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Abstract 
In this paper, non-linear dynamics analysis of functionally graded 
material (FGM) shell structures is investigated using the higher 
order solid-shell element based on the Enhanced Assumed Strain 
(EAS). With this element, a quadratic distribution of the shear 
stress through the thickness is considered in an enhancing part. 
Material properties of the shell structure are varied continuously 
in the thickness direction according to the general four-parameter 
power-law distribution in terms of the volume fractions of the 
constituents. Performance and accuracy of the present higher 
order solid-shell element are confirmed by comparing the numeri-
cal results obtained from finite element analyses with results from 
the literature. 
 
Keywords 
Non-linear dynamics, Higher Order Shear Deformation, Shear 
locking, Solid-shell element, FGM. 
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1 INTRODUCTION 

In the last decades, functionally graded materials (FGM) are becoming more widely used since they 
provide many advantages to structural designers. FGMs shell structures are widely used in aircraft 
and space systems due to their advantages of high stiffness and their high heat-resistance. In an 
FGM, the structure is prepared from a mixture of ceramic and metal, or a combination of other 
metals or other ceramics that are appropriate to achieve the desired objective. Material properties of 
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FGMs are varied continuously in one or more directions. Therefore, the stress distributions are 
smooth hence interface problems are eliminated when compared to laminate structure 

In order to avoid structural failure caused by dynamic loadings, linear dynamic characteristics 
of FGMs shell structures have been considered by many researchers. Finding analytic solutions for 
linear and non-linear dynamics analysis of functionally graded material is a very difficult task, and 
they only exist for particular cases. Meanwhile, the finite-element (FE) method has become the 
most widely used technique to model the processes of dynamics analysis. 

There are several solution formulations for vibration and linear dynamic analysis of FGM shells 
structures. They can be classified into two groups: the 2D plate and shell models and the full 3D 
elasticity model. Zhi-Yuan and Hua-Ning (2007) studied free vibration characteristics of functionally 
graded cylindrical shells with holes using Kirchhoff Classical thin Plate Theory (CPT). On the other 
hand, Kadoli and Ganesan (2006) studied the buckling and free vibration analysis of functionally 
graded cylindrical shells subjected to a temperature-specified boundary condition. In their analysis, 
the finite element equations based on the First order Shear Deformation Theory (FSDT) and the 
Plane Stress Assumption (PSA) were formulated. Recently, Ansari et al. (2016) developed a non-
classical size-dependent plate model based on the modified strain gradient and the FSDT for the 
bending, buckling and free vibration analyses of microscale FG plates. 

Based on the Third order Shear Deformation Theory (TSDT) and PSA, Reddy (2000) present-
ed a theoretical formulation, Navier's solutions of rectangular plates, and finite element models to 
study the nonlinear dynamic response of FGM plates subjected to a suddenly applied uniform pres-
sure. Yang and Shen (2002) analyzed free and forced vibration for initially stressed FGM plates. In 
this contribution, theoretical formulations are based on TSDT and PSA including the thermal ef-
fects. One-dimensional differential quadrature technique and Galerkin approach are used to deter-
mine the transient response of the plate subjected to dynamic loads. Gharooni and Ghannad (2015) 
investigated displacements and stresses in pressurized thick FGM cylinders with exponential varia-
tion of material properties based on TSDT. Furthermore, based on a TSDT of shells and PSA, Wali 
et al. (2015) Frikha et al. (2016) and Frikha et al. (2017) studied respectively the free vibration, 
linear dynamic response and fully geometrical nonlinear mechanical response of FGM shell struc-
tures using an efficient double directors shell element proposed in Wali et al. (2014). The shear 
stress boundary conditions on top and bottom faces are considered in a discrete form as given in 
(2005).  

For full 3D elasticity formulations for vibration and linear dynamic analysis of FGM shells, one 
find the work of Vel and Batra (2004) based on three dimensional exact solutions for free and forced 
vibrations of simply supported FGM rectangular plates. In Asemi et al. (2014) the static and dy-
namic analyses of FGM skew plates are obtained based on the three-dimensional theory of elastici-
ty. Graded elements, the principle of minimum energy and Rayleigh-Ritz energy method are used. 
Using 3D elasticity model, Nguyen and Nguyen-Xuan (2015) proposed an efficiently computational 
tool based on an isogeometric finite element formulation for static and dynamic response analysis of 
FGM plates.  

