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Abstract 
The dynamic behavior of variable stiffness composite laminated 
(VSCL) plate with curvilinear fiber orientation subjected to in-
plane end-loads is investigated. A variable stiffness design can 
increase the laminated composite structural performance and also 
provides flexibility for trading-offs between various structural prop-
erties. In each ply of the VSCL plate, the fiber-orientation angle 
assumed to be changed linearly with respect to horizontal geometry 
coordinate. The spline finite strip method based on both classical as 
well as higher order shear deformation plate theories is formulated 
to explain the structural behavior. The panel is assumed containing 
internal square delamination regions with friction and contact 
conditions at delaminated interfaces are not considered. In order to 
demonstrate the capabilities of the developed method in predicting 
the structural dynamic behavior, some representing results are 
obtained and compared with those available in the literature. The 
effects of change in curvilinear fiber orientation angles on the struc-
tural stability is studied. The obtained results show very good 
conformity in comparison with those exists in the available litera-
ture. 
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1 INTRODUCTION 

Aeronautical, space and marine structures are among disciplines where the least structural weight 
besides providing high available strength must be achieved. Thus, thin-walled structures will usually 
come to play. Every structural component especially those thinner in thickness under in-plane har-
monically varying excitation added to a constant mean load, meets situations where the instability 
conditions may appear. The amplitude of the dynamic instability load may even be lower than the 
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value corresponding to static bifurcation point. These excitation conditions are prevalent in case of 
mechanical structures as well as fluid-structural interactions.  

The traditional composite designs consider the composite lamina properties to be constant 
throughout the entire ply by the usage of straight and uniformly spaced fibers. This type of con-
struction provides constant unchanged stiffness throughout the whole lamina. A ply with variable 
mechanical properties could be achieved by changing the fiber orientation angle with respect to the 
locality. With the automated fiber placement technology, it is possible to fabricate composite plies 
with variable fiber orientations within their geometrical domain. As a result of changed fiber orien-
tation, the ply achieves variable directional stiffness through the geometry and may be called as a 
variable stiffness composite laminate (VSCL). On the other hand, a widespread defect of composite 
laminated structures is the debonding of layers called delamination. Delamination occurrence causes 
total strength reduction of the structure and activates low energy local instability and failure 
modes. So it is of high importance to calculate the stiffness reduction of a delaminated structure. 
Therefore, it is essential to study the various effects of loading and delamination on the dynamic 
characteristics and response of layered plates under static and periodic in-plane loads. 

The first reported studies on curvilinear fiber VSCL plates can be traced back to the works by 
Hyer et. al (1991) and Gurdal and Olmedo (1993). Parhi et al. (2001) presented dynamic analysis of 
a squared plate with delamination. The finite element equations were developed based on first order 
shear deformation theory (FST) for a developed eight-node isoparametric element. Some parametric 
studies on the dynamic behavior of delaminated plates in case of various boundary conditions, dif-
ferent lay-ups and changing geometries were presented. Hu et al. (2002) studied the vibration of 
moderately thick laminated plates containing delaminations using FST finite element method. The 
effects of delamination on changing the vibration behavior of the geometry were inspected. Yang 
and Fu (2007) examined the parametric instability of a thin-walled laminated cylinder with delami-
nation zone. The Rayleigh-Ritz method besides using of Heaviside-type displacement functions were 
utilized. The problem governing Mathieu equations were solved through Bolotin’s approximation 
method and the effects of external excitation amplitude, delamination location and size, and the 
material properties on the natural frequencies and the fundamental instability regions were studied. 
In more recent years, Akhavan and Ribeiro (2011) studied the free vibration of VSCL plates with 
curvilinear fibers using the third-order shear deformation theory. Ovesy et al. (2014) developed a 
layer-wise spline finite strip method (FSM) based on FST and analyzed the parametric instability 
problem of laminated plates containing through the width delamination. The delamination region 
simulated using step displacement approximation functions. The results of change in delamination 
size and position in static buckling, natural frequencies and parametric instability problems were 
investigated. Tornabene and co-workers (2015) investigated higher-order structural theories for the 
static analysis of doubly curved laminated composite panels reinforced by curvilinear fibers using 
the generalized differential quadrature (GDQ) method. They extract the strain as well as stress 
distribution through the thickness direction. Mohanty et al. (2015) analyzed the dynamic instability 
of delaminated plates under in-plane harmonic loading. The FST finite element method was uti-
lized. The effects of delamination position, lay-up, material orthogonality, geometry and loading on 
the instability characteristics were evaluated. The author of the current manuscript in some earlier 
publications (2010-2013), developed semi-analytical as well as spline finite strip formulations and 
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investigated the parametric instability problem of flat and curved shell panels with and without 
internal cutout and longitudinal stiffeners under uniform in-plane loadings. 

