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Abstract 
In this paper, the Equivalent Linearization Method (ELM) with a 
weighted averaging, which is proposed by Anh (Anh, 2015), is 
applied to analyze some vibrating systems with nonlinearities. The 
strongly nonlinear Duffing oscillator with third, fifth, and seventh 
powers of the amplitude, the other strongly nonlinear oscillators 
and the cubic Duffing with discontinuity are considered. The re-
sults obtained via this method are compared with the ones achieved 
by the Min-Max Approach (MMA), the Modified Lindstedt – Poin-
care Method (MLPM), the Parameter – Expansion Method (PEM), 
the Homotopy Perturbation Method (HPM) and 4th order Runge-
Kutta method. The obtained results demonstrate that this method 
is very convenient for solving nonlinear equations and also can be 
successfully exerted to a lot of practical engineering and physical 
problems. 
 
Keywords 
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1 INTRODUCTION 

Nonlinear oscillations systems are such phenomena that mostly occur nonlinearly. These systems are 
important in engineering because many practical engineering components consist of vibrating sys-
tems that can be modeled using oscillator systems such as elastic beams supported by two springs 
or mass-on-moving belt or nonlinear pendulum and vibration of a milling machine. Hence solving of 
governing equations and due to a limitation of existing exact solutions have been one of the most 
time-consuming and difficult affairs among researchers of vibrations.  

The amplitude–frequency relationship is of significant importance for the accurate prediction of 
nonlinear oscillator systems in many areas of physics and engineering, especially in nonlinear struc-
tural dynamics. Therefore, the analyzing of nonlinear systems has been widely considered. In recent 
years, many powerful methods are used to find approximate solution as well as the amplitude-
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frequency relationship to the nonlinear differential equations.  Some of these methods are Ho-
motopy Perturbation Method (HPM) (He, 1999; He, 2004a; He, 2004b; He, 2004c; Turgut et al., 
2007; Bayat et al., 2012), Max-Min Approach (MMA) (He, 2008; Ganji et al., 2010; Chen et al., 
2011; Dumaz et al., 2011; Yazdi et al., 2012; Bayat et al., 2012), Variational Iteration Method 
(VIM) (Bayat et al., 2012), Energy Balance Method (EBM) (Ganji et al., 2009; Khah et al., 2010; 
Younesian et al., 2010; Bayat et al., 2012), Amplitude-Frequency Formulation (AFF) (Chen et al., 
2011; Jouyburi et al., 2014; Bayat et al., 2012), Parameter Expansion Method (PEM) (Kayaa et al., 
2009; Dumaz et al., 2011; Darvishia et al., 2008; Zhao, 2009; Bayat et al., 2012 ), Homotopy Analy-
sis Method (HAM) (He, 2004c; Bayat et al., 2012, Shahram Shahlaei-Far et al., 2016), Modified 
Homotopy Perturbation Method (MHPM) (Jouybari et al., 2014), Equivalent linearization Method 
(ELM) (Krylov et al., 1943; Caughey, 1959; Iyengar, 1988; Anh et al., 1995; Anh et al., 1997; Eli-
shakoff et al., 2009; Anh, 2015) and combining Newton’s Method with the Harmonic Balance Meth-
od (Lim et al., 2006).  

The Equivalent Linearization Method of Kryloff and Bogoliubov (Krylov et al., 1943) was gen-
eralized to the case of nonlinear dynamic systems with random excitation by Caughey (Caughey, 
1959). And then, this method has been developed by many authors (Iyengar, 1988; Anh et al., 1995; 
Anh et al., 1997; Elishakoff et al., 2009). It has been shown that the Gaussian equivalent lineariza-
tion is presently the simplest tool widely used for analyzing nonlinear stochastic problems. Never-
theless, the accuracy of the Equivalent Linearization Method with conventional averaging normally 
reduces for middle or strong nonlinear systems. A reason is that some terms will vanish in the aver-
aging process, for example the averaging value of the functions sin(t) and cos(t) over one period is 
equal to zero. Anh N. D. (Anh, 2015) proposed a new way for determining averaging values, instead 
of using conventional averaging process author introduced weighted coefficient functions.  

