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Abstract 
This paper investigates the effect of different parameters on stress 
analysis of infinite orthotropic plates with central polygonal cutout 
using gray wolf optimization algorithm. The important features of 
gray wolf algorithm include flexibility, simplicity, short solution 
time and ability to avoid local optimums. The effective parameters 
on stress distribution around cutouts include load angle, curvature 
radius of the corner of the cutout, cutout orientation and fiber 
angle for orthotropic materials. The used analytical solution is the 
expansion of Lekhnitskii’s solution method. The effect of the 
aforementioned parameters on the stress distribution around trian-
gular, square, pentagonal and hexagonal cutout is examined. The 
results showed that these parameters have significant effects on 
stress distribution around the cutouts and the structural load-
bearing capacity will increase without changing the type of material 
if the parameters are correctly chosen. 
 
Keywords 
Orthotropic Plates, Grey Wolf Algorithm, Polygonal Cut-out,  
Analytical Solution. 
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1 INTRODUCTION 

In engineering structures, different types of cut-out are made to satisfy some service requirements. 
These cut-out result in the strength degradation of structures and may lead to their failure. It is 
observed that more failures in aircraft structures have happened in fastened joints having high 
stress concentrations. In order to predict the behaviour of the structures with such cut-out, it is 
essential to study the effect of cutout geometry and loading conditions on the stress distribution 
around the cut-out.In fact, cut-out reduce the weight of structures which is desirable for designers. 
Cut-out are mostly created in plates to reduce the structural weight or to create points of entry and 
exit. These changes in the plate geometry lead to severe local stresses that is called stress concentra-
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tion. Hence, knowing the stress concentration factor is crucial in achieving optimal design. The 
study of the stress distribution in perforated plates was started by Muskhelishvili (1962), Savin 
(1970) and Lekhnitskii (1969). They used conformal mappings and complex variable method for 
stress analysis of isotropic and anisotropic plates containing a central cutout. The complex variable 
method for solving boundary value problems in two- dimensional elasticity was firstly applied by 
Muskhelishvili (1962) for isotropic plates. Shortly after and applying a similar method, Savin (1970) 
performed some investigations on infinite isotropic plates with different cut-out and anisotropic 
plates with only elliptical and circular cut-out. Lekhnitskii (1969) used an analytical solution to 
investigate the boundary value problems by complex variable method based on Kolosov-
Muskhelishvili formulas for anisotropic plates with circular and elliptical cutout. An accumulation of 
all previous researches on plates containing cut-out was conducted by Sternberg (1958), Neuber 
(1968) , Peterson (1974) and Pilkey (1997). Theocaris and Petrou (1986) used Schwarz–Christoffel 
transformation to evaluate the stress concentration factor for an infinite plate with central triangu-
lar cut-out. Daoust and Hoa (1991) analyzed the triangular cut-out in infinite isotropic and aniso-
tropic plate under uniaxial loading. A part from the equilateral triangle, they investigated other 
triangular cut-out with different aspect ratios. They also studied the effect of the curvature of cut-
out corner on the stress distribution around the triangular cut-out. Asmar and Jabbour  (2007)  also 
applied the same theory to investigate the stress distribution around the cut-out in an anisotropic 
plate with a quasi-square cut-out and subjected to uniaxial loading. But this research studied only 
the effect of bluntness and cut-out  orientation for very special cases. Rezaeepazhand and Jafari  
(2010) used Lekhnitskii’s theory to study the stress analysis of composite plates with quasi-square 
cut-out subjected to uniaxial tension. Batista (2011) investigated stress distribution around polygo-
nal cut-out with rather complex geometries. He used the expansion of Muskhelishvili’s complex var-
iable method and Schwarz-Christoffel mapping function. Ukadgaonker and Rao (1997) presented 
solutions for stress distribution around triangular cutout with blunt corners in composite plates. 
Wescott et al. (2004)) investigated the stress analysis of near optimal surface notches in 3D plates 
using two-dimensional (2D) optimal notch shapes. Sharma (2014) presented a general solution to 
calculate stress distribution around polygonal cut-out in infinite isotropic plates subjected to biaxial 
loading. He also studied the effect of cutout geometry and the pattern of loading on the stress anal-
ysis of perforated plates. Kazberuk et al. (2016) studied stress distribution at sharp and rounded V-
notches in quasi-orthotropic plane. Jafari and Ardalani (2016) also studied the stress distribution 
around several polygonal cut-out in finite isotropic plates. They investigated the effects of cut-out  
orientation and the bluntness of the polygonal  cut-out on the stress concentration. 

