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Abstract

This paper presents dynamic analysis of an eccentrically stiffened
imperfect circular cylindrical shells made of functionally graded
materials (FGM), subjected to axial compressive load and filled
inside by elastic foundations in thermal environments by analytical
method. Shells are reinforced by FGM stringers and rings taking
into account thermal elements. The stability equations in terms of
displacement components for stiffened shells are derived by using
the third-order shear deformation theory and smeared stiffeners
technique.The closed-form expressions for determining the natural
frequency, nonlinear frequency-amplitude curve and nonlinear dy-
namic response are obtained by using Galerkin method and fourth-
order Runge-Kutta method. The effects of stiffeners, foundations,
imperfection, material and dimensional parameters pre-existent
axial compressive and thermal load on dynamic responses of shells
are considered.
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In recent decades, functionally graded material stiffened shells are more widely used in modern en-
gineering structures as tunnels, pipelines, pressure vessels, storage tanks and in other applications.
The structures are often strongly acted by forces depending on time leading to instability of work.
Thus, their nonlinear dynamic stability analysis is one of interesting and important problems and
has received considerable attention of researchers.

For un-stiffened shells, many researches focused on the vibration analysis of un-stiffened shells.
Bich and Nguyen (2012) presented nonlinear vibration of functionally graded circular cylindrical
shells based on improved Donnell equations. Loy et al. (1994 and 2001) considered vibration of
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functionally graded and laminated cylindrical shells. Lam and Loy (2000) researched vibration of
thin rotating laminated composite cylindrical shells. Sheng and Wang (2008 and 2010) considered
the effect of thermal load on buckling, vibration and dynamic buckling of FGM cylindrical un-
stiffened shells embedded in a linear elastic medium based on the first-order shear deformation the-
ory (FSDT) taking into account the rotary inertia and transverse shear strains. Some investigations
on the vibration analysis of FGM un-stiffened cylindrical shells resting on the Pasternak elastic
foundation have been published by Sofiyev et al. (2013). Huang and Han (2010) presented nonlinear
dynamic buckling of functionally graded cylindrical shells subjected to time dependent axial load.
Bahadori and Najafizadeh (2015) showed free vibration analysis of two-dimensional functionally
graded axisymmetric cylindrical shell on Winkler—Pasternak elastic foundation by first-order shear
deformation theory and using Navier-differential quadrature solution methods. Sofiyev et al. (2013,
2015) gave influences of shear stresses on the dynamic instability of exponentially graded sandwich
cylindrical shells by using the shear deformation theory and classical shell theory. The same author
analyzed torsional vibration and stability of functionally graded orthotropic cylindrical shells on
elastic foundations. Shen and Wang (2014) presented nonlinear vibration of shear deformable FGM
cylindrical panels resting on elastic foundations in thermal environments. Sofiyev et al. (2015)
showed stability and vibration of sandwich cylindrical shells containing a functionally graded mate-
rial core with transverse shear stresses and rotary inertia effects. Besides, Sofiyev (2015) also stud-
ied influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindri-
cal shells. Bahadori and Najafizadeh (2015) analyzed free vibration analysis of two-dimensional
functionally graded axisymmetric cylindrical shell on Winkler-Pasternak elastic foundation by
First-order Shear Deformation Theory and using Navier-differential quadrature solution methods.

As can be seen the above introduced results only relate to un-stiffened structures. However, in
practice, plates and shells including cylindrical shells usually are reinforced by stiffeners system to
provide the benefit of added load carrying capability with a relatively small additional weight.
Thus, the study on dynamic behavior of those structures is significant practical problem.

For stiffened shells, many studies were carried out with eccentrically stiffened shells made of
homogenous materials. Najafizadeh and Isvandzibaei (2007) showed vibration of functionally graded
cylindrical shells based on higher order shear deformation plate theory with ring support. These
authors (2009) also presented vibration of functionally graded cylindrical shells based on different
shear deformation shell theories with ring support under various boundary conditions. Bich et al
(2013) studied the nonlinear static and dynamical buckling analysis of imperfect eccentrically stiff-
ened functionally graded circular cylindrical thin shells under axial compression. Lei et al (2014)
presented dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical
panels using the element free kp-Ritz method. Nonlinear dynamic analysis of eccentrically stiffened
functionally graded circular cylindrical thin shells under external pressure and surrounded by an
elastic medium was analyzed by Dung and Nam (2014). Dung and Hoa (2015) presented a semi-
analytical method for analyzing the nonlinear dynamic behavior of FGM cylindrical shells sur-
rounded by an elastic medium under time-dependent torsional loads based on the classical shell
theory with the deflection function correctly represented by three terms. The material properties of
shell and stiffeners are assumed to be continuously graded in the thickness direction. Duc and Quan
(2015) studied nonlinear dynamic analysis of imperfect FGM double curved thin shallow shells with
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temperature-dependent properties on elastic foundation. Nonlinear dynamic response and vibration
of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on
elastic foundations was reseached by Duc and Thang (2015). Duc (2016) studied nonlinear thermal
dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic
foundations using the Reddy's third-order shear deformation shell theory through stress function in
thermal environment.

With the plates or other kinds of shells, there are many available results. Sofiyev (2009) ana-
lyzed the vibration and stability behavior of freely supported un-stiffened FGM conical shells sub-
jected to external pressure by Galerkin method. The same author (2012) analyzed the nonlinear
vibration of un-stiffened FGM truncated conical shells by analytical approach. Based on the First
order shear deformation theory (FSDT), Malekzadeh and Heydarpour (2013) studied effects of cen-
trifugal and Coriolis, of geometrical and material parameters on the free vibration behavior of rotat-
ing FGM un-stiffened truncated conical shells subjected to different boundary conditions. Lei et al
(2015) investigated free vibration analysis of laminated functionally graded carbon nanotube (FG-
CNT) reinforced composite rectangular plates using the kp-Ritz method. By using the element-free
kp-Ritz method, these authors (2016) also presented analysis of laminated CNT reinforced function-
ally graded plates. Dung and Vuong (2016) showed nonlinear analysis on dynamic buckling of ec-
centrically stiffened functionally graded material toroidal shell segment surrounded by elastic foun-
dations in thermal environment and under time-dependent torsional loads. Dung et al. (2014 and
2016) investigated the static buckling and vibration of FGM conical shells reinforced by FGM stiff-
eners under axial compressive load and external pressure by analytical method. The change of dis-
tance between stringers is considered in these work.

A novelty of the present study is to present an analytical method for investigate dynamic re-
sponse of imperfect FGM circular cylindrical shells reinforced by FGM stiffener system and filled
inside by an elastic foundations, in thermal environments. Theoretical formulations in terms of dis-
placement components according to Reddy’s third-order shear deformation shell theory (2004) and
the smeared stiffeners technique are derived. The thermal elements of shells and stiffeners are taken
into account in two cases which are uniform temperature rise law and nonlinear temperature
change. The closed-form expressions for determining the natural frequency, nonlinear frequency-
amplitude curve and nonlinear dynamic response are obtained by using Galerkin method and
fourth-order Runge-Kutta method. The effects of stiffener, temperature, foundation, material and
dimensional parameters, pre-existent axial compressive and on the stability of stiffened FGM shells
are considered.