In this paper, the equivalent linearization method with weighted averaging is applied to nonlin-
ear oscillators. To illustrate the applicability and accuracy of the method, four examples are pre-
sented: nonlinear Duffing oscillator with third, fifth, and seventh powers of the amplitude, the 
strongly nonlinear oscillators and the cubic Duffing with discontinuity. The amplitude–frequency 
relationship can be readily obtained by this method. The results compared with the ones given by 
the numerical method and other well-known techniques show the accuracy of this method. 
 
2 THE EQUIVALENT LINEARIZATION METHOD WITH A WEIGHTED AVERAGING 

2.1 The Equivalent Linearization Method 

In order to present the general idea of the equivalent linearization method, we consider a nonlinear 
oscillator governed by the following equation: 
 

2
02 ( , ) 0X hX X g X X       (1)

 

where ( , )g X X  is a nonlinear function only depending on two variables of velocity ( )X t  and dis-

placement ( )X t , h and 0  are constants. The corresponding equivalent linear oscillator is described 

by the equation as follows: 
 

2
0(2 ) ( ) 0X h X X         (2)
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The equation error between the two oscillators is taken as 
 

( , ) ( , )e X X g X X X X       (3) 
 

The coefficients of linearization in the linearized Eq. (3) are found from a certain optimal crite-
rion. There are some criteria for determining these coefficients. The most common criterion is the 
mean square error criterion which requires the mean square of equation error to be minimum: 
 

 22

,
( , ) ( , )e X X g X X X X Min

 
        (4)

 

Thus, from 
 

2

2

( , ) 0

( , ) 0

e X X

e X X

















 

 

it follows that  
 

2

22 2

g X X g X X X

X X X X







  

 
 (5a)

 

2

22 2

g X X g X X X

X X X X







 

 
 (5b)

 

In the formulas in Eqs. (4) and (5), the symbol   denotes the time-averaging operator in clas-

sical meaning: 
 

0

1( ) lim ( )
T

T
f t f t dt

T
   (6) 

 

For a ω-frequency function f(ωt), the averaging process is taken during one period T, i.e. 
 

2

0 0

1 1( ) ( ) ( ) ,
2

T

f t f t dt f d t
T



     


     (7)

 

In this technique, the importance of the attended terms is considered as the same on time scale. 
In fact, their roles generally differ from time to time. That may be one of the reasons causing the 
classical equivalent replacement be effective only for oscillators with weak nonlinearity, but normal-
ly not good for ones with strong nonlinearity. In order to improve this shortcoming, the averaging 
operation with weighting functions is proposed in the next section. This idea is introduced by Anh, 
N. D (Anh, 2015). 
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2.2 The Weighted Averaging 

It is well-known that for a given data set the most common statistic is the arithmetic mean. The 
concept for the average of a data set can be extended to functions. The conventional average value 
of an integrable deterministic function x(t) on a domain D: (0,d) is a constant value defined by: 
 

0

1( ) ( )
d

x t x t dt
d

    (8)

 

In many cases when the function x(ωt) is periodic with period 2π/ω, the value d is taken as 
2π/ω and it leads to the averaged value of x(t) over one period: 
 

2 / 2

0 0

1( ) ( ) ( )
2 2

x t x t dt x d
     

 
     (9)

 

where t   is the new variable or “new time”. Averaged values play surely major roles in the past 

and at present, however, the definition (8) has some deficiencies, for example, if (8) or (9) are equal 
zero, the information about x(t) will be lost. For all harmonic functions cos(nωt) and sin(nωt), this 
observation is true. The dual approach to averaged values may be a possible way to suggest an 
alternative choice for the conventional average value, namely the constant coefficient 1/d in Eq. (8) 
can be extended to a weighted coefficient as a function h(t). Thus one gets so-called a weighted 
average value: 
 

0
( ( )) ( ) ( )

d
W x t h t x t dt   (10)

 

where the condition of normalization is satisfied: 
 

0
( ) 1

d
h t dt   (11)

 

There are three basic weighted coefficients: 
+ Basic optimistic weighted coefficients: They are increasing functions of t and denoted as O(t). 