One of the main concerns of industrial designers is the choice of the optimal values of design 
variables. The selection of an appropriate method among different methods of optimization depends 
on the type of problem. Recently, number of researchers attempted to apply them in to different 
problems in diverse fields such as particle swarm optimization (PSO), ant colony optimization 
(ACO), genetic algorithm (GA) and etc. to design of composite structures. These algorithms are SI-
based algorithms. The successful application of these algorithms in science and industry evidences 
the merits of SI-based techniques in practice. Vigdergauz (2001) investigated the effective properties 
of an elastic perforated plate by using genetic algorithm. Barbosa et al. (2014) designed a composite 
lattice structure under torsion and investigated the effects of many materials and geometric parame-
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ters on the optimized mechanical behavior of structures. PSO technique was employed in order to 
maximize the torsion constant of the structures in this work. Chen et al. (2013) developed a method 
for optimum designing (based on reliability) of a composite structure based on the combination of 
PSO and FEA methods. Muc and Gurba (2001) used a combination of genetic algorithm and finite 
element analysis in optimization of composite structures. Kradinov et al. (2007) showed the applica-
tion of genetic algorithm in the optimal design of bolted composite lap joints. Moreover, Suresh et 
al. (2007) investigated the particle swarm optimization approach for multi-objective composite box-
beam design. Kathiravan and Ganguli (2007) showed the application of particle swarm optimization 
and gradient method in the strength design of composite beams. Jafari and Moussavian (2016) in-
vestigated the optimum design of laminated composite plates containing a quasi-square cut-out. 
They used swarm intelligence algorithms in this research. Mirjalili et al. (2014) have recently tested 
grey wolf optimizer (GWO) on uni-modal, multi- modal, fixed-dimension multimodal, and compo-
site functions. It is efficient in terms of exploration, exploitation, local optimal avoidance, and con-
vergence. It has been shown that the grey wolf optimizer algorithm is able to provide very competi-
tive results compared to other well-known meta-heuristics. The grey wolf optimizer algorithm has 
been successfully applied to three classical engineering design problems and real optical engineering 
(Mirjalili et al. 2014). Song et al. (2014) have successfully applied GWO for solving combined eco-
nomic emission dispatch problems. Emary et al. (2015) have used GWO for feature subset selection. 
Mirjalili (2015) has investigated the effectiveness of GWO in training multi-layer perceptions 
(MLP). Saremi et al. (2015) proposed the use of evolutionary population dynamics (EPD) in the 
grey wolf optimizer algorithm to further enhance it is performance. Song et al. (2015) have success-
fully applied GWO for parameter estimation in surface waves. In this study, relying on Lekhnitskii’s 
analytical solution and expanding this solution to the polygonal cut-out in orthotropic plates, the 
comprehensive stress analysis of perforated orthotropic plates is conducted. In this research design 
variables are load angle, bluntness, cutout orientation and fiber angle. It is tried to introduce the 
optimum values of the mentioned parameters for uniaxial tensile loading in order to obtain the min-
imum normalized stress. It is worth mentioning that the normalized stress value around the cutout 
is considered as cost function (C.F.) for grey wolf optimization algorithm. The main goal of this 
paper is to obtain the optimal design variables which minimize the maximum stress around polygo-
nal cutout calculated by analytical method based on complex variable method. The optimal values 
of these parameters are determined using GWO. 
 
2 THEORY ANALYSIS 

The problem to be investigated in this article is the perforated plate containing polygonal cutout. It 
is assumed that an infinite orthotropic plate with a centrally cut-out is subjected to a uniformly 
distributed tensile load at a large distance from the cut-out as shown in Figure 1. The cut-out size 
is small enough with respect to the plate dimensions. Therefore, its effect will be negligible at a 
distance of a few diameters from its edge. The load is applied at angle with respect to x-axis (). 
The major axis of the cut-out is directed at angle with respect to x-axis (). As shown in Figure 1, 
is fiber angle for composite plates. The cost function is to obtain the optimal design variables which 
minimize the maximum stress around different cut-out. As shown in Figure 1, design variables are 
load angle (),cut-out orientation (), fiber angle () and the curvature of cut-out corner (w). The 
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cut-out size is small compared to the size of plate (infinite plate). This investigation is conducted by 
considering the plane stress state and the absence of body forces. Also, the plate material is in its 
linear elastic region. Because of the traction-free boundary conditions on the edge of the cut-out, the 
stresses  and  at the cutout edge are zero and the circumferential stress   is only remaining 

stress. 
 

 

Figure 1: Infinite plate with quasi-square cut-out under uniaxial load. 