In this paper the static as well as dynamic stability behavior of moderately thick laminated flat 
panels containing delamination subjected to inplane loadings has been investigated. The laminate 
assumed to be variable stiffness due to curvilinear fiber placement that changes linear in the panel 
longitudinal direction. The in-plane loading is assumed to change harmonically with time. A B-
spline version of FSM has been developed. The formulations are based on both the classical thin 
plate theory and the Reddy type higher order shear deformation theory in order to include the 
transverse shear stresses effect in case of moderately thick structures. The governing equations are 
derived using full energy concepts on the basis of the principle of virtual work. The dynamic behav-
ior including natural frequencies as well as instability load-frequency margins are extracted utilizing 
the Bolotin’s first order approximation followed by an eigenvalue analysis. Some representative 
problems are numerically studied and compared to those in the literature wherever available. To the 
best of the author’s knowledge, this is the first application of B-spline FSM to the problem. Moreo-
ver, many studies have been devoted to the curvilinear fiber VSCL panels, while there are few pub-
lished works on the parametric instability of curvilinear fiber variable stiffness composite laminated 
panels with delamination. 
 
2 FORMULATION 

The assumed model includes a flat square laminated panel with a squared through-the-width or 
embedded delamination zone. The panel laminates are made from curvilinear (linearly changed) 
fiber orientations. The geometry is divided to a number of longitudinally adjacent finite strips. Fig-
ure 1 shows a sample numerical mesh of a geometry of width b, length L and total thickness t. The 
geometry is made from number of strip elements of length L and width bs. A typical embedded sin-
gle delamination zone is also indicated in the figure. A uniform loading as prestress is assumed on 
finite strips. The loading is consisted from a non-changing (static) component and a harmonically 
changing (dynamic) component which are indicated using S and D superscripts, respectively. The 
loading as a function of the static buckling load could be expressed as,  
 

S D
x cr crN a N a N cos tw= +  (1)

 

With w , Sa  and Da  as the excitation frequency, static part coefficient and dynamic part coeffi-
cient, respectively. 

The assumed model displacement field based on Reddy-type third order shear deformations in 
thickness direction (zero shear at top and bottom surfaces), may be expressed as, 
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Figure 1: Typical delaminated plate finite strip mesh, finite strip geometry and loading. 

 

Where , ,u v w  are the displacement components of any arbitrary point, 0 0 0, ,u v w are the corre-

sponding displacement components at the strip mid-surface, and ,x yb b  are the rotations around y 

and x axis, respectively. The pointer C is set to 1 and may be set to 0 in case of classical plate theo-
ry assumptions. 

The mid.-surface displacement field is approximated as multiplication of longitudinal-directional 
approximation functions. In longitudinal direction of a finite strip, the summation of a series of B3-
splines are employed while in the strip width, inplane linear Lagrange functions in conjunction with 
out of plane third order Hermitian ones are chosen (Fazilati and Ovesy, 2013). Any type of bounda-
ry constraints (free, hinged, clamped) may be implemented according to the approximation dis-
placement functions chosen.  