2 FUNDAMENTAL EQUATIONS OF ECCENTRICALLY STIFENED-FUNCTIONALLY GRADED
MATERIAL SHELLS (ES-FGM SHELLS)
2.1 Functionally Graded Material Shells

Consider a thin circular cylindrical shell is made of ceramic and metal, with mean radius R, thick-
ness h and length L subjected to axial compressive load P, external uniform pressure q and thermal
load. Assume that the shell is simply supported at two butt-ends. The middle surface of the shells is
referred to the coordinates x, y, z as shown in Fig. 1. Further, assume that the shell is stiffened by
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closely spaced circular rings and longitudinal stringers.The quantity F10% epresents the eccentricity
(Figure 1). It means that the distance from the shell middle surface to the stringer centroid z (the
stringer eccentricity) and the distance from the conical shell middle surface to the ring centroid z,

(the ring eccentricity). Besides, the cylindrical shell is filled with elastic foundations represented by
two foundation parameter Ki and K2 which are the Winkler foundation stiffness and shearing layer
stiffness of the Pasternak foundation, respectively.
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Figure 1: Geometry and coordinate system of a stiffened FGM circular cylindrical shell.

Functionally graded material of shell in this paper is assumed to be made of a mixture of ce-
ramic and metal with a power law. Then the Young moduli F , thermal expansion coefficient «,

thermal conductivity coefficient K and density mass p can be expressed in the form:
For shells

m

oy (2) = a, +(a _am)[2z+h]k;

k
K,(z)=K, + (K, —Km)[22+h] ,—h/2<z<h/2 k>0
k
B B 22+ h|
ps}b(z)_p71L+(p(} pm)[ 2 } )

For stringers and rings

k
22 —h|’

, h/2<2<h/2+h;
th] / z / 1

kS
Er(z):Ec+(Em—Ec)[%] Jh/2<z<h/2+hy

B,(+) = B, + (B, —Ec)[
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kZ
ozs(z)—ozc—l—(am—ac)[%?;lh] D /2<2<h/24N;
ky
a7‘<z>:ac+(am_ac)[2z2};h] ,h/QSZSh/2—|—h2;
2z—hk2
Ks(z>—Kc—|—(Km—Kc)[ m ] Jh/2<z2<h/2+4h;
k’ﬁ
()= K (= )| Bt e s 2
2z —h

ps(Z)=pc+(pm—pe)[ ]‘,h/2<z<h/2+h1;

2hy
2z —h
2h,

where the volume fraction indexk>0; and /% is the thickness of shell; z is the thickness coordinate

k:%
P,.(Z)_P(;Jr(pm—pc)[ ] h/2<2<h/2+h;

varing from —h /2 to h /2; the subscripts m and c¢ refer to the metal and ceramic constituents
respectively; the subscripts sh, s, r indicate shell, stringer, ring respectivly; k,,k; are volume frac-
tions indexes of stringer and ring, respectively.

Note k, =k, =1/ k, when k, — oo,k; — oo lead to homogeneous stiffener.

The Poisson’s ratio v is assumed to be constant: v(z) = v = const.

As can be seen with the mentioned laws, the continuity between shell and stiffeners is guaran-
teed.

2.2 Constitutive Equations

According to the third-order shear deformation theory with von Karman geometrical nonlinearity,
the strain components of the shell at a distance z from the middle surface are of the form as Reddy
(2004)

0 1 37.03) _ 0 1 37.(3).
e, =¢, +2k +2k € —sy+zky+zk§),

x y

( 3)

0 1 37.(3 _ A0 27.(2 0 21.(2).
Yoy = Vay T zkw + z k‘gyﬁ Yoy = Vo T2 k’;ﬁ;)v Ve = Yy T2 kyz)7
in which
1 w 1
0 _ 2 0 __ 2.
€, =u, + Ew-,w’ & =Y _E+§w,y’
0 0 _ 0 .
Tay = Uy +ou, + WaoWyr Yoz = ¢$ + W Yy = ¢:u + Wy (4)
k= R = O — :
r  Trx’ Ty (b.r,y + ¢y,z’ z 3h2 <¢rz + W,rz)’

Latin American Journal of Solids and Structures 14 (2017) 2534-2570



Dao Van Dung et al. / Dynamic Analysis of Imperfect FGM Circular Cylindrical Shells Reinforced by FGM Stiffener System Using Third... 2539

4 —4
k; 3h2 (¢ + wﬁyy)7 ka(c?/) - 3?<¢%y + ¢y:m + 2w7w >;

_ —4
k;? = ?(éx + W,z )’ k%(/z) = h_2(¢?/ + va >;

where u = u(z,y), v =v(r,y) and w = w(x,y) are displacement components of the middle surface
points along the z,y and z directions, and ¢, gby represent the transverse normal rotations

about the y and z axes, respectively. Vay is the shear strain and Vyur Y. ATE the transverse shear

deformations.
Hooke’s Law for a shell taken into account temperature effects is defined as:
For shell

For stiffeners

0! = B (2)e, — E,(:)a,()AT (2);

a; = Er(z)ey — E7_(z)ozr(z)AT<z); (6)
J:z = Gs (z)fyu’ U;z = G,- (z)'sza

where G ,G are shear modulus of stringers and ring respectively; AT (z) =T (z) — T, is tempera-

ture difference between the surfaces of FGM cylindrical shell and taking 7, =1

Using the smeared stiffeners technique and calculating the total force resultants, total moment
resultants, and transverse force resultants of ES-FGM shells in thermal environment, we obtain

N, = 651155 + a126 + 39, , + a14¢ ‘o v, +agw,, + a7 Py + ag P

x

N, = a’2151 + a225y + a’23¢m,x + a’24¢y,y +a’25w,zac + 0’26w,yy + a’27(I)1 + a28(1)1r; (7)

Y
N:rg/ = a31’72y + a’32¢x,y + a’33¢y,m + a’34w,zy;
.0 0
Mz - bllez +b12€y +b13¢ac,m +b14¢y,y +b15w,:m + bleA,yy + b17q) b q)257
M, = by + b2258 + by, + 039, , Fhysw ,, + b26w,yy + by @y + by Py, 5 (8)
Mxy = b3172y + b32¢:c,y + 0330, , + by W

y,@ Y

_ 0 0
Pz =& + CIQEy + Cl3¢{L‘,I + Cl4¢y.y —|—C w +C w uy +Cl7q)4 +018(I)4s’

_ 0 0 )
B, = cye, + CopE, + 00, + Cyy®, W F Cgw A+ Py ey Py 9)

_ 0 .
Pry - Cfilf}/fcy + c32¢:c,y + c33¢y,m + 034w,my’

Latin American Journal of Solids and Structures 14 (2017) 2534-2570



2540  Dao Van Dung et al. / Dynamic Analysis of Imperfect FGM Circular Cylindrical Shells Reinforced by FGM Stiffener System Using Third...