 
Analytical method used in this study is retrieved from the expansion of analytical solution 

method by Savin (1961) and  Lekhnitskii (1969). In this method, stress function converts to an ana-
lytical expression with undetermined coefficients and displacements and stresses could be calculated 
by stress function being determined. Equilibrium equation will be satisfied by introducing F(x,y) as 
stress function according to Eq. (1). 
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By replacing stress-strain relations in compatibility relations and rewriting the resultant equa-

tion in terms of stress functions and with the assistance of Eq. (1), we will have (Muskhelishvili, 
1962): 
 



910     M. Jafari and M.H.B. Chaleshtari / Optimum Design of Effective Parameters for Orthotropic Plates with Polygonal Cut-Out 

Latin American Journal of Solids and Structures 14 (2017) 906-929 

02)2(2 4

4

223

4

2622

4

66123

4

164

4

11 
























x

F
R

yx

F
R

yx

F
RR

yx

F
R

y

F
R

 
(2)

 
Eq. (2) is compatibility equation for anisotropic materials where ijR are members of reduced 

compliance matrix that for plane strain and plane stress states will be according to Eqs. (3) and (4) 
respectively: 
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where Sത୧୨ are the transformed compliance matrix components of the lamina and ሾSതሿ is determined in 

terms of  compliance matrix components as follows: 
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We have used m=cos and n=sin.  is fiber angle. Compliance matrix in terms of engineering 
constants will be as below: 
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Thus solving 2D planar elasticity problems will lead to presentation and solution of fourth-order 

differential equation which is expressed by four first-order linear derivative operator as Eq. (8). 
Lekhnitskii (1969) proved that this characteristic equation associated with orthotropic material 
generally has four imaginary roots which are mutually conjugated. 
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In curvilinear coordinate systems, the stress components created around the cut-out in two-
dimensional region are expressed in terms of the stress functions )( 1z and )( 2z . Lekhnitskii (1969) 

showed that the stress components around the cut-out in a plate pulled by uniform tension P ap-
plied at a considerable distance from the cut-out edge (in theory, it is infinity), at an angle ; with 
respect to the x-axis can be calculated as the Eqs. (9) to (11) (Lekhnitskii, 1969): 
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Where yxz ii   (i=1,2) and i are the roots of the characteristic equation of anisotropic ma-

terials (Eq. (8)). )( 1z  and )( 2z   are the derivatives of the functions )( 1z  and )( 2z  with re-

spect to 1z  and 2z . These analytic functions can be determined by applying the boundary condi-

tions.  
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Figure 2: Curvilinear coordinates. 

 
In order to calculate the stress components in the polar coordinates system, the Eqs. (12) and 

(13) are used. According to Figure 2, in these equations   is the angle between the positive x-axis 
and the  . 
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Stress distribution around the circular cutout was investigated by Savin (1961) using complex 

variable method. In order to expand their solution to other cut-out, points on boundary of the cut-
out with particular shape should be transformed outside the circle with unit radius using a simple 
mapping function  ( yxz ii  ) first, where x and y are obtained from Eqs. (14) and (15): 
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In the above equation, the parameter , which is a positive and real number, controls the size of 

the cutout. Integer n determines the shape of cut-out. Parameter w is the bluntness factor which 
changes the radius of curvature at the corner of the cut-out. For example, in above trigonometric 
equation, for quasi-square cut-out with sides of equal length (equilateral) n should be equal to 3. 
The conditions 0w<1/n ensure that the cut-out shape does not have loops. Effect of the amount of 
w is shown in Figure 3, according to this figure for a square cut-out when w decreases, corners of the 
cut-out become smoother until w reaches its minimum value, (becomes zero), in this case, cut-out 
converts to a circle. Figure 4 shows the effect of w and n on the shape of polygonal cut-out for zero 
rotation angle of 0 (=0). 
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w = 0 w = 0.05 w= 0.1 w = 0.15 w = 0.2 

Figure 3: The influence of w on the cutout geometry. 

 

 

n=2 n=3 n=4 n=5 w=0 
w=0.3 w=0.15 w=0.1 w=0.08  

Figure 4: Effect of w and n on the cutout shape. 

 
3 GREY WOLF OPTIMIZATION (GWO) 

Nature is full of social behaviours for performing different tasks. Although the ultimate goal of all 
individuals and collective behaviours is survival, creatures cooperate and interact in flocks. Wolf 
packs own one of the most well-organized social interactions for hunting.  Grey wolf optimization 
was proposed by Mirjalili et al. (2014). Mirjalili creates a bio-inspired optimization algorithm, the so 
called grey wolf optimization (GWO), which has been inspired from the leadership hierarchy and 
hunting mechanism of grey wolves in nature. He used twenty nine test functions in order to investi-
gate the performance of the proposed algorithm in terms of exploration, exploitation, local optima 
avoidance, and convergence. Then, he  proved the grey wolf optimizer results were able to provide 
highly competitive results compared to well-known heuristics such as PSO, GSA, DE, EP, and ES . 
In addition, the three main steps of hunting, searching for prey, encircling prey, and attacking prey, 
are implemented (Mirjalili et al. 2014). 
 