Regarding the nonlinear dynamics analysis of FGM shells, three kinematics assumption are 
used, CPT, FSDT and TSDT.  
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Based on the CPT assumption and von-Karman geometrical nonlinearity, Woo et al. (2006) in-
vestigated the nonlinear free vibration behavior of FGM plates. Allahverdizadeh et al. (2008) evalu-
ated the material properties of an FGM thin circular plate and investigated the nonlinear free and 
forced vibrations using the shooting technique. The formulation is based on CPT and von-Karman 
geometrical nonlinearity. Alijani et al. (2011) studied the nonlinear vibrations of FGM doubly 
curved shallow shells. They considered the thermal effect, the CPT assumption and Donnell nonlin-
earity. Using the CPT with an improved Donnell equations and PSA, Bich and Nguyen (2012) ex-
amined the nonlinear vibration of functionally graded circular cylindrical shells. Considering the 
CPT with PSA and von-Karman geometrical nonlinearity, Duc (2013) presented an analytic inves-
tigation on the nonlinear dynamic response of eccentrically stiffened functionally graded double 
curved shallow shells resting on elastic foundations and being subjected to axial compressive load 
and transverse load. Using the same considerations, Duc and Cong (2015) investigated the nonlinear 
dynamic response of imperfect symmetrical thin FGM plate on elastic foundation. 

Using the FSDT plate finite element method with PSA employing von-Karman nonlinearity, 
Praveen and Reddy (1998) investigated the nonlinear transient thermo-elastic response of FGM 
plates. Liew et al. (2006) studied the nonlinear vibration of a coating-FGM-substrate cylindrical 
panel subjected to a temperature gradient. The FSDT is considered with PSA and von-Karman 
geometrical nonlinearity. Also based on the FSDT with PSA and von-Karman geometrical nonline-
arity, Zhang et al. (2012) analyzed the nonlinear dynamics of a clamped–clamped FGM circular 
cylindrical shell subjected to an external excitation and uniform temperature change. 

Based on TSDT and PSA, Hao et al. (2008) presented an analysis of the nonlinear dynamics of 
a simply supported FGM rectangular plate subjected to the transversal and in-plane excitations in a 
thermal environment. The von-Karman geometrical nonlinearity assumption is used. Using the 
same von-Karman geometrical nonlinearity with TSDT and PSA, Duc et al. (2015) presented an 
analytical approach to investigate the nonlinear dynamic response and vibration of imperfect FGM 
thick circular cylindrical shells surrounded on elastic foundation. Based on TSDT with PSA and 
von-Karman type nonlinear kinematics, Liu et al. (2015) presented a nonlinear dynamic analysis of 
a slightly initial imperfect FGM circular cylindrical shell subjected to complex loads including aero-
dynamic pressure and thermal loading. 

It can be seen from the previous literature that in most of the studies, full 3D elasticity formu-
lations are only limited to linear dynamic and free vibration of FGM structures. Also, the von-
Karman or Donell geometrical nonlinearity are the only kinematic that has been basically used for 
the nonlinear dynamic analysis of shell’s structures where the PSA is largely considered. 

However, in this paper we focus on the fully 3D non-linear dynamics analysis of FGM shell 
structures by using higher order shear strain enhanced solid-shell element. The present formulation 
constitute an extension of the higher order shear deformation solid-shell finite element, developed 
by Hajlaoui et al. (2016), to the full nonlinear dynamics. The present solid-shell element formula-
tion is based on the partition of shear strain: one of the parts is independent of the thickness coor-
dinate and formulated by the Assumed Natural Strain (ANS) method, which avoids the shear lock-
ing in thin limit structure; the other enhancing part ensures a quadratic distribution across the 
thickness. With this shear strain enhancement, the accuracy of transverse shear stresses will be 
improved and the shear correction factors will be avoided. 
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The remainder of this paper is organized as follows. Functionally graded materials are described 
in section two. After that, solid-shell finite element formulation and a transient analysis of the non-
linear formulation is described in section three and four respectively. Numerical results and discus-
sions of the finite element model are investigated in detail in section five. Finally, some concluding 
remarks are analyzed and presented in section six. 
 
2 FUNCTIONALLY GRADED MATERIALS 

In this paper, we consider an FGM shell structures made from a mixture of metal and ceramics and 
the composition varies continuously in the thickness direction. In fact, the Young’s modulus ( )E z , 

density ( )zr  and Poisson’s ratio ( )zn  are assumed to vary through the shell thicknesses according 

to a power-law distribution as 
 

( ) ( )c m c mz E E V EE = - + , ( ) ( )c m c mz Vr r r r= - + ,  ( ) ( )c m c mz Vn n n n= - +  (1) 
 

in which the subscripts m  and c  refer to metal and ceramic components, respectively. In addition, 
the volume fraction cV  follows two general four-parameter power-law distributions, Su et al. (2014).  
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é ùæ ö æ öê ú÷ ÷ç ç= - + ÷ + + ÷ç çê ú÷ ÷ç ç÷ ÷è ø è øê úë û
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h h
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é ùæ ö æ öê ú÷ ÷ç ç= - - ÷ + - ÷ç çê ú÷ ÷ç ç÷ ÷è ø è øê úë û
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where a, b and c are the parameters which determine the material variation profile through the 
FGM shell thickness and p is the power-law index. 
 