Q, = d1172z + djy0, + d13w,z;
Qy = d217g(,)z + d22¢y + d23w,y?

_ 0 .
R, = e, 7, +eyo, + €3W 45

x

_ 0 )
y = €17y T 622% t w5

in which by, ¢ dysey (i=1+3,7=1+8) and ®,,9,,®,,®, .o, & &, &, can be found
in Appendix A.
Egs. (7), (8) and (9) are one of new contributions in this work in which the thermal elements of

N.. M.
the both shell and stiffener in equations of = ¥>" ¥ and b, are established.

The nonlinear equations of motion of an imperfect FGM shell filled by elastic foundation based

on the third order shear deformation theory are given by Reddy (2004)

o2 0? o*
N,, +N,, =1, 4, d)I—MS—W :
’ ’ ot? ot? dxdt?

2 2 3
N _+N :Ioﬂ_,_Jl y >\]38_W;
v ot? ot? dyot?

Q-’Ixfl: + Qy,y —3X (R-w + Ry,y) Jr)\(PLM + 2PIZ/J1/ + Py

o) (N0 N, )

+2N:I:y (wry + wty) +Ny (wyyy + wa) +<N-m + Nzy,y )(wT Tw,

(N, + Ny, ) (w, + ) ) —Kw+ Ky(w,, +w, )+q .
12
2 4 4
—1 0 g Q0 o | D Ow
ot ot 0z*0t>  Oy*ot
0’ 0 0’ 0%
A —u2+—v2 4 ¢Z2 +—
ozxdt™  Oyot 0zxot™  Jyot
0*u 9, O*w
Mz,z + MIUU - Q@ + 3>\R1 *)\(Pz,z + RMN/) = J1ﬁ+ LQ 8t2 *)\J4 5m3t2 )
2 2% 3
M, +M_ ~Q +3\R AP, +P =720, "y O
'Y, T Yy Y Y Y, Yy atQ 6t2 ayatQ

where X\,I,1,,1,,1;,J, and J, are given in Appendix B; ¢ is damping coefficient.

Substituting Eqs. (7+11) and (3+4) into Egs. (12), after some transformations we obtain the
equations of motion of ES-FGM cylindrical shell in terms of displacement components as follows

Ly (“) + Ly (”) + Ly (“’) +1, (d)m ) +1L; (%) +5 (w) +Q, (w’ w)

2 92 3 (13)
S Oy Ty O
ot ot 0zot*
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Ly (1) + Ly (0) + L () + L (0, )+ Ly (6,) + B (w) + @, (w0

o 0% ik
=1, a_t: +J, (%QJ ~ I, ayav; ,
L, (u) + Ly, (v) + Ly, (w) + L, (d)a;) + L, (cl)y) + P, (w) + R (u,w) + R, (v,w) + Ry(d,,w)

+R, (d)y,w) + Rs(u,w*) +R6(v,w*) —l—RY(d)Z,w*) + Ry (d)y,w*) + R, (w,w*)

2 4 4 3 3
:Ioa_w+2€j_06_w_>\216 o w 0w : 8u+ o’v
ot* ot oz’ ot*  Oy*or ozot*  Oyot’
3

+XJ ;
Yozot: oyt

Ly, () + Ly (v) + Ly, () + Ly (0, )+ L (0, )+ P, (w) + @, (ww)

82 82¢z 83
= a_; e M 8:10;;2 /
Ly (1) Loy (0) + Ly () + L, (0,) + L (6, )+ P (w) + @, (w0
o’ 9%, 0’
—J, a—t;’ +1I, aﬁy — A, aya“; ;

where linear operators L;( ) (z’, j:l,_s), nonlinear operators PZ< )7Q1< )(z = 1,_5) and R (z’ = 1,9)are

given in Appendix C.
Egs. (13) is used to analyze dynamic responses of ES- FGM cylindrical shell subjected to com-
bined mechanical and thermal load on elastic foundations.

3 TEMPERATURE
3.1 Uniform Temperature Rise

Assume the temperature environment uniformly raised from initial value T’ to final one Tf and
AT =T, —T, is a constant. Substituting Eqgs. (1) and (2) into Eq. (A2), after calculating integrals,

we obtain the thermal parameters ® ,®, ,® as

b h b.h,
o, =0/ATh,0 = @fSAT%, d = @f,,AT—Z 2, (14)
1 2
where
F o +F « F o
(DO —E a + m_cm cm o m + cm —cm [ — EC _Em’acm _ ac _am; (15)

1 mom k‘-f—l 2k5+1 ?em

Latin American Journal of Solids and Structures 14 (2017) 2534-2570



2542  Dao Van Dung et al. / Dynamic Analysis of Imperfect FGM Circular Cylindrical Shells Reinforced by FGM Stiffener System Using Third...

0 FEa +E o E o
©ls' = E(’a(’ + e e ’Emc = Em B E{”am(’ = am B a(’;
‘ - k, +1 2k, +1 ’ o ’

0 Fa +F « F «
leEa + C mc mc C+ mc mc;
' ©e k, +1 2k, +1

3.2 Nonlinear Temperature Change Across the Thickness z

In this case, the temperature through the thickness of the shell is governed by the one-dimensional
Fourier equation of steady-state heat conduction established in cylindrical coordinate whose origin
is on the symmetric axis of cylindrical shell as follows
K (E) dT

+ Z E - 0’ T Z=R—h/2 = Tc’ T Z=R+h/2 = Tm;

EE)

ar

= (16)

where T and T are temperatures at metal-rich and ceramic-rich surfaces, respectively. In Eq. (16),

7 is radial coordinate of a point which is distant from the symmetric axis of cylinder respect to the
point of shell i.e.

Z=R—zand R—h/2<Z<R+h/2.

According to Eq.(16), we get
a) For shell: Eq.(16) is of the form

4]y (2147

= Keh (E> dz

Ksh_(z_)d_T:o’T -T. T =T ; (17)
dz

z dz Z=R—h/2 c? Z=R+h/2 m’

+

By solving Eq. (17) with mentioned boundary conditions, the solution for temperature distribu-
tion across the shell thickness is obtained

T(z)=T .
(2)=T +mm & oK) (18)

R—h/2 ZK, (2)

Due to mathematical difficulty when caculating integral, this section only considers linear dis-
tribution of metal and ceramic, that means k=1. Substituting expressions (1) into Eq. (18) and
caculating integrals, after that substituting z = R — z, we have an expression

cm

(R—z)/h KK (22 +h)/(2h)

T(z)=1T, + Lo x|In n
T T K (R/nw1y2) | R/h-1/2 K (19)

nKm(R/h—1/2> |

Deduce
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R—2z|/h K K s+ h h
AT(z> = Tcm + Tmc X ln}g N _>1/ 5 —In—2 + cm (]2{ + )/(2 ) .
| K (R/h+1/2) Jh—1/ o)