3.1 Mathematical Model 

The grey wolf optimization is inspired from the hunting behavior and the social hierarchy of grey 
wolves. The grey wolves are categorized according to societal hierarchy as  ,  ,   and  . In 

the grey wolf optimization, the fittest solution is called the   while the second and third best solu-
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tions are named  and   respectively. The rest of the candidate solutions are assumed to be  . 

In this paper the hunting mathematical models are provide. 
 
3.1.1 Encircling Prey 

A grey wolf can update its position inside the space around the prey in any random location by 
using Eqs. (16) and (17). The encircling behavior of grey wolves can be represented as : (Mirjalili et 
al. 2014)  
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the prey position and X  is the gray wolf position. The components of a
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 are linearly decreased 
from 2 to 0 over the course of iterations. r1 and r2 are random values in [0,1].  The components of 
a
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 are linearly decreased from 2 to 0 over the course of iterations. Moreover, A


 is random values in 
the interval [-a,a] as  ,   ,  and  . 

 
3.1.2 Hunting 

In the GWO algorithm, the hunting (optimization) is guided by  ,  , and . The   wolves 

follow these three wolves.  
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

 and X


 are position vector of  , and   respectively. The parameters A and C 

oblige the grey wolves algorithm to explore and exploit the search space. In order to exploration 
mathematically model from  divergence, we utilize A


 with random values greater than 1 or less 

than -1 to oblige the search agent to diverge from the prey. This emphasizes exploration and allows 
the grey wolf optimization algorithm to search globally. The C


 vector contains random values in 

[0,2]. This component provides random weights for prey in order to stochastically emphasize (C > 
1) or de-emphasize (C < 1) the effect of prey in defining the distance. Infact, the parameter C also 
is changed randomly to resolve local optima stagnation during the course of optimization. Moreover, 
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for mathematical modeling of approaching to the prey, the value of  a is linearly decreased. Thus A


 
is a random value in the interval [-a, a]. When random values of A are in [-1,1] (| A


| < 1), GWO 

forces the wolves to attack towards the prey. The parameter a is decreased from 2 to 0 in order to 
adaptively emphasize exploration and exploitation, respectively. Candidate solutions tend to diverge 
from the prey when 1A


and converge towards the prey when 1A


. Finally, the grey wolf opti-

mization algorithm is terminated by the satisfaction of an end criterion. (Mirjalili et al. 2014) 
 
4 TESTING CONVERGENCE GWO 

The constraints contain upper and lower boundaries which can be changed based on shape of the 
cut-out. Figure 5 shows convergence diagrams for GWO algorithm for Glass/Epoxy plate containing 
cut-out with various shapes  in one of the optimum conditions (w=0.05, 30=ߙ). The ratio of the 
maximum stress created around cutout to the applied stress is considered as cost function. 
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Figure 5: GWO algorithm convergence diagram for Glass /Epoxy material and different cut-out. 
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In Figure  5, in addition to viewing the convergence for the intended condition, it can be seen 
that GWO algorithm always tries to search local optimum value that finding the absolute optimum 
value in a suitable time. Also, the duration of solving the GWO algorithm after several runs, it 
turned out that GWO algorithm is capable of finding the absolute optimum value in a short time. 
 
5 RESULTS 

Many parameters affect the stress distribution around cut-out in orthotropic plates. The correct 
choice of these parameters is an important role in the design of these plates. In this study, an at-
tempt has been made to obtain the optimal values of different parameters to achieve the lowest 
stress concentration for various cut-out. Mechanical properties used in this study are presented in 
Table 1.  
 

Material E1(GPa) E2(GPa) G12 (GPa) ߥଵଶ 

Glass/Epoxy (CE 
9000) 

47.4 16.2 7 0.26 

Graphite/Epoxy 
(T300/5208) 

181 10.3 7.17 0.28 

Carbon/Epoxy (GY-
70/934) 

294 6.4 4.9 0.23 

Table 1: Materials properties of perforated plate (Rezaeepazhand and Jafari, 2015). 

