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Abstract 
In this paper, forming limit diagrams (FLDs) for an aluminum 
alloy are predicted through numerical simulations using various 
localized necking criteria. A comparative study is conducted for the 
FLDs determined by using the Lemaitre damage approach and 
those obtained with the modified Gurson–Tvergaard–Needleman 
(GTN) damage model. To this end, both damage models coupled 
with elasto-plasticity and accounting for plastic anisotropy have 
been implemented into the ABAQUS/Explicit software, through 
the user-defined subroutine VUMAT, within the framework of large 
plastic strains and a fully three-dimensional formulation. The re-
sulting constitutive frameworks are then combined with four local-
ized necking criteria to predict the limit strains for an AA6016-T4 
aluminum alloy. Three of these necking criteria are based on finite 
element (FE) simulations of the Nakazima deep drawing test with 
various specimen geometries, while the fourth criterion is based on 
bifurcation theory. The simulation results reveal that the limit 
strains predicted by local criteria, which are based on FE simula-
tions of the Nakazima test, are in good agreement with the experi-
ments for a number of strain paths, while those obtained with the 
bifurcation analysis provide an upper bound to the experimental 
FLD. 
 
Keywords 
GTN model, Lemaitre damage approach, plastic anisotropy, form-
ing limit diagram, localized necking criteria, bifurcation theory, 
Nakazima deep drawing test. 
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1 INTRODUCTION 

The good knowledge of the formability of metallic materials is very important for the successful 
forming of sheet metals. The concept of forming limit diagram (FLD), which was originally intro-
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duced by Keeler and Backofen (1963), and later by Goodwin (1968), has been the most widely used 
tool for the characterization of the formability of sheet metals. This strategy allows delimiting the 
limit strains for stretched sheet metals that should not be exceeded in order to ensure a good quali-
ty of the final product. The FLDs are determined using necking or fracture criteria, which may be 
based on sound theoretical developments (see, e.g., Hill, 1952; Stören and Rice, 1975; Yamamoto, 
1978; Abed-Meraim et al., 2014) or on finite element (FE) simulations (see, e.g., Zhang et al., 2011; 
Lumelskyy et al., 2012, Martínez-Donaire et al., 2014; Kami et al., 2015). These criteria are general-
ly combined with constitutive models for the prediction of limit strains in sheet metal forming. In 
order to describe the behavior of sheet metals in a realistic way, advanced elastic–plastic models 
coupled with damage have been developed in the literature, which can be classified into two main 
approaches, namely the micromechanics damage modeling (MDM) and the continuum damage me-
chanics (CDM). The MDM approach has been first developed by Gurson (1977), who considered 
the initiation of damage as the growth of micro-voids in porous materials surrounded by a rigid–
plastic matrix. This preliminary modeling approach has subsequently received a number of exten-
sions to obtain the so-called Gurson–Tvergaard–Needleman (GTN) damage model (see, e.g., 
Tvergaard, 1982a,1982b; Tvergaard and Needleman, 1984) in order to account for all damage 
mechanisms (i.e., nucleation, growth and coalescence of voids) as well as the hardening of the dense 
matrix. Concurrently, the CDM approach has been introduced by the works of Kachanov (1958), 
and extended later in the framework of irreversible thermodynamics (see, e.g., Lemaitre, 1992; 
Chaboche, 1999). In the CDM approach, the damage variable represents the surface density of mi-
crocracks across a given plane, and may be modeled as an isotropic scalar variable (see, e.g., Le-
maitre, 1985, 1992), or a tensor variable for anisotropic damage (see, e.g., Lemaitre et al., 2000; 
Brünig, 2003). 

In this work, both the MDM and the CDM approaches are adopted for the modeling of ductile 
damage in sheet metals. More specifically, a classical elastic–plastic model with anisotropic plastici-
ty is coupled with the Lemaitre damage theory, while the GTN model is combined with the Hill 
(1948) anisotropic yield surface to account for plastic anisotropy. The resulting models are imple-
mented into the finite element code ABAQUS/Explicit, through the user-defined subroutine 
VUMAT, within the framework of large plastic strains and a fully three-dimensional formulation. 
Each of these models is then used for the FE simulations of the Nakazima deep drawing test with 
different specimen geometries in order to predict FLDs. The latter are determined using four differ-
ent criteria for the onset of localized necking. Three of these criteria are based on the FE simula-
tions of the Nakazima deep drawing test, while the fourth one is based on bifurcation theory (see, 
e.g., Rudnicki and Rice, 1975; Stören and Rice, 1975; Rice, 1976). The numerical FLDs obtained 
with the current approach are compared with the experimental results taken from Kami et al. 
(2015). 
 
