
stresses τxy, which are calculated at one border´s mid-point, and also for the transverse shear stress-
es τxz, which are calculated at another border´s mid-point. Figure 3a and Figure 3b show the distri-
bution of σxx along the thickness of the plate for the model with parasitic shear terms (with/PS) 
and for the corrected model (wout/PS), while Figure 3c shows the convergence behavior of both 
models. Table 2 contains the highest percent errors calculated in each analysis of σxx.  

It is observed that the models with parasitic shear present a strong locking effect as their solu-
tions do not approach the analytical FSDT solution. Errors range from 98.81 % in the coarser mesh 
(2x2) to 14.90 % in the finer mesh (32x32). The latter indicates that more refinement is necessary 
to alleviate the effects of shear locking and produce an acceptable solution. However, the model 
without parasitic shear converges well to the analytical solution as the finer mesh presents an error 
of only 0.08%. It is important also to note that coarser meshes already produce acceptable results. 
For instance, the error associated with the 8x8 mesh is only 1.10%. The convergence plots clearly 
show the monotonic and excellent convergence of the corrected model, and the slow convergence of 
the model with parasitic shear terms. 
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Figure 3a: Symmetric cross-ply laminate. Normal stresses σxx computed with parasitic shear. 

 
Figure 4a and Figure 4b show the distribution of the in-plane shear stresses τxy along the thick-

ness of the plate for the model with parasitic shear terms (with/PS) and for the corrected model 
(wout/PS), while Figure 4c shows the convergence behavior of both models. These stresses are cal-
culated at the center point of one of the borders of the plate. The highest percent errors calculated 
in each analysis of τxy are also shown in Table 2. 

Here results also show that the models with parasitic shear  (with/PS) present a strong locking 
effect and that further refinement would be necessary for their solutions to approach the analytical 
FSDT solution. Errors range from 99.11 % in the coarser mesh (2x2) to 21.98 % in the finer mesh 
(32x32). However, the model without parasitic shear (wout/PS) presents good convergence to the 
analytical solution as errors range from 76.31% to 1.12%. The convergence plots show the good 
monotonic convergence characteristics of the corrected model and the slow convergence of the mod-
el containing parasitic shear. 
 

 

Figure 3b: Symmetric cross-ply laminate. Normal stresses σxx computed without parasitic shear. 
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Figure 3c: Symmetric cross-ply laminate. Convergence of normal stresses σxx. 

 

 

Figure 4a: Symmetric cross-ply laminate. Shear stresses τxy computed with parasitic shear. 

 

 

Figure 4b: Symmetric cross-ply laminate. Shear stresses τxy computed without parasitic shear. 
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Figure 4c: Symmetric cross-ply laminate. Convergence of shear stresses τxy. 

 
Figure 5a and Figure 5b show the distribution of τxz along the thickness of the plate for the 

model with parasitic shear terms (with/PS) and for the corrected model (wout/PS), while Figure 5c 
shows the convergence behavior of both models. Table 2 also contains the highest percent errors 
calculated in each analysis of τxz. It is seen that the parasitic shear terms have a strong deleterious 
effect, providing qualitatively as well as quantitatively wrong solutions. The solution is qualitatively 
wrong because it tends toward the opposite direction of the FSDT solution. Huge percent errors in 
Table 2 represent that erroneous behavior. It is only the finer mesh that presents the correct quali-
tative behavior. However, the error of 36.82% is still very high. Thus, this erroneous solution behav-
ior is a strong argument in favor of eliminating parasitic shear terms a-priori instead of trusting 
shear locking effects reduction through refinement. When parasitic shear is eliminated, the solution 
converges well to the analytical solution as shown in Figure 5b. The highest error contained in the 
finer mesh is only 0.47%. The convergence curves corroborate these findings as shown in Figure 5c.  
 

 

Figure 5a: Symmetric cross-ply laminate. Transverse shear stresses τxz computed with parasitic shear. 
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Figure 5b: Symmetric cross-ply laminate. Transverse shear stresses τxz computed without parasitic shear. 