Examples are t  and te , α, β > 0. 
+ Basic pessimistic weighted coefficients: They are decreasing functions of t and denoted as 

P(t). Examples are t  and te , α < 0, β > 0; or α > 0, β < 0. 
+ Neutral weighted coefficients: They are denoted as N(t) and are constants. 
An arbitrary weighted coefficient h(t) can be obtained as summation and/or product of basic 

weighted coefficients. Example is: 
 

1
( ) ( ) ( ) ( ) ( ) ( )

n

i i i i i i i
i

h t AO t B P t C O t P t N t


     (12)

 

where , ,i i iA B C  are constant. 

In this paper, we will consider only ω-periodic functions x(ωt). A special form of weighting coef-
ficient is introduced as: 
 

2 2( ) , 0s th t s te s    (13)
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where s is constant. 
 

 

Figure 1: Plot of 2( ) sth t s te . 

 
It is seen that the weighting coefficient (13), obtained as a product of the optimistic weighting 

coefficient t and the pessimistic weighting coefficient e–sωt
, has one maximal value at max 1 / ( )t s , 

and then decreases to zero as t (see Fig. 1). If one requires that the time tmax is equal to 
T/n=2π/(nω) where n is a natural number or zero, we get s=n/(2π). So the meaning of s can be 
specified as follows: for n = 1, s=1/(2π) the weighting coefficient (13) has maximal value after one 
period, and for n=4, s=4/(2π) the weighting coefficient (13) has maximal value after quarter peri-
od, and for n=0, s=0 the weighting coefficient (13) has maximal value at infinity. This case corre-
sponds to the conventional averaged value. 

Based on the weighting coefficient (13), a new weighted average value is proposed: 
 

2 2 2

0 0

( ) ( ) ( )s t sx t s te x t dt s e x d      
 

     (14)

 
which is a linear operator. From Laplace transformation, we get, for example: 
 

2 2
2 2 2 2

2 2 2
0 0

cos( ) cos( ) cos( )
( )

s t s s n
n t s te n t dt s e n d s

s n
      

 
  

  
   (15)

 

2 2 2 2
2 2 2

0 0

2sin( ) sin( ) sin( )
( )

s t s sn
n t s te n t dt s e n d s

s n
      

 
   

   (16)

 
As ω-periodic functions x(ωt) can be expanded into Fourier series, hence we can easy calculate 

(14) by using Eqs. (15) and (16). 
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Figure 2: Graphs of the function: (a) - cos(τ), (b) - h(τ)cos(τ), (c) – cos2(τ), and (d) - h(τ)cos2(τ). 

 
The proposed averaging operation can preserve the linear properties of the classical one. Fur-

thermore, it can conserve some terms which vanish in the classical averaging process. The effect of 
the weighted function to the averaging process can be recognized, for instance, when we observe the 
graphs of functions cos(τ), h(τ)cos(τ), cos2(τ), and h(τ)cos2(τ) in Fig. 2. The function h(τ) adjusts 
the value of the functions cos(τ) and cos2(τ), maintains partly the periodicities of the functions 
cos(τ) and cos2(τ), also condenses these function values in the first period, gives a weight in the first 
half of the first period, reduces the difference maximum and minimum values as well as regulates 
the functions during the period. These adjustments may make a positive effect on the averaging 
process. Therefore, the linearized equation replacement for the original one may be better in some 
senses. 

In this paper, for the sake of computation convenience, the parameter s is chosen equal to 2. 
 
3 SOME EXAMPLES AND DISCUSSIONS 

3.1 Example 1 

We consider the strongly nonlinear Duffing oscillator with third-, fifth-, and seventh-order nonlinear 
terms in the following form: 
 

3 5 7 0u u u u u        (17)
 

with the initial conditions: 
 

(0) , (0) 0u A u   (18)
 

The linearized equation of Eq. (17) is: 
 

(1 ) 0u k u    (19)
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The equation error between the two Eqs. (17) and (19) is: 
 

3 5 7( )e u u u u ku       (20)
 

The unknown coefficient k is determined from the mean square error criterion 
 

2 ( ) 0e u
k




  
 

it yields: 
 