2 MODELING OF DUCTILE DAMAGE 

In this section, the constitutive equations associated with both the GTN damage model and the 
Lemaitre damage theory are described. Note that both modeling approaches are developed within 
the framework of large strains and three-dimensional formulation. 
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2.1 GTN Damage Model 

Gurson (1977) proposed a yield condition depending on the void volume fraction, which represents 
the density of micro-defects within the material. Subsequently, this model has been improved by 
Tvergaard (1981) and Tvergaard and Needleman (1984) in order to take into account the interac-
tion between voids. The resulting modifications led to the definition of the following plastic yield 
surface: 
 

 
2

* *2
GTN 1 2 3
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2

eq m

Y Y
σ σq f q q f       
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where ( ) 3 : 2eqσ  σ σ σ  is the macroscopic von Mises equivalent stress, 
1 :
3mσ  σ 1  is the hydro-

static stress, mσ σ σ 1  is the deviatoric part of the Cauchy stress σ , with 1  being the second-

order identity tensor. The isotropic hardening of the fully dense matrix is described by the variable 

 plY  , function of the equivalent plastic strain pl . The parameters 1q , 2q  and 3q , introduced by 

Tvergaard (1981, 1982a), account for void interaction effects. The void coalescence mechanism is 

considered through the introduction of an effective void volume fraction  *f f  (see, e.g., 

Tvergaard, 1982b; Tvergaard and Needleman, 1984). This function is defined as 
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where f  represents the actual void volume fraction, *
uf  is the ultimate value of *f , while Rf  is 

the void volume fraction at fracture. The void coalescence phenomenon occurs when the void vol-
ume fraction reaches the critical value crf . 

In order to account for the plastic anisotropy of the material, the GTN plastic yield surface (see 
Eq. (1)) is modified by introducing the Hill (1948) equivalent stress instead of the von Mises one 
(see, e.g., Chen and Butcher, 2013; Kami et al., 2015; Li et al., 2015). The corresponding expression 
of equivalent stress is given by 
 

( ) : :eqσ  σ σ M σ , (3)
 

where the fourth-order tensor M  contains the six anisotropy coefficients of the Hill (1948) quadrat-
ic yield criterion. It is worth noting that the original isotropic GTN model is recovered from the 
anisotropic one when the Lankford coefficients 0r , 45r  and 90r  are set to 1. 

Based on the principle of equivalence in plastic work rate (Gurson, 1977), the equivalent plastic 

strain rate pl  of the fully dense matrix material is obtained as follows: 
 

 
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where pD  is the macroscopic plastic strain rate tensor. The latter is defined using the classical 
normality rule with respect to the yield function, and is expressed as 
 

p
GTNλD V , (5)

 
where λ  is the plastic multiplier, and GTN GTNΦ  V σ  is the direction of the plastic flow. Iso-

tropic hardening for the dense matrix is assumed in this work, which is defined by the following 
expression: 
 

plY hε  , (6)
 

where  plh ε  is the plastic hardening modulus of the fully dense matrix material. 

The evolution of the void volume fraction is based on both nucleation of new voids and growth 
of existing voids (see, e.g., Chu and Needleman, 1980). The associated evolution equation is given 
by 
 

growth nucleationf f f    , (7) 

 
where 
 

  p
growth 1 :f f  D 1 . (8) 

 
For the void nucleation, the latter is assumed to be strain controlled in this work. The expres-

sion of the nucleation rate is given by 
 

pl
nucleation Nf A ε  , (9)

 

where NA  has been defined in Chu and Needleman (1980) by the following normal distribution law: 

 
2pl1exp
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where Nf  is the volume fraction of the inclusions that are likely to nucleate, Nε  is the mean 

equivalent plastic strain of nucleation, and Ns  is the corresponding standard deviation. 