3 SOLID-SHELL FINITE ELEMENT FORMULATION 

The developed solid-shell element is an eight nodes hexahedral element with three degrees of free-
dom per node. The transverse shear strain is composed of two parts. The first one is independent of 
the thickness coordinate and formulated by the assumed natural strain method (ANS). The second 
part is an enhancing part, which ensures a quadratic distribution through the thickness.  

The enhanced assumed strain method consists in the enhancement of the compatible part of the 

Green Lagrange strain tensor, cE , with an enhanced part E  to have a total strain as follows 
 

c= +E E E  (4)
 
3.1 Variational Formulation 

The point of departure is the well-known three-field variational functional in Lagrangean formula-
tion. This variational functional is as follows  
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( ) ( ), , : . . 0
f

c
V SV V V

dV dV dAy
¶

é ùP = + - - - =ê úë ûò ò òu E S E E S E F u F u      (5)
 

where y  is the strain energy function and u, E  and S  are the independent tonsorial quantities 

which are: displacement, enhanced assumed strain and assumed stress fields respectively. Also in 
Eq. (5) appear the prescribed body force VF  and surface traction SF . The orthogonality between 

the enhanced strain and stress fields leads to  
 

: 0
V

dV =ò S E   (6)
 

This orthogonality condition reduce the number of independent variables in the original func-
tional to just two ( ),u E . The weak form of this modified reduced functional may be obtained with 

the direction derivative leading to 
 

( ) ( ), : . . 0
f

c
V SV V V

W dV dV dAd d d d d
¶

= P = + - - =ò ò òu E S E E F u F u   (7)
 

where S is the Piola-Kirchhoff stress tensor 
 

y¶
=

¶
S

E
 (8)

 
3.2 Finite Element Formulation  

In each finite element domain, an eight-node hexahedral solid-shell element is considered. The posi-
tion vectors in reference and current configurations respectively are 
 

n=X NX    ,    n=x Nx  (9)
 

where N is the tri-linear shape functions matrix given by 
 

1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3N N N N N N N Né ù= ê úë ûN I I I I I I I I  (10)
 

nx  and nX  are nodal coordinates. The displacement field, with the corresponding variation and 

increment, is interpolated in the same manner as follows 
 

n=u NU   ,   nd d=u N U    ,   nD = Du N U  (11)
 

where 1 1 1 8 8 8, , ,... , ,
T

n u v w u v wé ù= ë ûU  is the nodal displacements vector at the element level. The co-

variant base vectors obtained by partial derivative of the position vectors with respect to convective 
coordinate ( ) ( )ξ 1 2 3, , , ,x x x x h z= =  in reference and current configuration are given by 
 

k
kx

¶
=

¶
X

G ,  k
kx

¶
=

¶
x

g , 1,2,3k =  (12)
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The covariant metric tensor at a material point ξ , in the reference and current configuration 

are defined by 
 

.i j
é ù= ë ûG G G  ,  .i j

é ù= ë ûg g g    ,   , 1,2,3i j =  (13)
 

This leads to the following Green-Lagrangean strain tensor 
 

( )1

2
= -E g G     ,     ( )1

2ij ij ijE g G= -  (14)

 
3.3 Compatible Strains 

To treat the transverse shear locking and transverse normal locking problems, the ANS method is 

used. For the transverse shear strains, 13
cE and 23

cE , the ANS method, proposed by Bathe and 

Dvorkin (1985), is used and evaluated at four mid-points of the element edges A = (-1,0,0), B = (0,-
1,0), C = (1,0,0), D = (0,1,0),  Fig. 1.  
 

 

Figure 1: Transverse shear strain and thickness strain interpolation points. 