The linear strains for flat geometry are calculated through, 
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where ‘,’ defines a differentiation operator. Substituting the displacement functions (equation 2) into 
the strain equations (equation 3) leads to the strain field as: 
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where the strain coefficients are defined as: 
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Solution of the instability problems is sought through the principle of virtual work. The total 

energy of a strip is defined as summation of kinetic (T), pre-stress (Ug) and elastic strain (Ue) ener-
gy components: 
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Where the energy terms could be defined as, 
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With denoting of the material mass density as , differentiation with respect to time as a upper 

dot and a matrix transpose operator as superscript T. The force resultants (N, ,O,P,Q,R,T,U) can 
be related to the strain terms via the curvilinear fiber laminated material equivalent stiffness matri-
ces. i.e.: 
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Substituting the strain and force resultant equations in energy integrals (equation 7), minimiz-

ing the energy equilibrium equation 6, factorizing with respect to the degrees of freedom vectors, 
and some further handlings including assembling the strip equations and implementing of necessary 
boundary conditions, a Mathieu-type differential governing equation is obtained as, 
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Where M, K, KgS and KgD are the global structural matrices corresponding respectively to mass, 
elastic strain, static stress and dynamic initial stress energies. d  is the global vector of uncon-
strained degrees of freedom. By implementing the Bolotin’s first order approximation corresponding 
to the period twice the loading period, which is more critical (Bolotin, 1964), the time varying vec-
tor, d , is approximated as: 
 

( ) ( )1 1
2 2

sin cosA t B td w w= +  (10)

 
A and B are time-independent coefficient vectors called degrees of freedom vectors. Substitution 

of equation 10 into equation 9, factorization of harmonic terms and setting their coefficients to zero 
leads to a set of homogenous equations. For a non-trivial solution of unknown vectors A and B, the 
determinants of the coefficient matrices should be set to zero. The governing equations are reduced 
to two subsequent eigenvalue problems as, 
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The equations corresponding to vectors A and B are not coupled and can be solved separately 

which reveals the two boundaries of the instability region for the structure in terms of loading pa-

rameter sets of ( , , )S Da a w . 

 
2.1 Curvilinear Fiber Simulation Considerations  

Using machine fiber placement technologies, it is possible to change the fiber orientation through 
the geometry. The resulting production is called as a curvilinear fiber placement. In this research it 
is assumed that the fiber angle changes linearly just in the longitudinal direction of the geometry. 
As a result, the lamination layup in the panel width is constant while changing in the longitudinal 
direction. The changing fiber angle is denoted by a two-angle set <T0,T1> where the former one 
and the latter are the fiber angle at the plate middle section and plate longitudinal ends, respective-
ly. In other words, the fiber angle in a single ply is symmetric with respect to the plate middle sec-
tion. So, the fiber angle at every arbitrary point in the geometry is given by the following equation, 
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Diagram of Figure 2 depicts the changing fiber orientation in a sample strip coordinate frame. 

Due to the changing nature of lay-up properties in the longitudinal direction, the calculations for 
laminate equivalent stiffness matrices is performed in each integration point, independently. 
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Figure 2: Curvilinear variable fiber orientation in a single lamina. 

 
2.2 Delamination Modeling Technique 

In the delamination region, the plate is actually a set of two thinner plates. To bring a single delam-
ination effects into consideration, the main idea is to use double strips in the thickness direction. 
This means that the whole plate is composed of two similar layers of strip meshes with special lay-
ups. Inside the delamination zone, the two layers are independent and has no connections (note that 
the probable contact between two adjacent layers is ignored at present.). Out of delamination zone, 
all of degrees of freedom of the two layer must rigidly linked to each other via knots’ merging pro-
cess. The corresponding strips in upper and lower layers have the same geometrical and numerical 
characteristics. According to Figure 3, the strip knots of the same planar positions are merged to-
gether in all the perfect panel areas and also in the delamination zone edges. It is important to have 
knots on the edges of the delamination region. This approach could also be generalized for the case 
geometry with N delamination in thickness direction (N+1 layers is needed to be defined). Every 
strip layer has the same geometry properties but are different in bending stiffness. To fulfill the true 
bending properties of every layer in a strip with respect to the plate mid.-surface, every layer lay-up 
is considered similar to the whole plate layup with the redundant layers’ material changed to a null 
stiff-less and weight-less one. (see Figure 3) These considerations provide the physical conditions at 
the edges of the delamination zone.  
 

 

Figure 3: delamination modeling approach overview. 
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3 RESULTS AND DISCUSSION 

The first two natural frequencies and fundamental buckling strength of a laminated composite rec-
tangular plate are investigated. The lamina material properties and the model geometry are charac-
terized as, 
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The laminate has 8 layers with fixed orientation lay-up [0/90/0/90]s. A central through-the-
width delamination in the mid layer is considered as shown in Figure 4. Table 1 shows the results 
for the first two natural frequencies as well as fundamental critical buckling load. The results from 
higher order deformation theory, layerwise theory and experimental tests are also provided from the 
literature. A good agreement could be seen between the present FSM calculations and the reference 
ones. 
 