The consistency condition for the GTN model, which ensures plastic loading, may be written in 
the following form: 
 

*GTN GTN GTNΦ : 0Y fV Y +δ V f = V σ   , (11)
 

where 
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In the co-rotational frame, which is associated with the Jaumann objective derivative, the Cau-
chy stress–strain relationship is obtained using the classical hypoelastic law defined by 
 

 p
GTN= : :epe  σ C D D C D , (14)

 

where eC  is the fourth-order elasticity tensor, GTN
epC  is the elastic–plastic tangent modulus for the 

GTN model, and D  is the strain rate tensor. 
By substituting Eqs. (4)–(9) into the consistency condition (11), the expression of the plastic 

multiplier λ  is obtained as follows: 
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The analytical expression of the elastic–plastic tangent modulus for the GTN model is obtained 
by substituting the expression of the plastic multiplier (Eq. (15)) into the hypoelastic relationship 
(14) 
 

   GTN GTN
GTN

GTN

: :
=

e e
ep e α

H




C V V C
C C , (17)

 

where 0α=  for elastic loading/unloading, and 1α=  for strict plastic loading.  
 
2.2 Lemaitre Damage Model 

The second approach to ductile damage considered in this work is based on the works of Lemaitre 
(1985, 1992), which was originally introduced by Kachanov (1958). In the literature, this approach 
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is referred to as Continuum Damage Mechanics (CDM) theory, which provides a phenomenological 
description for ductile damage, in contrast to the micromechanics-based Gurson damage model. In 
the CDM theory, the damage variable, which may be scalar isotropic or tensor-valued anisotropic, 
represents the surface density of microdefects. In the current work, the adopted elasto-plastic model 
coupled with ductile damage takes into account the initial anisotropy of the material, using the 
Hill’48 quadratic yield function, while hardening is taken to be isotropic. 

Based on the strain equivalence principle (Lemaitre and Chaboche, 1978), the material behavior 
is affected by continuum damage through the introduction of an effective stress tensor σ  given by 
 

=
1 d
σσ , (18)

 

where the scalar damage variable d  varies between 0 to 1, with 0d =  for an undamaged material, 
and 1d =  for a fully damaged material. 

The plastic yield function F  is written in the following form: 
 

 F = 0eqσ Y σ , (19)
 

where   : :eqσ  σ σ M σ    is the Hill’48 effective equivalent stress, and σ  is the deviatoric part of 

the effective stress. 
The plastic flow rule is given by the normality law, which defines the plastic strain rate tensor 

pD  as 
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With a special choice of co-rotational frame, which is associated with the Jaumann objective de-
rivative, the constitutive relation is written in the following form: 
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The evolution law for the damage variable is expressed by the following equation: 
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where eY  is the strain energy density release rate (see, e.g., Lemaitre, 1992; Lemaitre et al., 2000). 
Its expression is given, in the case of linear isotropic elasticity, by the following relationship: 
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where 2
3 :
2

J   σ σ   is the equivalent effective stress in the sense of von Mises, 
1 :
3

Hσ  σ 1  is the 

hydrostatic effective stress, while E  and ν  denote, respectively, the Young modulus and the Pois-
son ratio. 

It is easy to show that the expression of the Cauchy stress rate tensor given by Eq. (22) can be 
rewritten in the form 
 

CDM= :epσ C D , (25)
 

where CDM
epC  is the elastic–plastic tangent modulus for the Lemaitre damage model. 

The consistency condition F = 0  allows the determination of the plastic multiplier λ , which 
writes 
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λ
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where  
 

CDM CDM CDM: :e YH H= V C V , (27)
 

where YH  is the scalar isotropic hardening modulus, which governs the evolution of isotropic hard-

ening (i.e., YY H λ  ). By substituting the expression of the plastic multiplier (Eq. (26)) into the 

hypoelastic relationship (22), the elastic‒plastic tangent modulus CDM
epC  for the Lemaitre damage 

model is given by 
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where 1α=  for strict plastic loading and 0  otherwise. 
It is worth noting that the tangent moduli for both the GTN damage model and the Lemaitre 

damage model (i.e., Eqs. (17) and (28), respectively) are only required for the bifurcation analysis, 
which will be detailed in Section 5. 
 