 
5.1 Quasi-triangular cut-out 

At first for a particular value of w, the optimal values of design variables such as load angle, rota-
tion angle of cut-out and fiber angle are calculated. For this purpose, Figure 6 shows the effects of 
load angle on the value of the cost function by considering fiber angles and cut-out orientation sim-
ultaneously as design variables for the discussed three types of orthotropic materials in quasi-
triangular cutout with w=0.05. Values of fiber angle and cut-out orientation in this case, are opti-
mum values obtained by GWO algorithm. According to the Figure 6, for all three materials, the 
maximum value of the cost function occurs at loading angle of 45°, and Carbon/Epoxy material has 
the highest value of stress amongst the three others. For five different load angles, the optimal val-
ues of design variables and corresponding cost function in	w=0.05 are shown in Table 2. Moreover, 
Figure 7 shows the variation of the minimum normalized stress with fiber angle for w = 0.05. In fact 
in this figure for each fiber angle, the value of minimum normalized stress is obtained for optimum 
values of load angle and rotation angle.  

As shown in this figure, for all materials, maximum cost function occurs when fiber angle is 45 
degrees and among the material studied, the highest value function is related to Carbon/Epoxy. For 
five different fiber angles, the optimal values of design variables and corresponding cost function 
in	w=0.05 are shown in Table 3. C.F. in this table presents the value of optimum stress. The design 
variables represented in this table are load angle and rotation angle. Table 4 shows the optimal 
values of load angle, fiber angle, rotation angle and the corresponding value of the cost function for 
different values of w. 
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Figure 6: Variations of the cost  function in terms of load angle for quasi- triangular cut-out (w=0.05). 

 
 
 

 
)(Degree

Figure 7: Variations of the cost  function in terms of fiber angle for quasi- triangular cut-out (w=0.05). 
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Figure 8: Variations of the cost  function in terms of w for quasi-triangular cut-out. 

 
Figure 8 shows the variation of the cost  function with respect to w. in this case, the design var-

iables are load angle, fiber angle and rotation angle and the cost  function has been calculated in the 
optimal values of them. As illustrated in this figure, for all used materials, the cost  function de-
creases when the value of bluntness parameters (w) decreases. Therefore, the minimum cost  func-
tion occurs in w =0 which is equivalent to a circular cut-out. Finally, the optimal values of all pa-
rameters listed in Table 5. 
 

Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.   
    C.F. C.F.     

2.37470 90 0 2.4788 0 90 0 2.7982 180 64.8640 0 
3.887062.1 90 30 3.1997 177 90 30 2.8048 153.4997 90 30 
5.879880.71 0 45 4.4415 7.577 90 45 3.1044 119.1598 90 45 
3.8867148.3 90 60 3.1993 92.996 0 60 2.8051 176.4992 0 60 
2.3747 150.41 0 90 2.4788 89.95 0.134 90 2.7980 28.7296 27.4888 90 

Table 2: Optimal values of different parameters for triangular cut-out in various load angles (w=0.05). 

 
Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.       C.F.   C.F.       
2.374729.99 90 0 2.4788 89.95 89.960 2.7992 180 61.804 0 
3.884358.30 90 30 3.1991 63.01590 30 2.8059 26.50 90 30 
5.87914.775 90 45 4.4421 22.5660 45 3.1049 135.83 90 45 
3.8864 31.722 0 60 3.1997 87 0 60 2.8058 63.518 0 60 
2.3746 180 0 90 2.4788 60.01 0 90 2.8007 90.52 28.522 90 

Table 3: Optimal values of different parameters for triangular cut-out in various fiber angles (w=0.05). 
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Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F. 
 

 
  w C.F. 

 
 

  w C.F. 
 

 
  w 

2.261
4 

90 - 0 0 
2.371

7 
90 - 

0.09
9 

0 
2.659

5 
60 - 

23.8
6 

0 

2.374
6 

90 0 
9
0 

0.0
5 

2.478
8 

90 
0.03
9 

90 
0.0
5 

2.798
7 

62 146.46 
87.6
3 

0.0
5 

2.65 90 180 
9
0 

0.1 
2.747

5 
90 180 90 0.1 

3.115
7 

65 125.84 
0.95
6 

0.1 

3.69 90 
29.82

8 
0 0.2 

3.729
6 

90 
89.6
4 

0.53
1 

0.2 
4.242

5 
68 

122.12
6 

70.8
9 

0.2 

Table 4: Optimal values of different parameters for triangular cut-out for different w. 

 
 

C.F.      w Material 

2.659560  - 18.3 0 Glass/Epoxy 
2.371790  - 88.21 0 Graphite/Epoxy 
2.261490  - 0.001 0 Carbon/Epoxy 

Table 5: Overall optimum results of triangular cut-out. 
 