K”L(R/h—1/2)

Substituting Eq. (1) and (20) into expression (A2) and accounting, we have

O, =P ATh, (21)
where
AT=T -T;
1 E o +E « E « E Oé I +(E CM +Ecmam)] +Ecmac7n12
@1 — Ema7n + m cm cm m + cm cm.
| 2 3 m|K (R/h+1/2)/K, /(R/h=1/2)
K K
IO:£+llnR/h+l/2_ oy e
h 2] R/h-1/2 K K, (22)
2
h+1/2 K K K
I = e PO I 1R/ +1/2 K, |1 In—<;
h h R/h—1/2 2Kcm 2 Kcm K
9 3
— K K
[2__1 +%+@ +i1+ﬁ lnR/h+1/2_ m _l
18 h 2 24 h R/h_1/2 6K(JTIL ("L 3 K(”I

b) For stringer stiffeners:

Eq.(16) leads to

K (z
g (] Bl h o ph
dz| ° ' dz z dz 2
(23)
T =T, T =T.
T=R-h/2 ¢ "[F=R-h/2—-h "
Similar to the case of shell, according to expression (2) and Eq. (23), we obtain
b h
1
where
B, +(Ba,, +E,a)],+E,a,J,|
(bi _ c mc mec mc
’ In|K (h—2R)/K, /(h—2R+2h
h—2R _h—2R+2h K, K
Jy = In ——<In—=2,;
2h h—2R K K

1 me c
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9 2
le_ In + + — - In—2 —- —;
8 h] h—2R 4hl 2 ch KC QKWC
3 2
S _A[h=2R) h-2R+2  1(h-2R
2ol n h—2R 12| h,

C

3| K

mc

12h,

3 2
h—2R 1[K ] K 1[}( ] K
+ In —
c) For ring stiffeners:
Similarly, in this case, we also obtain
b,h.
(blr = éirAT il 2 ) (26)
2
where

[E(jacFO—l—(Ea + E a)Fl—l-E « F}

¢1 — c mc mec ¢ me - me” 2
" K, (h—2R)/K, [/ (h—2R+2h)|
- h—2R+2h, K

F, = h—2R In Z_ ¢ p—m,
2h, h—2R K, K,
2 2

~1(n- h—2R+2h, h— K K, K
F;:_lh 2R\ | » (ho2R L\ K K, K (27)
8| h, h—2R dh, 2|k | K. 2K,
3 2
_A[h—2R| | h—2R+2h, 1[h-2R| h-2R
o4 h—2R 12 b, 12h,

6K

mc

3 2
1[1{} K 1[[(] K
_= c | ln2m 2| e | c

4 NONLINEAR DYNAMICAL ANALYSIS

In this section, an analytical approach is given to analyze nonlinear dynamic responses of ES-FGM
shells filled by elastic foundations. Assume the shell subjected to axial compressive load p, external
uniform pressure ¢ and thermal load. So

N = —ph. (28)

Consider cylindrical shell is simply supported at two butt-ends, the corresponding boundary
conditions

v:w:qSy:O,MJ;:Oat:I::()andx:L. (29)
With the boundary conditions (29) we choose solution as
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mnT . n . x n
u = Ucos sm—y, v =V sin cos—y;
R
. mrr . n * . MTL . N
w =W sin Sln—y, w =W, sin sm—y; (30)
R R
mrr . n n
¢ = ¢ cos sm—y, ¢ = ¢, sin cos—y;
T 1 R Y 2 R

where m is numbers of half waves in z-direction, n-wave number in circumferential direction and
U,V,W,¢,,¢, are constant coefficients.

Substituting Egs. (30) into Egs. (13) and then applying Galerkin method to obtain nonlinear
algebraic equations for U,V,W,¢,,¢, as follows

d*U d*wW d*0
(6]

tU 46,V + W 41,6, + b, + 6 W (W 20, ) = I — M=, at; ; (31a)
d’v >Pw o di
t U + 1,V + by, W Ly, + ., + L, W (W 420, ) = I T M+, 81522 ; (31b)

2
tSIU + tJQV + tJJW + t34¢1 +t35¢2 + t36W + t37WWO + t38U (W + WO) —|—t39V (W + WO)

46 o
+t3“¢2(W+WO>+t W(W+WO)(W+2WO)+<I>1T(W+WO)+(I)2T+ 4

312 mnﬂ'2 (3].(3)
2 2 2 d2 2
- [10 + N, (o? + 62)]ﬂ toer, W U g Y ang B OE
dt? dt dt? dt? dt? dt?
U d &*W
U + 1,V +t W 1,8 + 1,6, + 1, W (W 20, ) = J =+ L, — —\J,a—; (31d)
dt dt ot
v & 4w
LU+t V W A 1,0 + 10y + 1 W (W + 2W0> = E +1, dT; - >‘J4ﬁ¥; (31e)

where £; are defined in Appendix D and a=(mm)/L,f=n/R.

The system of five equation (31) is used to analyze dynamic responses of ES-FGM cylindrical
shells. However, because it is difficult to find an analytical solution of this system, so it is solved
numerically by four-order Runge-Kutta method.

After here some cases that we can obtain analytical solution are presented.

Using Volmir’s assumption (1972) we can consider four right sides of the four equations (31 a,
b, d, e) equal zero i.e.

2 2 2
Iog—x_fgadzv—kjdd)l:& (32)
dt dt
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>V d*W d*&
I — —N[.f——+J —2=0;
O a2 g o2
2 d2 2
JlM—I—L2 le—>\J4adVV:O;
di? dt? ot?
2 d2 2
Ry d’?—mﬂdwzo.
dt? di ot?

From Egs.(32) expressing Uu,v, q-S'l, Q-S-Q through W , after substituting the obtained results into
the third equation of Egs. (31), we obtain
LU 1,V 4, W+ 1,0 1,0, + 14 W (W + 2Wo> =0;
U+ 1,V + 1, W 1,0, +1,,0, +1,W (W + QWO) =0;
2
UtV A+t W 1,0+t + 1, W5+ L, WW +1,U (W + Wo) i,V (W + Wo)

b (W + W, ) A8, (W + W, ) + £, W (W + W, ) (W + 23, )

46,6, 33
10, (W4T, ) 4+ @y, +—22 g (33)
mnim

2
il +2€IOM;
dt? dt

t41U + t42V + t43W + t44¢1 + t45¢2 + t46W (W + 2Wo)

:g5

0;

t5lU + 7’/.52’[/ + t53W + 7:‘54¢1 + t55¢2 + t56W (W + 2WO) O’

From the first two equations of Egs. (33), we express U,V through W,¢ ¢, after substituting
obtained results into the last two equations of Egs. (33) to solve ¢,,¢, through W. Combining with

the third equation of Egs. (33) and after some transformations, we can obtain

2
95 dd;V +2¢l, dthV —-gW - (<I>1T - aQNf)(W + WO>— t W2 —t, WW, — gQW(W + QWU)
46 6 (34)
—g W (W W, )= g W (W + W, ) (W + 20, )~ @, =~
mnm

where @ ,® & showed as Eq. (14) with uniform temperature rise case; and as Egs. (21)-(24)-
(26) with nonlinear temperature change. And g, (z =1, 6) are given in Appendix D.