4 6 8

2

u u u
k

u

   
  (21)

 

The periodic solution and the frequency of Eq. (19) are: 
 

( ) cos( ), 1u t A t k     (22)
 

Now, we calculate the averaging operators in Eq. (21) by using Eq. (14): 
 

4 2
2 2 2 2

2 2
2 8cos ( )

( 4)
s s

u A t A
s

 



   (23)

 

4 4 4
4 2 6 8

2 2 2
2

2
248 416 1536 28

( 4) ( 16)
cos ( ) s s s

s
t

s
A

s
u A     

 
   (24)

 
2 4 6 8 10 12

6 6 6 6
2 2 2 2 2 2

1658880 440064 282496 45712 3168 94cos ( )
( 4) ( 16) ( 36)
s s s s s s

u A t A
s s s

      
 

  
 (25) 

 
8 8 8

2 4 6 8 10 12 14 16
8

2 2 2 2 2 2 2 2

cos ( )

1516142592 1014806528 192596992 17013120 5945425920 768000 18256 216
( 4) ( 16) ( 36) ( 64)

u A t

s s s s s s s s
A

s s s s

 

       


   

 (26)

 

In case s = 2, substituting Eqs. (23), (24), (25) and (26) into Eq. (21), and then substituting 
Eq. (21) into Eq. (22) we get the approximate frequency and solution of this oscillator as follows: 
 

2 4 61 0.72 0.575 0.4836A A A        (27)
 

and 
 

 2 4 6( ) cos 1 0.72 0.575 0.4836u t A A A A t       (28) 
 

The frequencies ωpresent calculated from the proposed method, the frequencies ωMMA obtained by 
the Min-Max Approach (Yazdi et al., 2012) are compared with the exact ones ωe in Table 1 and in 
Figs. 3–4 for different values of the oscillation amplitude. It can be seen from Table 1 that the ap-
proximate frequencies ωpresent are closer to the exact frequencies ωe than the one ωMMA. 

The numerical results obtained by three different methods are illustrated in Figs. 3-4. As shown 
in Figs. 3 and 4, the validity of the solution technique is guaranteed even for stronger nonlinearities. 
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The approximate frequency is obtained by using the Min-Max Approach given by Yazdi et al. 
(Yazdi et al., 2012) as follows: 
 

2 4 63 5 351
4 8 64MMA A A A        (29)

 

The exact frequency of this oscillator as follows (Younesian et al., 2010): 
 

     

1

/2

2 2 2 4 4 2 4 6 60

2 4
1 1 11 1 sin 1 sin sin 1 sin sin sin
2 3 4

e

d

A A A

  
        


 
 
 
 

          

  (30)

 
α β γ A ωe ωMMA Error (%) ωPresent Error (%) 
1 1 1 0.1 1.0037732 1.0037744 0.000119 1.0036224 0.015020 
5 5 5 0.1 1.0187037 1.0187321 0.002795 1.0179833 0.070721 
5 5 5 0.5 1.4633113 1.4749702 0.796748 1.4551515 0.557625 
10 10 10 0.5 1.8060216 1.8305939 1.360579 1.7985916 0.411399 
10 10 10 1 4.3059814 4.4965264 4.425124 4.3342404 0.656274 
50 50 50 1 9.3991494 9.8536161 4.835189 9.4830481 0.892619 

Table 1: A comparison between the natural frequencies with various parameters for Example 1. 

 

 

Figure 3: A comparison between the approximate and exact solutions for Example 1, with α = 50, β = 100, γ = 100, A = 1. 