5.2 Quasi-Square Cut-Out 

Figure 9 shows the effects of loading angle on the value of the cost function by considering  fiber 
angle and cut-out orientation simultaneously as design variables for the discussed three types of 
anisotropic materials with w=0.05. The values of  fiber angle and cut-out orientation in this case, 
are optimum values obtained by GWO algorithm. According to the Figure 9, for Carbon/Epoxy 
material, the maximum value of the cost function occurs at loading angle of 45° and it has the high-
est value of stress amongst the three others materials. Tables 6 show the optimum values of fiber 
angle, rotation angle and minimum  normalized stress corresponding to each loading angle in 
w=0.05. Figure 10 shows the changes of the cost  function for various fiber angles in plates with 
square cutout (w=0.05). Load angle and cutout orientation considered as design variables. As seen 
in this figure, the maximum of normalized stress occurs at fiber angle of 45 degrees for all used ma-
terials. For different fiber angles, Table 7 shows the optimal values of load angle and rotation angle 
and corresponding normalized stress. Results show that the cost  function varies considerably by 
changing fiber angle. Bluntness parameter (w) is one of the most important parameters that affect 
the stress distribution around the cut-out. In order to study the influence of this parameter, the 
optimal values of load angle, rotation angle and fiber angle are presented in Table 8 for different w. 
According to this table, the minimum value of the normalized stress is strongly dependent on the 
value of w. Hence, Figure 11 shows the variations of the cost  function with the bluntness parameter 
(w). In this case, design variables are load angle, fiber angle and rotation angle. Unlike the quasi-
triangular cut-out, the optimal value of w is not zero. This means that by selecting the appropriate 
values of design variables stress concentration factor of square cut-out is less than those of circular 
cutout.  
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Figure 9: Variations of the cost  function in terms of load angle for quasi- square cut-out (w=0.05). 

 
 

 

Figure 10: Variations of the cost  function in terms of fiber angle for quasi-square cut-out (w=0.05). 
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Figure 11: Variations of the cost  function in terms of w  for quasi-square cut-out. 

 
Table 9 shows overall optimum results for the anisotropic material. This results optimization 

process take place for all parameters such as; fiber angle (γ), load angle ( ), rotation angle (  ) 

and cutout curvature (w). 
 
 

Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.   
C.F.   C.F.   

    
2.214 45 900 2.2192 44.9973 90 0 2.3956 44.7 69.4123 0 
2.7423 19.2805 9030 2.5542 9.20499 90 30 2.4650 79.113 90 30 
4.1613 59.9335 0 453.2691 63.6778 0 45 2.5786 12.456 90 45 
2.744 70.01 0 602.542 80.7989 0 60 2.4651 77.531 0 60 
2.214 44.5932 0 902.2191 44.9671 0 90 2.3956 45.375 0 90 

Table 6: Optimal values of different parameters for square cut-out in various load angles (w=0.05). 

 
 

Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.   C.F.   C.F.       
2.2141 44.99 90 0 2.2193 44.66 89.78 0 2.3958 29.39 73.8445 0 
2.7427 10.70 90 30 2.554 20.801 90 30 2.4651 40.64 90 30 
4.1615 14.687 90 45 3.2690 18.51 90 45 2.5589 58.16 0.6380 45 
2.7428 79.29 0 60 2.5539 69.19 0 60 2.4651 49.34 0 60 
2.2141 45 0 90 2.2196 46.02 0.663 90 2.3956 60.58 16.1255 90 

Table 7: Optimal values of different parameters for square cut-out in various fiber angles (w=0.05). 
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Carbon/Epoxy Graphite/EpoxyGlass/Epoxy

C.F.  
 

  w C.F.    w C.F.  
 

  w 

2.2614 90 - 0 0 2.3717 90 - 0 0 2.6595 60 - 85.2 0 
2.214190 44.96 0 0.05 2.2191 90 44.99 90 0.05 2.3956 73 44.73 16.2 0.05 
2.9664 68 0.706 90 0.1 2.6887 90 44.99 90 0.1 2.7037 90 45.10 90 0.1 
5.319864 18.73 26.17 0.2 5.3587 90 63.34 90 0.2 4.8959 90 46.13 90 0.2 

Table 8: Optimal values of different parameters for square cut-out for different w. 

 
 

C.F.      w Material 

2.3918 45 90 0 0.0323241 Glass/Epoxy 
2.1691 45 0 90 0.0323241 Graphite/Epoxy 
2.1081 45 90 0 0.0260045 Carbon/Epoxy 

Table 9: Overall optimum results of square cut-out. 
 
 
5.3 Pentagonal Cut-Out 

Figure 12 shows the effects of loading angle on the values of the cost function by considering fiber 
angle and cutout orientation simultaneously as design variables for the discussed three types of or-
thotropic materials in pentagonal cut-out with w = 0.05. As shown in this figure, for all used mate-
rials, the maximum normalized stress occurs at load angle of 45 degrees and Carbon/Epoxy materi-
al has the highest value of stress amongst the three others. Moreover, minimum cost  function hap-
pens at 0 or 90 degrees. For five different load angles, the optimal values of design variables and 
corresponding cost function in w=0.05 are shown in Table 10. 