2.3 Numerical Implementation of the Constitutive Equations 

In this work, both the modified anisotropic GTN model and the Lemaitre damage model are im-
plemented into the commercial finite element code ABAQUS/Explicit via the user-defined material 
subroutine VUMAT. The same explicit time integration scheme is used for both damage models, 
which is based on the fourth-order Runge–Kutta method. This algorithm allows updating the stress 
state and all of the internal state variables at the end of the loading increment starting from a 
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known state at the beginning of the loading increment. This time integration scheme has the ad-
vantage of being straightforward and robust, since no iterative procedure is needed, unlike implicit 
time integration schemes (see, e.g., Aravas, 1987). However, the time increment must be kept small 
enough to ensure accuracy and stability (see, e.g., Li and Nemat-Nasser, 1993; Kojic, 2002). 

It can be shown that the evolution equations for both the GTN damage model and the Le-
maitre damage model can be written in the following compact form of general differential equation: 
 

  uu h u , (29)

 
where u  encompasses all of the internal variables and stress state, while vector  uh u  includes all 

evolution laws for each damage model. The above condensed differential equation is then integrated 
over each loading increment, using the forward fourth-order Runge–Kutta time integration scheme. 
The resulting algorithms for both damage models are implemented into the finite element code 
ABAQUS/Explicit, via VUMAT user-defined material subroutines, within the framework of large 
strains and a fully three-dimensional formulation. 
 
3 DETERMINATION OF MATERIAL PARAMETERS 

The material considered in this work is the AA6016-T4 aluminum sheet (see Kami et al., 2015). For 
this material, the experimental FLD and the material parameters corresponding to the anisotropic 
GTN damage model have been determined by Kami et al. (2015). In the latter reference, the Swift 
isotropic hardening law has been considered, which is defined by the following expression: 
 

 pl
0

n
Y k ε ε  , (30)

 
where k , 0ε  and n  are the hardening parameters. The associated elastic–plastic parameters are 

summarized in Table 1. 
 

Material E  (MPa) ν  k  (MPa) 0ε  n  

AA6016-T4 70,000 0.33 525.77 0.011252 0.2704 

Table 1: Elastic properties and Swift’s hardening parameters. 

 
As mentioned in Section 2.1, the GTN yield surface has been modified to account for the planar 

plastic anisotropy. The Hill’48 anisotropy coefficients are determined using the Lankford coefficients 

0r , 45r  and 90r , which were identified by Kami et al. (2015) on the basis of three uniaxial tensile 

tests performed along three sheet orientations, namely 0 , 45  and 90  with respect to the rolling 
direction. The corresponding r -values are reported in Table 2. For the GTN damage parameters, 
the latter were identified in Kami et al. (2015) using an inverse identification procedure that com-
bines the response surface methodology and the simulation of a uniaxial tensile test. The associated 
parameters are listed in Table 3. 
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Material 0r  45r  90r  

AA6016-T4 0.5529 0.4091 0.5497 

Table 2: r -values for the AA6016-T4 aluminum sheet. 

 
 

Material 0f  NS  Nε  Nf  crf  Rf  1q  2q  3q  

AA6016-T4 0.00035 0.10 0.30 0.05 0.05 0.15 1.5 1.0 2.25 

Table 3: Damage parameters for the GTN damage model. 

 
For the Lemaitre damage model, the modeling of the material hardening and the description of 

the plastic anisotropy are taken the same as in the case of the GTN damage model. In the current 
contribution, the Lemaitre damage parameters are calibrated using an inverse identification proce-
dure along with the experimental uniaxial tensile test for the AA6016-T4 aluminum sheet. This 
inverse identification strategy is based on least-squares minimization of the difference between the 
experimental and numerical load–displacement response for a uniaxial tensile test. The geometric 
dimensions and the boundary conditions for the uniaxial tensile specimen are all specified in Figure 
1 (see Kami et al., 2014). The specimen is discretized using the eight-node reduced integration solid 
finite element (C3D8R) from ABAQUS, with an initial mesh size of 0.5 mm. The identified values 
of the Lemaitre damage model are summarized in Table 4. 
 

80 mm

20 mmThickness 1 mm

 

Figure 1: Geometry and boundary conditions for the uniaxial tensile specimen. 