  
Figure 4: The geometry and delamination position of the cantilever plate (left) and square plate (right). 

 
d/L   0.0 0.2 0.4 0.6 

      
Exp. (Shen, 1992) w1 (Hz) 79.83 78.17 75.38 66.96 
HST (Radu, 2002) w1 (Hz) 82.12 81.19 76.48 67.26 

 w2 (Hz) 513.3 509.24 469.02 369.08 
 Pcr (N) 16.363 16.08 15.054 12.712 

FSDT-LWT (Ovesy, 2014) w1 (Hz) 82.03 80.75 75.98 66.83 
 w2 (Hz) 506.55 508.37 465.37 365.81 
 Pcr (N) 16.208 15.933 15.084 12.961 

CLT FSM (present) w1 (Hz) 82.16 81.23 75.49 65.65 
 w2 (Hz) 514.87 513.34 459.36 388.21 
 Pcr (N) 16.34 16.18 14.88 12.30 

HST FSM (present) w1 (Hz) 82.10 81.15 75.34 65.50 
 w2 (Hz) 512.59 511.06 453.82 384.70 
 Pcr (N) 16.33 16.16 14.85 12.26 

Table 1: Buckling critical load and natural frequencies of thin clamped beam-plate with delamination. 
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The first eight natural frequencies of three-layer square VSCL plates of diverse thickness, for 
simply-supported and clamped boundary conditions are extracted and presented in comparison to 
higher order FEM results of Akhavan and Ribeiro (2011) in Table 2-5. The model consists of a 
square plate of unit edge lengths with two length to thickness ratio (L/t) of 100 and 10. Three dif-
ferent ply fiber orientation angle layups are considered including [<0,45>/<-45,-60>/<0,45>], 
[<30,0>/<45,90>/<30,0>], [<90,45>/<60,30>/<90,45>]. The material properties of the plies are 
given as, 
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The results show the very good consistency of the FSM higher order as well as classical formu-

lations. 
 

 

[<0,45>/<-45,-60>/<0,45>]  [<30,0>/<45,90>/<30,0>]  [<90,45>/<60,30>/<90,45>] 
HST 
FEM 

CLT-
FSM 

HST-
FSM 

HST 
FEM 

CLT-FSM
HST-
FSM 

HST 
FEM 

CLT-
FSM 

HST-
FSM 

Akhavan 
(2011) 

present present 
Akhavan 
(2011) 

present present 
Akhavan 
(2011) 

present present 

1 358.488 357.223 358.948 308.799 309.963 309.513 329.688 327.809 330.602 
2 589.90 589.854 591.870 503.799 505.921 506.397 539.407 536.031 539.927 
3 960.361 964.726 967.324 845.509 849.859 853.589 886.392 886.284 886.995 
4 1075.21 1081.566 1076.831 1131.31 1142.172 1133.931 1091.20 1093.037 1093.440 
5 1327.88 1331.970 1329.703 1279.85 1286.756 1293.531 1279.90 1273.095 1280.431 
6 1474.67 1475.865 1484.581 1307.40 1319.000 1311.984 1401.87 1402.226 1400.969 
7 1726.71 1733.524 1730.946 1701.66 1712.942 1716.874 1755.53 1686.402 1702.978 
8 2137.13 2099.267 2114.419 1758.95 1762.449 1775.964 1809.82 1800.674 1806.170 

Table 2: Linear natural frequencies (Hz) for simply supported thin square three-ply VSCL(L/t=100). 