For pentagonal cut-out with w = 0.05, the cost  function changes with fiber angle is shown in 
Figure 13. In this case design variables are load angle and rotation angle of the cutout. Similar to 
what happened for theload angle, the maximum and minimum value of the cost  function occurs at 
fiber angle of 45 degrees and 0 or 90 degrees, respectively. Table 11 represents the optimal values of 
the design variables for all used materials for different fiber angles. For different values of bluntness 
parameter (w), the optimal values of the effective parameters are listed in Table 12. As shown in 
this table, the lowest value of the cost  function occurs in w=0 which is equivalent to circular cut-
out. Figure 14 shows the variation of the cost  function with respect to w for all design variables. As 
shown in this figure, by reducing the value of w, the cost  function decreases. Finally, Table 13 
shows overall optimum results for the anisotropic material. This results optimization process take 
place for all parameters such as; fiber angle, load angle, rotation angle and cutout curvature.  
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Figure 12: Variations of the cost  function in terms of load angle for pentagonal cut-out (w = 0.05). 

 

 

Figure 13: Variations of the cost  function in terms of fiber angle for pentagonal cut-out (w = 0.05). 
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Figure 14: Variations of the cost  function in terms of w for pentagonal cut-out. 

 
 

Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.   
  C.F.     C.F.     

2.796 36 90 0 2.9251 180 90 0 3.3389 144.4264.80 0 
4.778 102.267 90 30 3.9122 133.32490 30 3.3697 35.49490 30 
7.175 1.666 90 45 5.373 34.782890 45 3.7153 25.53190 45 
4.779 59.7031 0 60 3.912 136.7210.23 60 3.3699 90.6220 60 
2.796 125.912 0.07 90 2.925 125.4031.15 90 3.3387 17.46325.38 90 

Table 10: Optimal values of different parameters for pentagonal cut-out in various load angles (w=0.05). 

 
 

Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.     C.F.   C.F.     
2.7966 53.98 90 0 2.9246 53.99 90 0 3.3404 100.0964.581 0 
4.7837 89.81 90 30 3.9139 130.6390 30 3.3698 156.4990 30 
7.1067 61.65 90 45 5.355 64.37 90 45 3.7168 73.32590 45 
4.7797 72.24 0 60 3.9118 103.330 60 3.3695 41.4340 60 
2.797 180 0 90 2.9251 0 0.00190 3.3394 25.81525.309 90 

Table 11: Optimal values of different parameters for pentagonal cut-out in various fiber angles (w=0.05). 
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Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.      
 
w 

C.F.      
 
w 

C.F.      
 
w 

2.2614 90 - 90 0 2.3717 90 - 0 0 2.6595 60 - 78.519 0 

2.796 90 88.71 1.278 0.052.9251 90 125.62 0.611 0.05 3.3392 66 0.99 8.251 0.05 

3.8251 90 125.77 0.114 0.1 4.0161 90 53.84 0.082 0.1 4.6647 66 130.9 90 0.1 

6.1308 90 13.66 2.305 0.156.2186 90 18.06 0.033 0.15 7.3227 66 74.61 69.69 0.15 

Table 12: Optimal values of different parameters for pentagonal cut-out for different w. 

 
 

C.F.    w Material 

2.659560 - 59.4830 Glass/Epoxy 
2.371790 - 90 0 Graphite/Epoxy 
2.261490 - 0 0 Carbon/Epoxy 

Table 13: Overall optimum results of pentagonal cu-tout. 
 
5.4 Hexagonal Cut-Out 

For hexagonal cut-out with w = 0.05, the cost  function changes with load angle is shown in Figure 
15. As shown in this figure, for all used materials, the maximum and minimum values of the cost  
function occur at load angle of 45 degrees and 0 or 90 degrees, respectively. Table 14 shows the 
optimum values of fiber angle, rotation angle and minimum normalized stress corresponding to each 
loading angle in w = 0.05. Moreover, Figure 16 shows the changes of the cost  function for various 
fiber angles in plates with hexagonal cut-out (w=0.05). Load angle and cut-out orientation consid-
ered as design variables. As seen in this figure, the maximum of the normalized stress occurs at fiber 
angle of 45 degrees. Between all used materials and for fiber angle in the range of 20-70 degrees, the 
highest normalized stress takes place for Carbon/Epoxy material. For different fiber angles, Table 
15 shows the optimal values of load angle and rotation angle and corresponding normalized stress.  
Also, the optimal values of design variables such as rotation angle, load angle and fiber angle in 
different values of w are shown in Table 16. Figure 17 shows the changes of the cost  function with 
respect to w. In this case, design variables are load angle, fiber angle and rotation angle. According 
to this figure, the optimal value of w is not zero. Finally, the optimal values of all effective parame-
ters are present in Table 17.  
 

Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.   
C.F.   C.F.   

    
2.8495 60.01 90 0 2.8995 0.01790 0 3.1743 0 90 0 
3.6408 4.598 90 303.3799 57.8890 30 3.3184 36.05 90 30 
4.87 75.08 90 454.098 79.28 0 45 3.3926 31.01 0 45 

3.6386 25.47 0.037603.3788 32.16 0 60 3.3221 53.75 0.273 60 
2.8495 90 0.001902.8995 90 0.023 90 3.1739 90 0.089 90 

Table 14: Optimal values of different parameters for hexagonal cut-out in various load angles (w=0.05). 
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Figure 15: Variations of the cost  function in terms of load angle for pentagonal cut-out (w = 0.05). 

 

 

Figure 16: Variations of the cost  function in terms of fiber angle for hexagonal cut-out (w = 0.05). 
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Figure 17: Variations of the cost  function in terms of w for hexagonal cut-out. 

 
Carbon/Epoxy Graphite/Epoxy Glass/Epoxy 

C.F.   C.F. C.F.       
2.8495 90 90 0 2.899690 89.990 3.1739 19.99 79.2944 0 
3.6359 55.47 90 30 3.378862.1690 30 3.3177 23.94 90 30 
4.8699 30.09 0 45 4.09 25.640 45 3.3925 13.96 0 45 
3.6447 34.66 0.0460 3.382927.980.08560 3.3184 6.063 0.0036 60 
2.8495 59.98 0 90 2.89960.4410.24790 3.1739 0 0.0086 90 

Table 15. Optimal values of different parameters for hexagonal cut-out in various fiber angles (w=0.05). 
 

Carbon/Epoxy Graphite/EpoxyGlass/Epoxy 

C.F.      w C.F.     w C.F.       w 

2.2614 90 - 900 2.3717 90 - 0 0 2.659560 - 76.043 0 
2.8495 90 0.072 900.052.8995 900.02590 0.05 3.173990 0.01 90 0.05 
4.6234 90 29.85 00.14.5897 900.0690 0.1 5.053479 78.99 0.06 0.1 
9.7817 90 27.86 900.1510.0553 9051.6390 0.15 10.6522 79 66.42 85.626 0.15 

Table 16: Optimal values of different parameters for hexagonal cu-tout for different w. 

 

C.F.    w Material 

2.560660 89.326525.24870.0096 Glass/Epoxy 
2.285590 29.60970 0.00817 Graphite/Epoxy 
2.198390 90 0 0.006302 Carbon/Epoxy 

Table 17: Overall optimum results of hexagonal cut-out. 
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With the increasing number of cutout sides, the obtained results will be close to results of a cir-
cular cut-out. The results of the previous sections suggest that the optimal values of the cost func-
tion for all cut-out with odd number of sides are always more than the corresponding value of a 
circular cut-out while all cut-out with an even number of sides are more efficient than a circular 
cut-out.  
 
6 CONCLUSIONS 

In this study, using gray wolf optimization algorithm (GWO), optimum parameters affecting nor-
malize stress around polygonal cutout in orthotropic plates were determined. Design variables in 
this study are loading angle, cut-out orientation, fiber angle and bluntness. The grey wolf optimiza-
tion algorithm is another form of metaheuristic algorithms based on swarm intelligence (SI) that 
draws inspiration from the social leadership hierarchy and hunting behavior of grey wolves in na-
ture. Results demonstrated that GWO creates a good balance between exploration and exploitation 
that results in high local optimal avoidance and a suitable convergence. Moreover, the cost function 
considered in this paper was obtained based on Lekhnitskii’s solution technique which was just for 
circular and elliptical cut-out and was generalized to polygonal cut-out using conformal mapping 
and complex variable method. The results also showed that the cut-out bluntness is not the only 
parameter affecting the reduction of stress concentration, but also the cut-out orientation, and suit-
able load angle and fiber angle play a major role in the reduction of stress that with choosing the 
optimum values of these parameters in a specific curvature, stress concentration can be reduced 
significantly. The optimal values of normalized stress for all cut-out with an odd number of sides 
were always more than the corresponding value of a circular cut-out while, all cut-out with an even 
number of sides were more efficient than circular cut-out. Among of all cut-out shapes, quasi-square 
cut-out has the lowest possible normalized stress.  
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