Using the fourth-order Runge-Kutta method for Eq. (34) with known initial conditions, we can
analyze nonlinear dynamic responses of ES-FGM cylindrical shells.

4.1 Natural frequencies

In order to establish explicit expression of natural frequency ® of the shell, we choose
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_ iot _ ot _ 1ot _ 1013 _ it
U=Upe™,V=Ve, W=Wge", & =, d =™, (35)

Substituting Egs. (35) into Egs. (33), then omitting imperfection, temperrature and nonlinear
parts leads to a system of five homogeneous equations for U,, V,, W,, ¢, and ¢,,. Because the
solutions (33) are nontrivial, the determinant of coefficient matrix of resulting equation must be

zero. Conclusion

by by by bs
by Iy by by by
by gyl t 95")2 ty ly | =0 (36)
by by by by s
b b by by

Solving Eqs. (36) yieds frequencies of cylindrical shell.
In other hand, from Eq. (34) the fundamental frequencies of the shell can be determined ap-
proximately by explicit expression

O =4 (37)

4.2 Frequency-Amplitude Curve

Consider nonlinear vibration of a cylindrical shell under an uniformly distributed transverse load
g=H sinQ¢. Assuming pre-loaded compression p, Eq. (34) has of the form
W | 2el dW |
+ +

2 3 . .
o (W + B W2 - B0 — Hysin 1 =0, (38)

where H = —(t36 + 9, —|—93)/gﬁ, H, =—g, /gG, H, = 45m5nH/(m”77295)'

For seeking amplitude—frequency characteristics of mnonlinear vibration, substituting
W = UsinQt into Eq. (38), leads to

2¢el O\I!Q

95

X= \Il(w2n —QQ)sith+

m

cos Ut + (x)fm[-il‘;[f2 sin® Qt + (D?n'nHQ\Ilg sin® Ot — H,sinQt =0 (39)
/29

Integrating over a quarter of vibration period f XsinQtdt =0, we obtain

0

del 3H H
’ Q= wfnn 1—i_iqullj +_2\I/2 __3' (40)
g, ’ 3T 4 v

0 —

Latin American Journal of Solids and Structures 14 (2017) 2534-2570



2548  Dao Van Dung et al. / Dynamic Analysis of Imperfect FGM Circular Cylindrical Shells Reinforced by FGM Stiffener System Using Third...

2

Q
By taking 7 = - Eq.(40) is rewritten as
mmn
4el 3H. H
T 07:1+iH1\If—|- 292 - 3. (41)
g7 3r 4 T2

mn

without damping

8 3H. H
v =1+—HV+ 29" -3 (42)
37'[' 4 \ijQ
The frequency—amplitude relation of free nonlinear vibration is obtained
2 2 8 3, o,
('ONL = wmn 1+ 3_7rH1\I/ + 4 v ’ (43)

where o, , is the nonlinear vibration frequency of the shell.

NL

5 NUMERICAL RESULTS AND DISCUSSION
5.1 Comparison Results

To validate the present approach, in the first comparison this paper compares the natural frequen-
cies of the cylindrical shell obtained from expression (36) with the results given by Eq. (25) Bich
and Nguyen (2012) using Donnell shallow shell theory for un-stiffened isotropic FGM shells without
elastic foundations (in table 1). It is seen that good agreements are obtained in this comparison.

Natural frequencies in Eq (25 ) from Bich- Present
i Nguyen (2012)
1 384.3080 384.3054
2 490.4446 490.4304
3 517.1251 517.0916
4 527.7445 527.6839
5 533.8962 533.8004
6 539.0572 538.9176
7 544.8023 544.6097
8 552.1373 551.8812
9 561.8667 561.5346
10 574.7031 574.2800

n=1, Bn=FE.=E=7x 10" N/m% pn = pc = p = 2702 Kg/m*, v = 0.3, R =1.5m, L = 2 x R, h = R/200

Table 1: Comparison of natural frequencies (Hz) for a simply supported isotropic cylindrical shell.
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2x10'4

R=1, R/h=500, LIR=2, 5=0.1, p=0 —— Present
""" Bich and Nguyen

il
os)| M h ; -l
os |[ |11

15+

W (m)
o
P

k=2, v=0.2980, (m,n)=(1,3), q=1500sin600t
L L

0 0.05 0.1 0.15 0.2 0.25
t(s)

-2

Figure 2: The comparison of dynamic respones results with those of Bich and Nguyen (2012).

In the second comparison, Fig. 2 shows the comparison of the nonlinear response of the shell
calculated by the approximate Eq. (34) in this paper and Egs. (32) in Bich and Nguyen (2012)
with input parameters as: E_ = 154.3211x10° (Pa),p, = 5700 (kg/m?’),Em = 105.6960 x 10” (Pa),
p,, = 4429 (kg/m®), v = 0.2980, k=2, ke=1/k, ks—=1/k, R=1(m), L=2R, h=R/500. It is seen that
these results (in Fig.2) are in good agreement to these one of Bich and Nguyen (2012).

From Fig. 2 and Table 1, we conclude that the Volmir’s assumption (1972) can be used for non-
linear dynamical analysis with an acceptable accuracy.

In the following subsections, this study will examine the effects of input parameters on nonline-
ar dynamical response of cylindrical shell with the material properties and the geometric properties
of shell are v =03, E =70 GPa,p, =2702kg/m®, E =380 GPa,p, = 3800 kg/m’, a =

m m

23x10°° C7Y, o, =74x10°°C" K =204 W /mK, K =104W /mK, d, =27R /n , d,=

L /n,,n, and n, are number of stringer and rings, respectively.

5.2 Effect of inside and outside FGM stiffeners

The effects of stiffeners on nonlinear dynamical response of FGM cylindrical shells are given in Fig.3
with k=1k =k =1/k, AT =0n =63 n, =15 R=15(m),L=2R h=R/200, (mn)=

(1,3), K = 10° (N/m?’),K2 =5x10° (N/m), H, = 1200 (N/m?). From obtained results as can be

seen with the same stiffener numbers, the time - deflection curve of outside stiffened shell is higher
than one of inside stiffened shell. This clearly shows the inside stiffeners are more effective than

outside those in this case.
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0.8

R=1.5 m,n1=63,n2=1 5,h1=h£=0.01 (m),b1=b2=0.0025(m) T Inside stiffener
g=1200sin500t Outside stiffener
06 il
0.4r e H 3 “e
E q:
= HRE
0 " ERE

!

et

w
»
0l
™

7

T

os k=1,L=2"R,h=R/200, (m,n)=(1 3)K,=10° N/m3, K,=5"10° Nim, AT=0, e=011,
TToW,=0 0005 0.01 0.015 0.02 0.025 0.03
t(s)

Figure 3: Effect of inside and outside FGM stiffeners on nonlinear dynamical response of FGM cylindrical shells.