 
 

Material β  S  s  e
iY  

AA6016-T4 12 4.0 1.3 0.0 

Table 4: Damage parameters for the Lemaitre damage model. 

 
In order to better emphasize the identification results as well as the performance of the numeri-

cal implementation of both damage models, Figure 2 compares the simulated load–displacement 
responses, obtained using both damage models, with the experimental counterpart given in Kami et 
al. (2015). This figure clearly shows that the simulated responses for both damage models are in 
very good agreement with the experimental curve and, in particular, demonstrates the ability of the 
implemented models to reproduce the sudden load drop that precedes the final fracture. 
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Figure 2: Tensile load–displacement responses simulated with the GTN and the Lemaitre  

damage models, along with the experimental curve taken from Kami et al. (2015). 

 
 
4 FINITE ELEMENT MODEL 

4.1 Nakazima Deep Drawing Test 

The implemented GTN and Lemaitre damage models, with their associated material parameters, 
are used in the simulation of the Nakazima deep drawing test (see Figure 3) in order to determine 
the FLD of the AA6016-T4 aluminum sheet. The geometric parameters for the Nakazima deep 
drawing process are summarized in Table 5. According to the standard procedure described in ISO 
12004-2 (2008), seven specimens with different geometries are considered in the simulations. Each 
specimen allows for the reproduction of a particular strain path, which is typically encountered in 
sheet metal forming processes. The general geometry for a given specimen width is illustrated in 
Figure 4. The seven specimens are designed by varying the width parameter W from 30 mm to 185 
mm, which leads to different strain paths in the central part of the specimens, ranging from uniaxial 
tension to balanced biaxial tension. 
 
 

Punch

Die

Specimen

Holder

 

Figure 3: FE representation of the Nakazima deep drawing test with sheet specimen of 70 mm width. 
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Punch diameter 100 mm 
Die opening diameter 110 mm 

Die profile radius 10 mm 
Initial sheet thickness 1 mm 

Table 5: Geometric parameters for the Nakazima deep drawing test. 

 

+

+

25 mm

R25 mm

W  

Figure 4: Specimen geometry and dimensions used in the Nakazima deep drawing test. 

 
During the Nakazima deep drawing simulation, each specimen is clamped all around its circum-

ferential edges so that the material flow is prevented. The Coulomb friction coefficient is taken 
equal to 0.03 for the contact between the punch and the specimen, while it is taken equal to 0.1 for 
the contact between the die, the holder and the specimen (see Kami et al., 2015). In addition, a 
holding force of 100 kN is applied during the forming process. The forming tools are modeled as 
discrete rigid bodies, while the blank is modeled with the eight-node three-dimensional continuum 
finite element with reduced integration (C3D8R), which is available in the ABAQUS/Explicit soft-
ware. Note that particular attention has been paid to optimizing the mesh of the blank, as illustrat-
ed in Figure 5. Indeed, the central part of the blank, which is subjected to large plastic strains, is 
discretized with a fine mesh, while the rest of the blank is discretized with a coarse mesh. Moreover, 
in order to save computational time, the built-in ABAQUS mass scaling technique is used in what 
follows, with a target time step of 10-6 s and time period of 1 s. These numerical parameters, which 
lead to reasonable computation times, are selected so that the simulation of the Nakazima deep 
drawing test is achieved under conditions that are quite similar to those of a quasi-static analysis. 
 

 

Figure 5: FE mesh used for the specimen of 70 mm width. 
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4.2 Mesh Sensitivity Analysis 

As already pointed out by several authors in the literature (see, e.g., Tvergaard and Needleman, 
1984; Besson et al., 2001; Peerlings et al., 2001), it is nowadays well known that the mesh size has 
an important influence on the occurrence of strain localization, and particularly for behavior models 
exhibiting damage-induced softening. In order to analyze the effect of the mesh size on the numeri-
cal results, several meshes are used in the simulation of the Nakazima deep drawing test with the 
specimen of 30 mm width. 

First, the effect of the number of elements in the thickness direction is analyzed by considering, 
successively, two, three, four and five element layers. Note that for these four different through-
thickness FE discretizations, the same in-plane mesh discretization is used, which consists of 
0.5×0.5 mm2 in the central part of the specimen. Figures 6 and 7 show the effect of the number of 
elements in the thickness direction on the evolution of the thickness strain and the punch force–
displacement response, respectively. These figures reveal that the number of element layers in the 
thickness direction has a very small effect on the evolution of the thickness strain, while it has a 
relatively more noticeable effect on the maximum punch force.  