 

 

Figure 5c: Symmetric cross-ply laminate. Convergence of transverse shear stresses τxz. 

 
Percent errors in stress components 

[0°/90°/0°] σxx τxy τxz 

a/h Meshes with/PS wout/PS with/PS wout/PS with/PS wout/PS 

100 

2x2 98.81 36.92 99.11 76.31 180.05 34.72 
4x4 93.06 4.37 94.64 36.90 196.97 15.50 
8x8 75.90 1.10 80.03 14.83 173.05 8.52 

16x16 43.10 0.17 50.72 4.96 102.10 3.49 
32x32 14.90 0.08 21.98 1.12 36.82 0.47 

Table 2: Errors in transverse stresses for cross-ply laminated plate. 
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4.3 Experiment #3 

As the third and last experiment, we analyze a simply-supported (SS2), anti-symmetric angle-ply 
laminate with lamination scheme [-45°/45°ሿ4 (eight laminae), and subjected to the same uniform 
load of the previous experiment. Again, solutions for the normal stresses σxx are calculated at the 
plate´s center point while solutions for the shearing stresses τxy and τxz  are calculated at borders 
mid-points. Table 3 contains the highest percent errors computed with respect to the FSDT analyt-
ical solution for solutions with and without parasitic shear effects. Figure 6a through Figure 6c 
show the results for σxx. Inspection of these figures allied to the findings from the previous experi-
ments allows us to assert that the model containing parasitic shear terms presents a slow conver-
gence rate and will require more refinement, and that the model corrected for parasitic shear con-
verges rather quickly to the correct solution. We observe that the model corrected for parasitic 
shear converges from above, which is clearly shown by the convergence plots of Figure 6c. Neverthe-
less, convergence is monotonic. Percent error values of Table 3 corroborate those findings as the 
finer mesh of the model containing parasitic shear has an error of 7.11% while the finer mesh of the 
corrected model has an error of only 1.72%.  
 

 

Figure 6a: Anti-symmetric angle-ply laminate. Normal stresses σxx computed with parasitic shear. 

 

 

Figure 6b: Anti-symmetric angle-ply laminate. Normal stresses σxx computed without parasitic shear. 



2192     J.E. Abdalla Filho et al. / On a Four-Node Quadrilateral Plate for Laminated Composites 

Latin American Journal of Solids and Structures 14 (2017) 2177-2197 

 

Figure 6c: Anti-symmetric angle-ply laminate. Convergence of normal stresses σxx. 

 
Percent errors in stress components 

[-45°/45°]4 σxx τxy τxz 

a/h Meshes with/PS wout/PS with/PS wout/PS with/PS wout/PS 

100 

2x2 97.52 26.89 98.33 70.58 217.20 38.59 
4x4 86.93 24.79 90.65 30.12 237.08 19.59 
8x8 61.09 6.27 69.87 11.71 196.98 11.33 

16x16 26.82 2.46 40.05 5.33 101.84 3.48 
32x32 7.11 1.72 20.94 4.08 25.21 1.44 

Table 3: Percent errors in stress solutions of the anti-symmetric angle-ply laminate. 

 
The in-plane shear stresses τxy results are presented in Figure 7a through Figure 7c. Once again, 

it appears that the parasitic shear terms play an important role in delaying convergence to the cor-
rect solution. As shown in Table 3, percent error in the model containing parasitic shear ranges 
from 98.33% to 20.94%. That is, refinement does a very poor job in eliminating the deleterious ef-
fects of parasitic shear. After the a-priori elimination of parasitic shear, error ranges from 70.58% to 
4.08%.  The convergence plots in Figure 7c clearly show total discrepancy between both solutions. 
The model containing parasitic shear presents that characteristic slow convergence behavior also 
presented previously while the corrected model presents monotonic convergence. 