5.3 Effect of Imperfection

,x10°
T T = - 1a*D e D) | -
_____ W0=0 k=1, R=1.5(m), L=2*R;h=R/200, K1—K2—0
15| v WG=0.0015(m)
—— W=0.003(m)
1+ _
__ 05} ]
g KA : E S, |
= - I,t“}\’ E
0 - - u}‘,,” .:‘C :'-; ki
05 |
AL il
£=0.1, (m,n)=(1,3), g=1200sin500t, AT=0
15 I I 1 I I I I I I
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t(s)

Figure 4a: Effect of imperfection VVO on nonlinear responses of FGM cylindrical shells.
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Figure 4b: Effect of imperfection V% on nonlinear responses of FGM cylindrical shells.

Figs. 4a and 4b consider effects of imperfection on nonlinear responses FGM cylindrical shell with
two case: without foundation (Fig.4a) and with foundation (Fig.4b). Graphs are plotted with

; 8 3 5 .
W, =0, 0.0015(m), 0.003(m) and K, = K, =0 (Fig.4a), K, =10° (N /m"),K, =10" (N /m). It is
found that, nonlinear responses curves are higher with the increase of initial amplitude W, . The
time - deflection curve with W, = 0.003 (m) is the highest and with W, = 0(m) it is the shortest.

This clearly the known initial amplitude slightly influences on nonlinear dynamic response curves of
the FGM shells.

5.4 Effect of Foundation Parameters

Fig. 5 describes the effects of foundation parameters on time - deflection curves of FGM cylindrical
shell. It can be observed that if the foundation parameters Ki and K2 are larger, the curves are
lower. Especially, the amplitude of time - deflection curve of shell without foundation is the highest
and the amplitude of time - deflection curve corresponding to the presence of the both foundation
parameters K, and K, is the smallest. This shows advantage of foundation parameters in vibration

of FGM cylindrical shell.
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Figure 5: Effect of foundation parameters on nonlinear responses of FGM cylindrical shells.

5.5 Effects of the Volume Fraction Index &

Fig. 6 considers the effects of volume fraction indexes kon the time - deflection (W - t) curves of
the shell with k= 0; 1; 5. It is found that, the height of time - deflection curve decreases with the
increase of k. The amplitude of the oscillation of FGM cylindrical shells with k=0 is the smallest
and it is the biggest with k= &5 . In addition, the vibration strength of FGM shell is more than fully
metal shell and less than that of fully ceramic shell. This property is suitable to the real property of

material, because the higher value of k corresponds to a metal-richer shell which usually has less
stiffness than a ceramic-richer one.

-5
15X 10
R=1.5(m), L=2*R,h=R/200, K ,=K_=0 — k=Q e k=1 — k=5
- 3 i Y | WA
E ‘ ,
= f J ] h
d W] Y o
5=0.1, (m,n)=(1,1), q=1200sin500t, AT=0, W =0
1.5 . :
0 0.05 0. 0.15

t(s)

Figure 6: Effect of power law index & on nonlinear responses of FGM cylindrical shells.
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5.6 Effect of Temperature
Figs. 7a and 7b give the effect of temperature field on nonlinear responses of FGM cylindrical

shells with k=2 e=0.1, R=15(m),L=2R h=R/200,(m,n)=(1,3), W, =0, p=4(GPa),
K =K,=0,H, =1200 (N/m?). It can be seen that the vibration of shell raises when AT in-
creases. For example in Fig. 7a, with AT = 400K , the time — deflection curve is bigger than the

time — deflection curve corresponding to AT =0K and AT =200K .

0.12
k=2, R=1.5(m . L=2*R,h=R/200 ‘ i AT=Q === AT=200K —— AT=400K
04F ! ‘ ‘
i Aol A A
A F
0.08 3
0.06- :
E
2
0.04-F
0.02H L
Vi
11
[ ]
v I
0 )
W,=0, K,=K,=0,=0.1, (m,n)=(1,3),q=1200sin500t, p=4GPa
-0.02 I I I I I
0 0.005 0.01 0.015 0.02 0.025 0.03

t(s)

Figure Ta: Effect of temperature environment on nonlinear responses of FGM cylindrical shells.
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Figure Tb: Effect of temperature gradient on nonlinear responses of FGM cylindrical shells.
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5.7 Effect of Ratio L/R

Fig. 8 gives the effects of the length-to-width ratio L/R on the time — deflection curve with
L/R= 1; 1.5; 2. It can be seen that the amplitude of vibration of shell is increased considerably

when L/ R ratio increases.
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Figure 8: Effect of ratio L / R on nonlinear responses of FGM cylindrical shells.

5.8 Effect of Ratio R/h Ratio

Fig. 9 illustrates the effects of the width-to-thickness ratio R/h on nonlinear responses of FGM cylin-
drical shells with R/h=100; 200; 250. The obtained results show that the amplitude of vibration of
shell is increased considerably when R/h ratio increases. This result agrees with the actual property of
structure i.e. because a thicker shell tends to dampen vibration more than a thinner shell.
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Figure 9: Effect of ratio R / h on nonlinear responses of FGM cylindrical shells.
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5.9 Effect of Damping &

Fig. 10 considers the effects of damping & on the nonlinear response with ¢ =0and € =5. It can
be seen that damping influences on the time - deflection (W - ) curves of the shell are inconsidera-

ble in the first vibration periods of vibration.
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Figure 10: Effect of damping on nonlinear responses of FGM cylindrical shells.

5.10 Effect of Pre-Loaded Axial Compression

Fig. 11 shows the effects of pre-loaded axial compression on the time - deflection (W - t) curves
of FGM cylindrical shells with P=0; 400 MPa; 800 MPa. The obtained results show that the ampli-
tude of vibration of the shells increases when the value of axial compressive load increases.

T T T T T T T |
A, (mn)=(1, I)(,q=1200sin500t, AT=0,k=1 p=0
00, W =0, K,=K,=0,R=15(m), L=2*R = } — p=400MPa
L T p=800 MPa
1

1

1 H
H 1
1 1
1 1
3 1

'

W(m)

'7"’:"-\---

1 L 1 1 1 L 1 1 1
0 001 002 003 004 005 006 007 008 009 0.1
t(s)

Figure 11: Effect of pre-loaded axial compression on nonlinear responses of FGM cylindrical shells.
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5.11 Frequency — Amplitude Curve

Fig. 12 examines the effects of pre-loaded axial compression on the frequency—-amplitude curve of
nonlinear free vibration of the shell. It is found that the nonlinear frequency depends apparently on
the amplitude and when the pre-loaded axial compression increases, the lowest
frequency decreases.