Then, the impact of the in-plane mesh size on the evolution of the thickness strain and the 
punch force–displacement response is investigated. To this end, the Nakazima deep drawing test is 
performed again for the specimen of 30 mm width, using four different in-plane meshes for the cen-
tral part of the specimen. These in-plane FE discretizations represent coarse, intermediate, fine and 
very fine meshes, which correspond to mesh sizes of 1×1 mm2, 0.75×0.75 mm2, 0.5×0.5 mm2 and 
0.25×0.25 mm2, respectively. Note that, for these four different in-plane mesh discretizations, four 
element layers in the thickness direction are used. Figures 8 and 9 show the simulated results that 
are obtained with the four in-plane mesh sizes. Similar to the effect of the number of elements 
through the thickness, the in-plane mesh size has a small effect on the evolution of the thickness 
strain, while it has a relatively more perceptible effect on the maximum punch force and on the 
final punch stroke (i.e., after the sudden load drop). 
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Figure 6: Effect of the number of elements in the thickness direction on the evolution  

of the thickness strain during the Nakazima test with the specimen of 30 mm width. 
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Figure 7: Effect of the number of elements in the thickness direction on the punch  

force-displacement response for the Nakazima test with the specimen of 30 mm width. 

 
In conclusion, the above mesh sensitivity analysis suggests using the fine in-plane mesh (i.e., 

0.5×0.5 mm2) with four element layers through the thickness in the remaining simulations of the 
current study. Indeed, this choice appears as a pragmatic compromise in terms of accurate descrip-
tion of the various nonlinear phenomena and reasonable computational times. 
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Figure 8: Effect of the in-plane mesh size on the evolution of the thickness  

strain during the Nakazima test with the specimen of 30 mm width. 
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Figure 9: Effect of the in-plane mesh size on the punch force–displacement  

response for the Nakazima test with the specimen of 30 mm width. 
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5 LOCALIZED NECKING CRITERIA 

In this section, four necking criteria are presented, which will be subsequently used for the predic-
tion of strain localization in sheet metals. Three of these criteria are based on the FE analysis of 
deep drawing process, while the fourth one is based on bifurcation theory. Note that, none of these 
criteria requires the introduction of additional user-defined parameters, in contrast to the Marciniak 
and Kuczynski (1967) criterion. 
 
5.1 Criterion of Maximum Second Time Derivative of Thickness Strain 

This criterion is based on the analysis of the evolution of thickness strain during the Nakazima deep 
drawing test. More specifically, the onset of strain localization is associated with the maximum of 
the thickness strain acceleration, which is obtained by computing the second time derivative of 
thickness strain in the localized zone (see, e.g., Situ et al., 2006, 2007, 2011; Zhang et al., 2011; Lu-
melskyy et al., 2012; Martínez-Donaire et al., 2014). After the maximum in the second time deriva-
tive of thickness strain (i.e., thickness strain acceleration) is reached, the localized thinning in the 
sheet proceeds gradually until the onset of fracture. Based on this numerical criterion, Figure 10 
shows an illustration of the onset of localized necking during the simulation of the Nakazima deep 
drawing test with the specimen of 30 mm width. 
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Figure 10: Prediction of localized necking based on the maximum of the 2nd time derivative of thickness strain. 

 
5.2 Criterion Based on the Ratio of Equivalent Plastic Strain Increment 

In order to determine the onset of localized necking, a criterion based on the ratio of equivalent 
plastic strain increment is used as numerical necking criterion (see, e.g., Narasimhan and Wagoner, 
1991; Chung et al., 2014). This ratio of equivalent plastic strain increment is associated with two 
elements: a critical element and its neighboring element. More specifically, the critical element (re-
ferred to here as element B) is preliminarily identified during the Nakazima test, which is generally 
located in the central part of the specimen that is in contact with the punch. Then, the neighboring 
element is also identified (referred to here as element A), which is located five elements away from 
the critical element along the rolling direction. With elements A and B thus identified, the onset of 
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localized necking is detected when the ratio of equivalent plastic strain increment in element B to 
that in element A becomes larger than 10, as illustrated in Figure 11. 
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Figure 11: Prediction of localized necking based on the ratio of equivalent plastic strain increment. 