 

 

Figure 4: A comparison between the approximate and exact solutions for Example 1, with α = 10, β = 10, γ = 5, A = 0.5. 
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3.2 Example 2 

We consider the following nonlinear oscillator (He, 2002): 
 

2(1 ) 0, (0) , (0) 0u u u u A u       (31)
 

The linearized equation of Eq. (31) is: 
 

2 0u u   (32)
 

The equation error between the two Eqs. (31) and (32) is: 
 

2 2 2 2( ) (1 )e u u u u u u u u u u              (33) 
 
where ω2 is determined by using the mean-square criterion, as follows: 
 

2 3
2

2

u u u

u








 (34)

 
The periodic solution of linearized Eq. (32) is: 

 
( ) cos( )u t A t  (35)

 
Using the definition (14), we calculate averaging operators in Eq. (34): 

 

2 2 2 2 2 2 2

0

4 2
2 2 2 2

0
2 2

os cos ( )

2 8( )
( 4

s
)

co

s t

s

u A c t A s te t dt

s s
A s e d

s
A





  

  







 

 








 (36)

 

4 2 6 8

2 2 2

3 4 2 4 4 2 2 2 4

0

4 2 2 4 4 2

0
2

248 416 1536 28
( 4)

os cos ( )

co
( 16)

s ( )

s t

s s s s s

s s

u u A c t A s te t dt

A s e d A





    

    







   

 
   

 
 






 (37)

 
With s is chosen equal to 2, substituting Eqs. (36) and (37) into Eq. (34), we get: 

 
2 2 292161

12800
A     (38)

 
From Eq. (38), we get the approximate frequency of this oscillator: 
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2

1
1 0.72 A







 (39)

 
And thus, the approximate solution of this oscillator is: 

 

2

1( ) cos
1 0.72

u t A t
A

 
  

 
 (40)

 
To illustrate the remarkable accuracy of the obtained results, we compare the approximate pe-

riod 
 

22 1 0 .72T A    (41)
 
with the approximate period abtained by Modified Lindstedt-Poincare method (MLPM) (He, 2002) 
 

232 1
4MLPMT A    (42)

 
and the exact one (He, 1999) 
 

2 2
0

4
ln(1 ) ln(1 )

A

ex

du
T

A u


 


  
  (43)

 
In case 2A  , Eq. (43) reduces to (He, 2002): 

 

2
lim 2 2ex
A

T A





  (44)

 
So for large ε, it follows:  

 

exT A  (45)

 
It is obvious that the approximate periods (41) and (42) have the same feature as the exact one 

for 1  . And in case   , we have      
 

2 2lim 0.9403
2 0.72

ex

A

T A

T A


 

   (46)

 
and 
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2 2lim 0.9213
3

ex

A
MLPM

T A

T A


 

   (47)

 

 

Figure 5: Comparison of time history diagram of displacement between the Present, MLPM and Exact solutions at ε=5, A=1. 

 

 

Figure 6: Comparison of time history diagram of displacement between the Present, MLPM and Exact solutions at ε=1, A=1.5. 

 
Therefore, for any values of ε, it can be easily proved that the maximal relative error is less 

than 6.349% for this method and 8.54% for Modified Lindstedt-Poincare method on the whole solu-
tion domain (0   ). 

The numerical results obtained by three different methods are illustrated in Figs. 5-6 for differ-
ent values of ε and A. Numerical results validate the gain accuracy of this method.  
 
3.3 Example 3 

We consider the following nonlinear oscillator (Darvishia et al., 2008; Lim et al., 2006): 
 

3

2 0, (0) , (0) 0
1
u

u u A u
u

   


   (48)

 

The Eq. (48) can be written as follows: 
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2 3(1 ) 0u u u    (49)
 

The linearized equation of Eq. (49) is: 
 

2 0u u   (50)
 

The equation error between the two Eqs. (49) and (50) is: 
 

2 3 2 2 3 2( ) (1 )e u u u u u u u u u u            (51)
 

where ω2 is determined by using the mean-square criterion, as follows: 
 

3 4
2

2

uu u

u






 (52)

 

The periodic solution of linearized Eq. (50) is: 
 

( ) cos( )u t A t  (53)
 

Using the solution (53), we calculate averaging operators in Eq. (52), then substituting these 
operators into Eq. (52) and with note that parameter s is chosen equal to 2, we get the approximate 
frequency of this oscillator: 
 

2

2

0.72
1 0.72

A

A
 


 (54)

 

Thus, the approximate solution of this oscillator is: 
 

2

2

0.72( ) cos
1 0.72

A
u t A t

A

 
    

 (55)

 
A ωex ωPEM R. Error (%) ωPresent R. Error (%) 

0.01 0.00847 0.00866 2.24321 0.00848 0.11806 
0.05 0.04232 0.04326 2.22117 0.04239 0.16541 
0.1 0.08439 0.08628 2.23960 0.08455 0.18959 
0.5 0.38737 0.39736 2.57893 0.39057 0.82608 
1 0.63678 0.65465 2.80631 0.64699 1.60338 
5 0.96698 0.97435 0.76217 0.97333 0.65668 
10 0.99092 0.99339 0.24926 0.99313 0.22303 

Table 2: Comparison of the approximate frequencies with the exact frequencies. 