 
 

 

[<0,45>/<-45,-60>/<0,45>]  [<30,0>/<45,90>/<30,0>]  [<90,45>/<60,30>/<90,45>] 

HST FEM 
CLT-
FSM 

HST-
FSM 

HST FEM
CLT-
FSM 

HST-
FSM 

HST FEM 
CLT-
FSM 

HST-
FSM 

Akhavan 
(2011) 

present present 
Akhavan 
(2011) 

present present 
Akhavan 
(2011) 

present present 

1 579.398 585.860 581.796 667.177 674.701 669.276 710.771 719.218 714.221 
2 821.532 830.278 828.713 862.919 872.278 870.286 912.183 922.956 917.268 
3 1225.79 1238.937 1245.285 1234.64 1248.612 1256.165 1335.49 1351.924 1347.236 
4 1493.76 1526.021 1500.899 1701.04 1730.614 1721.424 1689.69 1723.643 1710.075 
5 1726.96 1766.256 1741.505 1775.56 1809.472 1803.511 1836.71 1878.085 1860.086 
6 1775.16 1797.064 1817.967 1902.48 1944.446 1915.429 1987.55 2021.619 2010.531 
7 2135.76 2182.707 2166.721 2269.83 2316.398 2306.725 2278.23 2298.254 2301.067 
8 2443.53 2479.814 2519.071 2310.69 2346.615 2373.940 2466.75 2515.019 2518.218 

Table 3: Linear natural frequencies (Hz) for fully clamped thin square three-ply VSCL (L/t=100). 
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[<0,45>/<-45,-60>/<0,45>]  [<30,0>/<45,90>/<30,0>]  [<90,45>/<60,30>/<90,45>] 

HST FEM HST-FSM HST FEM HST-FSM HST FEM HST-FSM 
Akhavan 
(2011) 

present 
Akhavan 
(2011) 

present Akhavan (2011) present 

1 2934.69 2928.605 2620.4 2624.798 2746.66 2739.410 

2 4688.30 4693.783 4225.74 4242.711 4402.32 4393.163 

3 7000.96 7009.894 6704.11 6749.203 6915.87 6928.962 

4 7324.22 7366.613 7121.26 7136.770 7058.72 7066.031 

5 8471.78 8486.471 8383.48 8419.139 8254.38 8247.497 

6 10448.8 10525.667 9317.14 9394.306 9626.07 9648.588 

7 10907.0 10984.944 11079.5 11181.187 11158.9 11067.479 

8 11653.3 11657.977 11762.0 11793.071 11486.5 11503.689 

Table 4: Linear natural frequencies (Hz) for simply supported square three-ply VSCL(L/t=10). 

 
 

 

[<0,45>/<-45,-60>/<0,45>]  [<30,0>/<45,90>/<30,0>]  [<90,45>/<60,30>/<90,45>] 

HST FEM HST-FSM HST FEM HST-FSM HST FEM HST-FSM 
Akhavan 
(2011) 

present 
Akhavan 
(2011) 

present 
Akhavan 
(2011) 

present 

1 3856.6 3877.675 4144.85 4162.847 4284.2 4304.572 

2 5711.95 5750.943 5696.2 5733.039 5761.83 5795.969 

3 7743.34 7809.107 8166.79 8242.439 8193.46 8254.431 

4 8406.57 8487.754 8214.53 8264.600 8247.32 8312.656 

5 9329.84 9418.328 9562.22 9635.648 9210.52 9287.304 

6 11295.2 11442.952 10805.3 10926.254 10770 10877.414 

7 12134.7 12286.045 12216.5 12368.014 12062.6 12151.970 

8 12343.9 12466.061 12720.3 12800.976 12503.6 12507.941 

Table 5: Linear natural frequencies (Hz) for fully clamped square three-ply VSCL (L/t=10). 

 
 

Square three layer VSCL plate of lay-up [<0,45>//<-45,-60>/<0,45>] with an embedded cen-
tral square delamination between first and second layers is assumed. The geometrical properties are 
the same as presented in equation (14) and Figure 4. The length to thickness of the plate (L/t) is 
10. A uniformly distributed longitudinal stress is assumed everywhere on the plate. Effect of differ-
ent out of plane edge constraint are studied. Seven different constraint sets including CCCC, SSSS, 
CSCS, CFCF, CCCF, SFSF, SSSF are concerned where C, S and F stand for clamped, simply sup-
ported and free conditions starting from a longitudinal end, respectively. No inplane movements are 
permitted at plate edges. Table 5 and 6 represent the results of the first four critical buckling loads 
as well as natural frequencies of perfect and delaminated geometries (corresponding to delamination 
areas of 0%, 4%, 16% and 36%), respectively. 
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CCCC CSCS CCCF CFCF SSSS SSSF SFSF 
d/L=0.0 1 1.9463 1.7064 1.3644 1.2983 1.2720 0.6959 0.6825 