 
5.3 Maximum Punch Force Criterion 

Several theoretical criteria based on the maximum force principle have been developed in the litera-
ture for the prediction of diffuse or localized necking in sheet metals (see, e.g., Swift, 1952; Hora et 
al., 1996; Mattiasson et al., 2006). Based on these earlier contributions, the maximum in the punch 
force–displacement response during the simulation of the Nakazima test is used here as numerical 
criterion for the prediction of localized necking (see the illustration in Figure 12). 
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Figure 12: Prediction of localized necking based on the maximum in the punch force–displacement response. 

 
5.4 Loss of Ellipticity Criterion 

In contrast to the three numerical criteria presented above, a more theoretically-based criterion is 
proposed here for the prediction of localized necking in sheet metals, which is based on bifurcation 
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theory. This criterion has been established by Rice and co-workers (see, e.g., Rudnicki and Rice, 
1975; Stören and Rice, 1975; Rice, 1976) to predict strain localization in the form of an infinite 
band in a solid otherwise homogeneous. This approach corresponds to the loss of ellipticity (LE) of 
the partial differential equations governing the associated boundary value problem. The condition of 
localization, which may be derived from the Hadamard compatibility condition and the static equi-
librium equation, is given by the following relation: 
 

   det det 0   A n L n , (31)
 

where A  denotes the so-called acoustic tensor, n  is the normal to the localization band, while L  
represents the tangent modulus that relates the nominal stress rate tensor to the velocity gradient. 
The expression of the latter is given by the following relationship (see, e.g., Haddag et al., 2009; 
Mansouri et al., 2014): 
 

1 2 3
ep   L C L L L , (32)

 

where epC  is the analytical tangent modulus derived from the constitutive equations, which corre-

sponds to GTN
epC  for the GTN damage model, and CDM

epC  for the Lemaitre damage model (see Eqs. 

(17) and (28), respectively). The fourth-order tensors 1L , 2L  and 3L , which only depend on Cau-

chy stress components, result from the large strain framework. Their detailed expressions can be 
found in Haddag et al. (2009). 

The loss of ellipticity condition given by Eq. (31) is numerically assessed by computing the de-
terminant of the acoustic tensor A  for each loading increment. The numerical detection of strain 
localization is achieved when the minimum of the determinant of the acoustic tensor A , over all 
possible orientations for the normal n  to the localization band, becomes non-positive, as illustrated 
in Figure 13. 
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Figure 13: Prediction of localized necking based on the loss of ellipticity criterion. 

 
It is worth noting that the LE criterion is based on a three-dimensional bifurcation analysis 

from a homogeneous pre-localization state. This state of uniform deformation is achieved by consid-
ering a single finite element with one integration point, which is subjected to various linear strain 
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paths that are typically applied to sheet metals under in-plane biaxial stretching (i.e., ranging from 
uniaxial tension to balanced biaxial tension). 
 
6 PREDICTION OF FLDS AND COMPARISON WITH EXPERIMENTS 

The necking criteria presented in the previous section are combined here with both the GTN and 
the Lemaitre damage models to predict the FLDs of the AA6016-T4 aluminum sheet. Figure 14 
shows a comparison of the FLDs predicted by the four necking criteria, along with the numerical 
and experimental FLDs provided by Kami et al. (2015). It is worth noting that the numerical FLD 
given in Kami et al. (2015) is determined on the basis of another specific procedure, which is very 
different from the numerical methods and criteria adopted in the current work. Indeed, in Kami et 
al.’s (2015) numerical FLD determination, which closely mimics their experimental FLD determina-
tion, the standard specification of the ISO 12004-2 (2008) is followed, where the numerical strain 
fields and their experimental counterparts are analyzed by the ARAMIS software to determine the 
numerical and experimental FLDs. 