Fig. 13 illustrates the effects of amplitude of external force on frequency—amplitude curve of
FGM cylindrical shells with input parameter k=1, k, =k, =1/k =0, R=1.5(m),L = 2R,

h=R/200,(m,n)=(1,3), h=R/200,(mn)=(11), K, =10°(N/m®), K,=5x10" (N/m).
W,=0,p=0,h =h, =0.01(m),b, =b, =0.0025 (m),n, = 63,n, =15. As can be seen that when

the amplitude of external force increasing, the frequency—amplitude curve towards further from the
curve of the free vibration case.
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Figure 12: Effect of pre-loaded axial compression on frequency—amplitude curve of

FGM cylindrical shells in case of free vibration and no damping.
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Figure 13: Effect of amplitude of external force on frequency—amplitude curve of FGM cylindrical shells.
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5.12 Beat Phenomenon

Fig. 14 gives nonlinear dynamic response curve of the FGM cylindrical shell when the frequency
of the exciting force is nmear to the mnatural frequency of the shell with k=1, k =k, =1/k,

e=01,R=15(m),L=2R h=R/200,(mn)=(13), K, =10°(N/m*), K,=5x10"  (N/m).
and the natural frequency w=2156.6(s"). From the graph we can see the beat phenomenon.
4

5x10

k=1,R=1.5(m), L=2"R h=R/200, K =10°(N/m") K =5*10°(N/m)
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Figure 14: Nonlinear responses of FGM cylindrical shells when the

frequency of the excitation is near to the natural frequencies.

6 CONCLUDING REMARKS

This paper presents dynamic analysis of an eccentrically stiffened imperfect FGM circular cylindri-
cal shells, subjected to axial compressive load and filled inside by elastic foundations in thermal
environments by analytical method. Some remarks are deduced from present study
and are suitable to the real property of material:

i) According to the third-order shear deformation theory with von Karman geometrical non-
linearity nonlinear dynamic response are considered.

ii) The thermal element in shell and stiffened are taken into account.

iii) Using displacement function, Galerkin method, Volmir’assumption and RungeeKutta
method in this study, the closed-form expressions of natural frequency, nonlinear fre-
quency-amplitude curve and nonlinear dynamic response are determined.

iv) Thermal element, elastic foundation, imperfection, damping, pre-existent axial compressive
and thermal load and geometrical parameters affect strongly to the nonlinear responses of
FGM cylindrical shells.
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APPENDIX
Appendix A

The coefficients in Eqgs. (9+ 13) are expressed as
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Appendix B
The coefficients X\,I,1,,1,,1,,J, and J, in Egs. (14) are defined as
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Appendix C

)

Linear operators Lij( ) (i, j= 1,_5) and nonlinear operators PZ( ) (z = Lﬂ) R (,) (z = 1,_9) in Egs.

(15) are given as
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R2 (’U,’U}) = a12v,yw,m + a22v7yw,yy + (a12 + a31)v,zyw,x + 2(],311)@10@?/ + a22v7yyw,y + CL31’U,IZU)’y,
R3 <¢17 ’U)) = a’13¢z,mw,m + a23¢1’,1’w,yy + a’13¢1’,mw,x + a32¢m,yyw,m + 2a32¢m,yw,1’y + (a23 + 0'32 >¢m,myw,y7
R4 ((by’w) = a14¢y,yw,m + a24¢y$ywﬁyy + ((],14 + a’33 )¢y,mw:r + 2a33¢y,$w$xy + a24¢y,yyw$y + a33¢yﬁmwﬁy7
R5 (u’w*) = a“uvzw; + a21u_’zw:y + allu_’mw; + agluvyywi + 2a31uvyw:y + (a31 + a21)u_’zyw:,
R6 (v,w ) = amv,yw,m + a22fu’ywﬁyy + (au + a31)v’$yw,m +2a31v@w,zy + %QU,yywﬂ + a31v’mw"y,
R? (¢l’ w*) = a/13¢z7rw:l + a’23¢z.zw:y + a13¢1'71'zwz + a’32¢z.yywi + 2a32¢zﬁywiy + (a23 + a32 )(’bxxyw*y7
RS ((by’w ) = a14¢y.yw.” + a/24¢y7yw‘yy + ((114 + 033)(25%11‘11)‘1 + 2a33¢yﬁzw‘w + a24¢y7yyw‘y + a33¢y.zzw‘y’
R, (ww’) =2x T2 ' R B R B
o (W W | = Cllw,zzw Tz + 51 (wﬂw Yy + w,yyw JZ) + c22wal/?/w W E_FE W(U} o T ’yy)
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* * * * * *
+ (0,15 + a’25>w$m‘ (wx:r + wwy) + (a'lfi + a26>w,yy (wm + wﬁy?/) + Acll (w,xmw,a‘ + w,lwla‘l)

Ay Gy

R R

+(2)\c31 + Ach)(w’Zw* +w w ) +

* * *
LYY LYY T wow, + alf)w,mmw,z + <a16 + 0,34)’11) w

T T WYY T

+ (2)\012 +4Ae,, +2A¢,, + 2a34)wwyw;y + (Acn + 2)\c3l>(wﬁmyw; +ww )

Wy

*

* * *
+)\022 (wyyywy + wyw,zﬂ/y) + (a25 + a34)w<myw,y + a26w,yyyw,y

-l-th—i—aww* +aﬁw2+a ww |(w +w*
T 1172 "z Y 127y Ty 2T T
2 2

)

* * * *
+ (allw,zw,zz + allw,zzw,z + allw,zw,zz + a31w,zw,yy + a31w,zw,yy + a31w,yyw,z)(w,zz

(y; o * Uyy 9 * *
+ ) wr + a2lw,mw,m + 9 w-,y + aZ?w,yw,y w,yy + w-yy

* * * * *
+ (aZ?w,yw,yy + a22w,yyw,y + a22w,yw,yy + a31w,mw,y + a31w-,zzw,y + a31w,yw=zz)(w,y + w,y)

* * *
tw w, A+ wwa(ww + w”)

—|—2a31 (wfwy

+ w.yw* )(w‘.’L‘ + wt)

Y

*
+ (al? + Qs ) (wywzy + wwyw-,y
* * *
\T + www w,x + w,x

+ (an + a31>(w~,xw,x'y + wmyw \2Y

+%@1+%@1r+(a ® +a,d )(w’yy—i-wz/y)—l-(an@l—l-a i +N0)(w—|—w1)—|—q

9701 T Gog™®y, 18715
0? d? 0?
L41( ) = (bn - ACn) Py + (b;n - )‘031) 0y ) L42( ) = <b12 +by —Acy, _)‘631)%7
b Ae, | 0 o
L43 ( ) = _%_ d11 _d13 + 3)‘(611 +613) + 22 % +(b15 _)‘615)$
9
+(616 +by, —Acy — )\634>8x—8y27
9? 9?
L, ( ) = (b13 - ACI3)8:I:2 + (b32 - )\632)8_212 + [_dn —dy, +3A (eu tep, )] w,
5
Ly ( ) = (b14 +byy —Acy, — )\633)817—83;7
o 0 o 9 o
b, ( ) = (bn - Acu)%ﬁ"‘ (bm + by = Acy, — /\631)8_;1/ 010y + <b31 - AC?’I)%@yz )