2 2.0423 1.9769 1.6145 1.3896 1.7145 1.0952 0.6996 
3 2.4249 2.3750 2.1001 1.6630 2.0856 1.5908 1.0362 
4 2.5558 2.5320 2.3005 1.7564 2.3261 1.9166 1.4392 

d/L=0.2 1 1.9438 1.7050 1.3636 1.2981 1.2717 0.6959 0.6825 
2 1.9739 1.9206 1.6045 1.3875 1.6749 1.0940 0.6996 
3 2.3901 2.3554 2.0520 1.6629 2.0833 1.5739 1.0361 
4 2.4182 2.3692 2.2494 1.7308 2.2434 1.9101 1.4360 

d/L=0.4 1 0.9137 0.9126 0.9122 0.9104 0.9067 0.6904 0.6716 
2 0.9272 0.9271 0.9271 0.9270 0.9255 0.9017 0.6971 
3 1.0062 1.0061 1.0060 1.0058 1.0059 0.9251 0.9019 
4 1.0963 1.0914 1.0884 1.0787 1.0546 1.0054 0.9250 

d/L=0.6 1 0.5520 0.5500 0.5500 0.5478 0.5377 0.5284 0.5177 
 2 0.6657 0.6654 0.6651 0.6644 0.6426 0.6334 0.6227 
 3 0.7306 0.7303 0.7301 0.7296 0.7278 0.6908 0.6739 
 4 0.7391 0.7388 0.7387 0.7383 0.7384 0.7304 0.7008 

Table 6: Buckling of square three-ply VSCL plate with central embedded delamination (GPa). 

 
CCCC CSCS CCCF CFCF SSSS SSSF SFSF 

d/L=0.0 1 3893.0 3608.0 3223.9 3124.5 2936.8 2242.1 2145.6 
2 5807.4 5044.1 4188.5 3378.1 4716.2 3256.6 2389.8 
3 7842.3 7625.2 6158.2 4489.2 7012.6 5189.6 3629.2 
4 8628.3 7692.0 7162.4 6454.2 7439.3 6361.1 5540.4 

d/L=0.2 1 3892.9 3608.0 3223.1 3124.5 2936.8 2241.8 2145.6 
2 5767.8 5016.4 4187.6 3376.0 4690.9 3256.0 2388.9 
3 7656.9 7534.5 6106.0 4489.1 6850.9 5152.6 3629.1 
4 8626.9 7624.1 7129.4 6377.1 7438.4 6339.7 5483.4 

d/L=0.4 1 3822.3 3555.2 3197.1 3101.5 2894.7 2227.0 2130.0 
2 5469.7 4793.3 4117.2 3350.5 4475.6 3215.1 2379.1 
3 6763.9 6693.4 5711.7 4417.0 5884.2 4812.7 3584.9 
4 7151.4 6773.3 6682.2 5844.1 6684.5 5885.0 4971.5 

d/L=0.6 1 3338.7 3190.6 3004.0 2906.4 2685.8 2159.4 2063.1 
 2 4279.3 4151.2 3624.5 3222.6 3968.1 2996.8 2329.8 
 3 4680.5 4275.9 4348.9 3778.7 4109.4 4052.8 3299.5 
 4 5831.8 5545.8 4893.2 4563.3 4874.9 4239.9 4157.6 

Table 7: Natural frequencies of square three-ply VSCL plate with central embedded delamination (Hz). 

 
The results show that by growing the delamination area, the VSCL plate critical fundamental 

natural frequencies meet extreme reductions such that in the case of plate with 36% delamination 
area experiences a 14% fundamental frequency drop with respect to the perfect plate in CCCC con-
ditions. The table also indicates that the higher the models are constrained, the more significant 
reduction in the natural frequencies will take place. The reductions fall in the interval of 4 to 14 
percent in cases under study (see Figure 5). The delamination in VSCL plate leaves more notable 
effects on reduction of static buckling strength of the panel as shown in Figure 5. In this contest 
also the more constraint leads to higher softening of the structure due to probable delamination. 
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Figure 6 depicts the fundamental free vibration mode shape in different boundary condition sets for 
the case of three-ply VSCL plate with central 36% delamination area. 
 