 
Comparison of the approximate frequencies ω in Eq. (54) and the approximate frequencies ob-

tained by Parameter-Expansion Method (PEM) ωPEM (Bayat et al., 2012) in Eq. (56) with exact 
frequencies ωex in Eq. (57) is tabulated in Table 2. Table 2 shows that the maximum relative error 
is less than 1.60338% for this method and 2.80631% for Parameter-Expansion Method.  

The approximate frequency obtained by PEM as follows (Bayat et al., 2012): 
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2

2

3
4 3

PEM

A

A
 


 (56)

 

 

Figure 7: Comparison of time history diagram of displacement between the Present, PEM and Exact solutions at A=0.1. 

 
The exact frequency of this oscillator is (Ganji et al., 2010): 

 

1/2

/2 2 2

2 2
2 20

2

2

cos ( )4
cos ( )cos ( ) ln 1

1

ex

A
d

A
A

A





 



 
 
 
 

       



 

(57) 

 

 

Figure 8: Comparison of time history diagram of displacement between the Present, PEM and Exact solutions at A=1. 

 
The accuracy of the solution obtained this method can be observed in Figs. 7-8 which represent 

comparisons of analytic solutions of u(t) based on time for this method and the one obtained by 
Parameter-Expansion Method as well as with the exact solution.  
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3.4 Example 4 

We consider the Duffing oscillator with discontinuity (He, 2004a):  
 

3 0u u u u     (58)
 

with the initial conditions: 
 

(0) , (0) 0u A u   (59)
 

The linearized equation of Eq. (58) is: 
 

0u u   (60)
 

The equation error between the two Eqs. (58) and (60) is: 
 

3( )e u u u u u     (61)
 

The unknown coefficient α is determined from the mean square error criterion 
 

2 ( ) 0e u




  

 

it follows that: 
 

4 2

2

u u u

u

 



  (62)

 

The priodic solution and the frequency of Eq. (60) are: 
 

( ) cos( ),u t A t     (63)
 

It is similar to Example 1, Example 2 and Example 3, we calculate averaging operators 
2u , 

2u u  and 
4u ; and then substituting these operators into Eq. (62), yields the approximate fre-

quency: 
 

20.8324 0.72A A     (64)
 

and the approximate solution: 
 

 2( ) cos 0.8324 0.72u t A A A t    (65)
 

Accuracy of the approach for this example is shown in Figs. 9–11. We performed a comparison 
between the results obtained by this method, the ones obtained by He (He, 2004a) using the Ho-
motopy Perturbation Method and outcomes achieved using Runge-Kutta 4th order for different val-
ues of A, β and ε. 
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Figs. 9-11, with the small, middle and large values of β and ε, show that the results obtained by 
the present method are more exact than the ones obtained by the homotopy perturbation method. 

We compare the approximate period obtained by this method T with the one obtained by the 
Homotopy Perturbation Method THPM . 

The approximate period of this oscillator is: 
 

2

2
0.8324 0.72

T
A A



 



 (66)

 

The approximate period obtained by the Homotopy Perturbation Method (He, 2004a) is: 
 

2

2
8 3

3 4

HPMT

A A



 





 
(67)

 

In case ε=0, these periods can be written as: 
 

1/2 1

2

2 7.405
0.72

T A
A

 


    (68)

 

and 
 

1/2 1

2

4 7.255
3

HPMT A
A

 


    (69)

 

The exact period can be readily obtained, which reads (Acton et al., 1985): 
 

1/ 2 17 .416exT A    (70)
 

Thus, the maximal relative error of THMP is less than 2.2% and the maximal relative error of T 
is less than 0.15% for all β>0. 
 