On the whole, the FLDs predicted by the two damage models are close to each other, and are 
also comparable, in terms of order of magnitude, to the numerical and experimental FLDs provided 
by Kami et al. (2015). More specifically, the limit strains obtained with the criterion based on the 
maximum of the 2nd time derivative of thickness strain are in good agreement with the experi-
mental results in the left-hand side of the FLD (see Figure 14a), while these limit strains are well 
predicted by the criterion of equivalent plastic strain increment ratio in the neighborhood of the 
plane-strain tension path (see Figure 14b). However, for the two above-discussed criteria, the pre-
dicted limit strains are overall underestimated in the right-hand side of the FLD, which is probably 
due to the material parameter identification and, particularly, to the identification of damage pa-
rameters. Indeed, the latter are identified using only one type of mechanical tests (i.e., a uniaxial 
tension test) for both the GTN and the Lemaitre damage models, which results in non-negligible 
error in the right-hand side of the FLD. It is now widely recognized that the accurate calibration of 
material parameters requires an identification procedure that is based on various types of mechani-
cal tests (i.e., standard uniaxial tension test, plane-strain tension test, Bulge test …), and/or on 
heterogeneous mechanical tests. Such advanced identification techniques are likely to improve the 
reliability of the material parameters for various strain paths and, in turn, the accuracy of the cor-
responding FLD predictions. For the maximum punch force criterion, the predicted FLDs are mark-
edly different from those obtained by the two previous necking criteria, and even the shape of the 
predicted FLDs does not seem to be usual (see Figure 14c). Indeed, the punch force represents some 
averaged information during the forming process, and its use to detect local phenomena, such as 
localized necking, does not seem to be suitable. For the LE criterion, the FLDs predicted by the two 
damage models are overestimated for almost all strain paths, except in the extreme right-hand side 
of the FLD, where the limit strains are rather underestimated. It is worth noting that the LE crite-
rion is based on a three-dimensional bifurcation analysis from a homogeneous pre-localization state, 
with the only consideration of material instability, without taking into account any structural (ge-
ometric) effects. Consequently, the FLDs predicted by the LE criterion are expected to set an upper 
bound to the experimental ones, which is observed here indeed for most strain paths. 
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Figure 14: Prediction of FLDs using the four localized necking criteria along with the FLDs provided  

by Kami et al. (2015): (a) maximum of the 2nd time derivative of thickness strain, (b) ratio of  

equivalent plastic strain increment, (c) maximum of punch force, and (d) loss of ellipticity. 

 
7 CONCLUSIONS 

In this work, four different necking criteria have been proposed and compared for the prediction of 
FLDs for the AA6016-T4 aluminum alloy. For the material constitutive modeling, two approaches 
to ductile damage have also been considered: the Lemaitre continuum damage theory and the GTN 
damage description, which was extended to the Hill’48 quadratic yield surface to account for the 
plastic anisotropy of the material. Both damage models have been numerically implemented into 
the commercial finite element code ABAQUS/Explicit via the user-defined material subroutine 
VUMAT. The main contributions of the current study and associated conclusions may be summa-
rized as follows: 
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 The Lemaitre damage parameters have been identified using an inverse identification proce-
dure based on FE fitting of an experimental load–displacement response of a standard tensile 
test; 

 Based on FE simulations of the Nakazima deep drawing test and four different localized neck-
ing criteria, numerical FLDs have been determined for the AA6016-T4 aluminum sheet and 
compared with the experimental FLD. The obtained results suggest that two of the local cri-
teria (i.e., those based on the maximum of the 2nd time derivative of thickness strain, and the 
ratio of equivalent plastic strain increment) yield results that are in good agreement with the 
experiments in the left-hand side of the FLD and in the neighborhood of the plane-strain ten-
sion path, while the global criterion based on the maximum punch force does not seem to be 
suitable to the prediction of localized necking; 

 The predictions using the LE criterion provide upper bounds to the classical experimental 
FLD, which is consistent with the theoretical foundations on which the bifurcation approach 
is based. On the other hand, this bifurcation approach could be advantageously used to de-
sign new materials with improved ductility, by classifying them in terms of formability limits; 

 The accuracy of the numerically predicted FLDs with respect to experiments may be im-
proved by considering various mechanical tests in the identification procedure. Indeed, a 
number of simple and complex strain paths should be included in the identification procedure 
in order to provide reliable material parameters, thus improving the accuracy of the predicted 
FLDs. 
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