  

Figure 5: Change in static and dynamic instabilities due to delamination area growth for different constraints. 

 

 

 

VSCL square plate CCCC CSCS CCCF 

   

CFCF SSSS SSSF SFSF 

Figure 6: VSCL delaminated plate and fundamental natural vibration mode  

shapes under different boundary condition sets (d/L=0.6). 
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Figure 7 depicts the change in dynamic instability regions map of the perfect and delaminated 
VSCL panel with respect to different loading amplitude and frequencies. A pure longitudinal har-
monic loading (aS=0.0) is assumed. The results show that the burst of delamination shifts the base 
instability frequencies (aD=0.0) toward slightly more critical lower ones while shrinks the instability 
region. A 4% delamination shows very ignorable results while higher delaminations make more sig-
nificant changes. 
 

 

 

Figure 7: Dynamic instability region for VSCL plate with variable  

delamination areas under different boundary conditions. 
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Clamped VSCL plate containing a central 36% delamination region is considered with the refer-
ence lay-up [<0,0>//<90,90>/<0,0>]. The central fiber angles in all layers (T0) is changed and 
the instability regions under inplane longitudinal uniform loading is extracted. Figure 8 depicts the 
instability region limits of various lay-ups. A pure dynamic loading is assumed. The results show 
that with change in central lay-up, the instability frequencies shift initially to the higher ones and 
then to the lower ones. A lay-up with fiber angles of [<15,0>//<-75,90>/<15,0>] benefits with 
higher instability frequencies that may interpreted to higher stable lay-up of the panel. It is also 
shown that in case of unchanged central fiber angles, the lay-up [<0,15>//<90,-75>/<0,15>] pre-
sented higher instability frequencies. The study demonstrates a slightly higher effect of changing the 
central fiber angle in comparison with change in end fiber angles. 
 
 

 

Figure 8: Dynamic instability region for clamped delaminated VSCL  

plate with different central fiber angles (d/L=0.6). 

 
 

Clamped VSCL plate with and without central 36% delamination region is considered with lay-
up [<0,45>/<-45,-60>/<0,45>]. A longitudinal inplane loading with static preload coefficient 
(aS=NS/Ncr) of 0.0 to 1.0 is considered and the dynamic instability regions of the VSCL plate are 
derived. The instability regions are shown in Figure 9. According to the figure, with growing the 
static loading coefficient, the instability region shifts toward lower loading frequencies while its size 
increases. In case where the static preload equals to the plate’s buckling critical load (aS=1.0), there 
is already stable plate conditions for sufficiently high loading frequencies. The results also show that 
the difference between perfect and delaminated plate is reduced for higher static preloads. Moreo-
ver, the instability regions of delaminated plate shrinks with respect to the ones corresponding to 
the perfect geometry.  
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Figure 9: Dynamic instability region for clamped delaminated VSCL  

plate with changing static preload coefficient (d/L=0,0.6). 

 
4 CONCLUSIONS 

The static as well as dynamic stability behavior of moderately thick variable stiffness composite 
laminated (VSCL) plates containing inter-ply square delamination region is investigated by using of 
a higher order B-spline finite strip formulation. A harmonically time-varying in-plane longitudinal 
loading is assumed. The friction and contact effects at delaminated interfaces are neglected. The 
governing equations are derived using full energy concepts on the basis of the principle of virtual 
work. The dynamic parametric instability load-frequency margins are extracted utilizing the Bo-
lotin’s first order approximation followed by an eigenvalue analysis. Comparisons imply that the 
spline formulation is a reliable tool in calculation of delamination effects as well as variable stiffness 
laminated plates stability problems. To the best of the author’s knowledge, this is the first applica-
tion of B-spline FSM to the problem. Some representative results with change in lay-up, boundary 
conditions and delamination size are provided. The results show that the growth of the delamina-
tion region made more significant destabilizing effects for the most constrained cases. It is also 
shown that proper fiber angle design may lead to minimize the delamination effects on the stability 
of the plate. The instability of the panel shifts to occur at lower loading frequencies as a delamina-
tion growing but the severity of changes depends on the type of out-of-plane boundary conditions.  
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