 

Figure 9: A comparison between the approximate and Runge–Kutta solutions for Example 3, β = 100, ε = 100, A = 5. 
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Figure 10: A comparison between the approximate and Runge–Kutta solutions for Example 3, β = 3, ε = 1, A = 0.6. 

 

 

Figure 11: A comparison between the approximate and Runge–Kutta solutions for Example 3, β = 3, ε = 1, A = 1. 

 
4 CONCLUSIONS 

In this paper, the equivalent linearization method with weighted averaging is applied to analyze the 
nonlinear oscillation systems. This method is proposed by Anh in 2015. The accuracy of this meth-
od is investigated by four nonlinear oscillation systems. The results show that this method is useful 
to obtain analytical solutions for oscillators and vibration problems with nonlinearities. And the 
results indicate that the solution procedure is easy and provide a remarkable accuracy. However, 
the value of the parameter s in the express of weighted coefficient h(t) should be chosen to give 
better and the best solution is still required further investigation. 
 
Acknowledgements 

This research is funded by Vietnam National Foundation for Science and Technology Development 
(NAFOSTED) under grant number “107.04-2015.36”. 
 
 



N.D. Anh et al. / The Equivalent Linearization Method with a Weighted Averaging for Analyzing of Nonlinear Vibrating Systems     1739 

Latin American Journal of Solids and Structures 14 (2017) 1723-1740 

References 

Alireza Khatami Jouybari and Mohamad Ramzani. Analytical methods for solving nonlinear motion of simple pendu-
lum attached to a rotating rigid frame. International Journal of Mechatronics, Electrical and Computer Technology. 
Vol. 4(10), Jan, 2014, pp. 11-22. 

Anh, N. D. Short Communication Dual approach to averaged values of functions: a form for weighting coefficient. 
Vietnam Journal of Mechanics.Vol. 37, No. 2 pp. 145 – 150 (2015). 

Anh, N.D., Di Paola, M. Some extensions of Gaussian equivalent linearization. Proceedings of the International Con-
ference on Nonlinear Stochastic Dynamics. pp. 5–16. Hanoi, Vietnam (1995). 

Anh, N.D., Schiehlen, W. New criterion for Gaussian equivalent linearization. Eur. J. Mech. A/Solids. 16, 1025–1039 
(1997). 

C.W. Lim, B.S. Wu, W.P. Sun. Short Communication: Higher accuracy analytical approximations to the Duffing-
harmonic oscillator. Journal of Sound and Vibration. 296 (2006) 1039–1045. 

Caughey, T. K. Equivalent linearization technique. J. Acoust. Soc. Am.35, 1706–1711 (1959). 

Davood Younesian, Hassan Askari, Zia Saadatnia, Mohammad KalamiYazdi. Frequency analysis of strongly nonline-
ar generalized Duffing oscillators using He's frequency-amplitude formulation and He's energy balance method. Com-
puters and Mathematics with Applications. 59 (2010) 3222-3228. 

Elishakoff I, Andriamasy L, Dolley M. Application and extension of the stochastic linearization by Anh and Di Pao-
la. Acta Mechanica. 204:89-98 (2009). 

Guo-hua Chen, Zhao-Ling Tao, Jin-Zhong Min. Notes on a conservative nonlinear oscillator. Computers and Mathe-
matics with Applications. 61 (2011) 2120–2122. 

H. Ebrahimi Khah, D. D. Ganji. A Study on the Motion of a Rigid Rod Rocking Back and Cubic-Quintic Duffing 
Oscillators by Using He’s Energy Balance Method. International Journal of Nonlinear Science. 10(2010) No.4,pp.447-
451. 

Iman Pakar, Mahmoud Bayat and Mahdi Bayat. Analytical evaluation of the nonlinear vibration of a solid circular 
sector object. International Journal of the Physical Sciences. 6(30), pp. 6861 - 6866, 2011. 

Iyengar, R. N. Higher order linearization in nonlinear random vibration. Int. J. Non-Linear Mech. 23, 385–391 
(1988). 