Pwdw 0 wdw
+
or? Oz oxr 9z’

Q, (w, w*) = (bn - )\cn)
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ow w 0 wdw

—|—(b12 + b31 — )\012 — )\031)

Oy 0zdy Oy 0xdy or 9y* Oz 9y’

9 9> 92
Ly ()= (by + by = Ay = ey 920y’ Ly ()= (by = Aeyy )Q* (b, — )‘622)8_1/27
83 b )\ a
L53( ) - (b34 Tty —Aey, — /\625) 5’0y i _%_ oy — doy + 3 (621 + 623) + ;22 8_9
83
+(b26 — )\c%>—3,
82
L, ( ) = (b32 +byy — Ay, — AcQB)(?x—ay’
o? 92
Ly, ( ) = (b33 — )\633)§+ (b24 — )\024>8_y2+ [*dﬂ — d22 +3A (621 +e,, )} w,
82 8 8 82 a 82
P5( ) - (bSl - ACSl)ﬁa_y + (b31 by = Acy, — Acﬂ)@_x 920y + <b22 - ACQQ)a_ya_yQ7

Pw dw wow
oz Oy  9z* 0Oy
o w 0w 9w d*w"
Oxr 0zdy dxr 0zdy

Q, (w, w*) = (631 - )\031)

dw w9 wdw
dy 0y? dy 0y? 7

+<b31 + by — Ay, _)“321>[ +(1722 _/\622>[

Appendix D

The coefficients #; in Eqs. (34) are defined as

—a, &

_ 2 _ 2 _ _ 127 3 2
by =—a " —a, 07, t, = (a12 + a31)aﬂ, by = R a5 <a16 + a34)aﬁ )

o :<—1)m—1,8n:(—1)n—1t =—a.a’—a,[’ t ——(al4—|—a33)aﬁ,

7 Y14 13 327 0 15 T

b = %[2(_%10‘3 - a310662) + (a12 + a31>0652}7 by = —(a31 T a21>ozﬂ,

Omn’
;= 2 2y 2, Gyf 34—
99 = T3 X T Ay, 23—(—a34—a25)aﬁ— I —ay, 07, by, ——(a32+a23>a5,
2 2 m_n 2 3 2
t25 = T —a24ﬁ ’t26 = 5 2(—a31a ﬁ—a22 )—|—<a31 +a21)a ﬁ}’
Imnm

3 2 Gy 2 5 Oy

ty = b +(Qb31—|—621)aﬂ _%7 t32:(b12+2b31)04,3+b22,8 - 2]2% ’

—a,
t. = 22

— R2 7%71)1_2+K

2 4
33 1 R R 2 G b0

o — aﬁ—bz—z+K2
R R
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+ (b16 + 20, + by ) a’p? +b26ﬂ47

70,2306

3 2 —a,, 2 3
t, = = b, +(2b32+b23)aﬁ, t,. :—}2%4 +(b14+2b33)a B +b,,8°,

2 2
ty = {(b11 tay ot + (20, + g +ay )a?5? 4 (by +ay ) B Tl I

R R
1 4 2 52 ‘1210‘2 o’ B
5| tua = (2, + 8y )a’B | (b 2y by, 420,
2
1 o 222 4 a22 166’/7L(SH,
+ 2[ (b, + 2, )0*5" 8" +=2 P
1 166 6 1 166 6
ty = [“110‘3 + a21a62 Jr_“310452] - Z by = [%20‘26 + a2263 +_“310‘25] n Z )
2 Imn 2 I9mn
A 1 166 6 1 166 6
t39 = [alao‘3 + ansO"B2 +5a320432] Qm;;rg ’ t310 = [a140¢2ﬁ + a24,63 +5‘1330‘25] Qm::TrZ )
3 4 2 02 2 02 4 4 202 _ 46m6n
by = 5(_“110‘ —ay " —a,a" " — a0 +§a31a Bty = |
ty = (_bu + )‘011>a2 - (bsl - )‘031)/82’ by = _<b12 by — Ay, — /\031)0‘57
—b e 3
b, = _RH —dy, —dy, + 3\ e, +e,)+ }%2 a —(b; — A, )a
2
—(b16 +b34 —)\cw —/\034)ozﬁ ,
t44 = _(bls - )‘013)a2 B (b32 B >‘632>/62 _dn - dlZ +3A (611 + 612)7
by = _(b14 +byy — Acy, — )‘033)0‘/6’
B 6m6n 3 b 2 2
e = 9 {Q(bu _/\Cu)o‘ +2< 31 _/\631)0"6 _(bm + 0, — Ac, — )‘031>0‘B ]’
Imnm
2 2
ts = (_b31 — by +Acy, + /\021>O‘ﬁ’ lsy = _(b31 - /\031)‘)‘ - (b22 - )‘022)ﬂ ]
(b b e e )aB 2 g —d 13 Ay
tsy __( 30 T Oy — ACy, — 625)O‘ B+ R 2 (621+623)+ R g

by = _(bsz +byy — Acyy, — /\023>aﬂ, by = _(b33 - /\033)a2 - (bz4 - /\024)52
—d,, — dy, +3X (e, + ey, ),

6 6
b= _9 m _'2n [20‘2/3(1731 - /\031) + 253 <b22 — /\022) —a’s (b31 + by, — Aey, — Ay, )}
mnm

The coefficients g, (z = 1,5) Eq. (37) are given as
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| = —tyoty Tty 0= oty T tolyg = oty Tty = oot Tl ’
bty = bly bty = bly, bty — oty bty — oty

L = “hylyy b, L= “hylys b = “hylyg byt A = by + bt

( bty — oty bty — oty bty — oty bty —toty

lg = [_<t5112 + tszle + t55)<t41l3 + t4zl7 + t43> +(t4112 + t42l6 + 7t45)<t5113 + tszl7 +i )]gi
1

llO = [_ (tsllz + tszls + tss)(t41l4 + t42ls + t46) + (t4112 + t4216 + t45)<t5ll4 + tszls + t56 )]gi
1

Ly, = [_(tzllll + t42ls + t44>(t51l3 + t52l7 + tss) +(t5111 + t5212 + t54>(t4113 + t42l7 +i )]gl
1

(D2)
112 = [7 (t41l1 + t42l5 + t44)(t5114 + t52ls + t56) + (tslll + t52l2 + t54 ) (t4114 + t4218 + t46 )]i

1

gy =ty (L + bl + 1Ly )+ by (Il 1L, 1)+t ly + 1k + 1,

Gy = tyy (g + bl 1)+t (Ihy + Lk + 1)+ bl + gl

9y =ty (L4 Ll L0 )ty (il L0 L)+ gyl + s

9y = tyg (bl + bk +1, )+ tyg (Iho + Lk + 1)+ tygho + Lyl + s

g, =1, + NI, (o” + 5] - +ﬁ[(a2A2]3 + BN (1L, ~ T, ], )+

I L

0772 1
(2220, + BN, ) (1,0, = 1,,), 9 = &°N) =g, = ®,,..
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