The transverse shear stresses τxz results are shown in Figure 8a through Figure 8c, and the 
highest percent errors calculated are shown in Table 3. Parasitic shear effects are very strong and 
lead to an error that we may classify as qualitative besides being obviously of quantitative nature 
too. We observe the large error values that indicate the strength of parasitic shear in the transverse 
shear solution (this same effect has been observed in experiment #2). This is also depicted in the 
convergence plot of Figure 8c. The reader must observe the outstanding error of over 200%. Re-
finement leads to an error of nearly 25%, which is still very high. The monotonically convergent 
solution behavior is achieved when parasitic shear is eliminated from the model as shown in Figure 
8b and Figure 8c. Error values range from 38.59% to only 1.44% proving once again the need to 
eliminate parasitic shear a-priori. 
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Figure 7a: Anti-symmetric angle-ply laminate. Transverse shear stresses τxy computed with parasitic shear. 

 

 

Figure 7b: Anti-symmetric angle-ply laminate. Transverse shear stresses τxy computed without parasitic shear. 

 

 

Figure 7c: Anti-symmetric angle-ply laminate. Convergence of transverse shear stresses τxy. 
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Figure 8a: Anti-symmetric angle-ply laminate. Transverse shear stresses τxz computed with parasitic shear. 

 

 

Figure 8b: Anti-symmetric angle-ply laminate. Transverse shear stresses τxz computed without parasitic shear. 

 

 

Figure 8c: Anti-symmetric angle-ply laminate. Convergence of transverse shear stresses τxz. 
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5 CONCLUSIONS 

The formulation of a four-node plate element using a physically interpretable notation, called strain 
gradient notation, was presented for the analysis of laminated composites which are based on the 
equivalent-lamina assumption. The modeling characteristics of the element could be investigated as 
the notation allows for a clear physical understanding of the comprising terms of the displacement 
and strain polynomials. This capability allowed for identifying that spurious terms are present in 
the three shear strain polynomials of the element, and, using theoretical arguments based on their 
natures, such spurious terms were a-priori recognized as being the sources of shear locking. As they 
are terms associated to normal strains which are present in shear strain expressions, the spurious 
terms were referred to here as parasitic shear terms. Further, it was pointed out that the procedure 
for precluding the effects of shear locking via the a-priori elimination of the parasitic shear terms is 
completely effective as it is done without the introduction of any spurious zero-energy modes. As 
opposed to reduced-order integration techniques, the procedure allowed by strain gradient notation 
removes only the terms which are spurious. Legitimate terms that comprise the shear strain expan-
sions are maintained. Also, the strain gradient formulation procedure allows for the symbolic inte-
gration of the stiffness matrix, removing the necessity of numerical integration during analysis. All 
these considered, strain gradient notation has advantages over other formulation procedures. 

Three numerical experiments were performed to show both the deleterious effects of shear lock-
ing in laminated composite problems and that the corrected model provides accurate solutions. 
Thus, all experiments were run with two versions of the model, namely; a version containing the 
parasitic shear terms and a version after elimination of the parasitic shear terms (corrected model). 
Overall results showed that shear locking strongly occurs when the parasitic shear terms are pre-
sent, and that convergence is prevented. Results for transverse shear stresses showed that the errors 
introduced by parasitic shear may be of a qualitative nature as well as of a quantitative one. In that 
sense, refinement may not be sufficient to produce a convergent solution as artificial stiffening or 
locking is not the only phenomenon. Solutions go in the wrong direction as refinement is performed. 
Further, results provided by the corrected model were compared to analytical results and very good 
accuracy was obtained. Very small numerical errors such as 0.08% and 0.47% were registered. Such 
results allow for the conclusion that the model is capable of providing very accurate results for 
stresses. 

A few aspects are to be investigated in further studies. The most immediate one is to repeat 
these analyses using models which take advantage of the symmetry of the domains. This was not 
done here for simplicity. But, it is to be expected that better results could be attained as a quarter 
of the plate would be modeled by the same meshes which modeled the entire domain in this work. 
Also, it would be important to test the element for distortion. There is no reason why the element 
should not behave well when distorted, but it remains to be shown. For instance, circular plates and 
plates with cutouts are important problems that require distortion. Further, vibration and buckling 
analysis are natural next steps. 
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