J.-H. He. Asymptotology by homotopy perturbation method. Applied Mathematics and Computation. 156 (2004b) 
591–596. 

J.H. He. Homotopy perturbation technique. Comput. Methods Appl. Mech. Engrg. 178 (1999) 257-262. 

J.R. Acton, P.T. Squire. Solving Equations with Physical Understanding, Adam Hilger Ltd, Bristol, 1985. 

Ji-Huan He. Comparison of homotopy perturbation method and homotopy analysis method. Applied Mathematics 
and Computation. 156 (2004c) 527–539. 

Ji-Huan He. Max-Min Approach to Nonlinear Oscillators. International Journal of Nonlinear Sciences and Numerical 
Simulation. 9(2),207-210,2008. 

Ji-Huan He. Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part I: expansion of a 
constant. International Journal of Non-Linear Mechanics. 37 (2002) 309-314. 

Ji-Huan He. The homotopy perturbation method for nonlinear oscillators with discontinuities. Applied Mathematics 
and Computation. 151 (2004a) 287–292. 

Krylov N, Bogoliubov N. Introduction to nonlinear mechanics. New York: Princenton University Press, 1943. 

M. Kalami Yazdi, H. Ahmadian, A. Mirzabeigy, and A. Yildirim. Dynamic Analysis of Vibrating Systems with Non-
linearities. Commun. Theor. Phys. 57 (2012) 183–187. 

M.O. Kayaa, S. Altay Demirbağ. Application of parameter expansion method to the generalized nonlinear disconti-
nuity equation. Chaos, Solitons and Fractals. 42 (2009) 1967–1973. 



1740     N.D. Anh et al. / The Equivalent Linearization Method with a Weighted Averaging for Analyzing of Nonlinear Vibrating Systems 

Latin American Journal of Solids and Structures 14 (2017) 1723-1740 

M.T. Darvishia, A. Karami, Byeong-Chun Shin. Application of He’s parameter-expansion method for oscillators with 
smooth odd nonlinearities. Physics Letters A. 372 (2008) 5381–5384. 

Mahmoud Bayat, Iman Pakar, Ganji Domairry. Recent developments of some asymptotic methods and their applica-
tions for nonlinear vibration equations in engineering problems: A review. Latin American Journal of Solids and 
Structures. 9(2012) 145-234. 

S. Ghafoori, M. Motevalli, M.G. Nejad, F. Shakeri, D.D. Ganji, M. Jalaal. Efficiency of differential transformation 
method for nonlinear oscillation:Comparison with HPM and VIM. Current Applied Physics. 11 (2011) 965-971. 

S.S. Ganji, D.D. Ganji, A.G. Davodi, S. Karimpour. Analytical solution to nonlinear oscillation system of the motion 
of a rigid rod rocking back using max–min approach. Applied Mathematical Modelling. 34 (2010) 2676–2684. 

S.S. Ganji·D.D. Ganji·Z.Z. Ganji·S. Karimpour. Periodic Solution for Strongly Nonlinear Vibration Systems by He’s 
Energy Balance Method. Acta Appl Math. (2009) 106: 79–92. 

Seher Durmaz, Sezgin Altay Demirbağ, Metin Orhan Kaya. Approximate solutions for nonlinear oscillation of a mass 
attached to a stretched elastic wire. Computers and Mathematics with Applications. 61 (2011) 578–585. 

Shahram Shahlaei-Far, Airton Nabarrete and José Manoel Balthazar. Nonlinear Vibrations of Cantilever Timoshenko 
Beams: A Homotopy Analysis. Latin American Journal of Solids and Structures. Vol. 13, Nr.10 (2016) 1866-1877. 

Turgut O¨ zis, Ahmet Yıldırım. A note on He’s homotopy perturbation method for van der Pol oscillator with very 
strong nonlinearity. Chaos, Solitons and Fractals. 34(2007) 989–991. 

Zhao-Ling Tao. Frequency–amplitude relationship of nonlinear oscillators by He’s parameter-expanding method. 
Chaos, Solitons and Fractals. 41 (2009) 642–645. 