 
The transverse shear strains are given by 

 

( )( ) ( )( )
( )( ) ( )( )

13 13 13 1313

23 13 13 13 13

1 11

2 1 1

B B D Dc

c A A C C

g G g GE

E g G g G

h h

x x

é ùé ù - - + + -ê úê ú = ê úê ú - - + + -ê úê úë û ë û
 (15) 

 

However, for the thickness strains, 33
cE , we adopt the ANS method as in Klinkel et al. (1999), 

Vu-Quoc and Tan (2003) and Hajlaoui et al. (2012, 2015, 2016) and evaluated at four collocation 
points defined in the reference surface ( )0z = : A1=(-1,-1,0), A2=(1,-1,0), A3=(1,1,0), A4=(-1,1,0), 

Fig. 1. The thickness strains is given by 
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( )( ) ( )
4

33 33 33
1

1 1

4 2
1 1c L L

L L
L

E g Gxx hh
=

= + + -å  (16)

 

For the detailed description of the ANS method, refer to Hajlaoui et al. (2012, 2015, 2016). The 
compatible part is arranged in (6x1) column matrix as follows 
 

11 22 33 12 13 232 2 2
Tc c c c c c cE E E E E Eé ù= ê úë ûE  (17)

 

Using Eqs. (15)-(17) and approximations Eqs. (9) and (11), the virtual and incremental compat-
ible Green Lagrange strain tensor are then given by  
 

c
nd d=E B U     ,   c

nD = DE B U  (18)
 

where B is the strain interpolation matrix, associated to node I ( )1,8I = and denoted IB  is given 

by 
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Matrix T, in Eq. (19), is the transformation of the strain tensor from parametric coordinates to 
the local Cartesian coordinates, written as 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2 2
11 21 31 11 21 11 31 21 31

2 2 2
12 22 32 12 22 12 32 22 32

2 2 2
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=
+ + +
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31 21 33 23 31
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ê ú
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ê ú
ê ú+ê ú
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 (20)

 

where .ij i jt = G T  and jT  (j = 1, 2, 3) are a local orthonormal base vectors. 

 
3.4 Enhanced Strains 

The enhanced Green-Lagrange strain part is related to the internal strain parameters vector α  as: 
 

=E M   ,  d d=E M     ,D = DE M    (21)
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where E , dE  and DE  are total, virtual and incremental enhanced Green Lagrange strain tensor 
respectively. The crucial assumption of the EAS method is the enforcement of the orthogonality 

conditions for the assumed stress field S  and the enhanced strain E . This orthogonality conditions 
impose the following choice for the interpolation function matrix M  to be expressed as follows 
 

0
0

det

det
T

xhz
-=

J
M T M

J
    ,   

1 1 1

1 1 1
0d d dxhz x h z

- - -
=ò ò ò M  (22)

 

where the subscript ‘0’ means the evaluation at the center of the element in the natural coordinates 

and 1 2 3, ,é ù= ê úë ûJ G G G  is the Jacobian matrix. Eq. (22) responds a minimum requirement that the 

enhancing strain be orthogonal to the constant stress state. The interpolation matrix xhzM , in Eq. 

(22), is expression in term of the parametric coordinates( ), ,x h z . Three choices of matrix xhzM  can 

be considered with, 7, 9 and 11 parameters 
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In all these three matrices, the term 21
5

z-  ensures the parabolic transverse shear distribution 

in thickness direction. This enhancement requires a numerical integration rule at least 2x2x3. How-
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ever, the three matrices are different in the plane and thickness strains enhancement. In a previous 
work, Hajlaoui et al. (2016), the analysis of stiffness matrix eigenvalue in the incompressible range 
demonstrate that only the 11 parameters solid shell element, Eq. (23.c), provided the correct eigen-
values. As FGM materials are far from incompressible conditions as in rubber or elastoplasticity, 
and to reduce the computational time, one can choose the nine parameters, C3D8C9 element, which 
will be the only considered in the numerical results. 
 
3.5 Linearization  

With the finite element approximation, Eq. (18) and (21), at hand, the continuum weak form, Eq. 
(7), became in a discrete form as  
 

( ) αint .T T
n extW d d= - +U f f h  (24)

 

where, intf , extf  and h , are given by the following expressions 
 

int
T

V
dV= òf B S  ,   dA

f

T T
ext V SV V

dV
¶

= +ò òf N F N F   ,   T

V
dV= òh M S  (25)

 

Equation (24) is a nonlinear equation that will be solved iteratively by the Newton-Raphson 
method. For this purpose one need the corresponding linearization 
 

( )
UL

L H
int. , 0

T
n extT T

n nW DW d d
æ é ù öì ü é ùD -ï ï ÷ç ï ïê úé ù ê ú ÷ç+ D D = + =í ý ÷çê ú ê ú ê ú ÷ë û ï ïDç ÷çè øê úê ú ï ïî þ ë ûë û

f fK
U U

h
 


 (26)

 

where L , H  and K  are given by 
 

L BdVT

V
= ò M  ,  H dVT

V
= ò M M   ,  D G= +K K K  (27)

 

with 
2y¶

=
¶ ¶E E

  is the 6 6  three dimensional material tangent moduli, or elasticity tensor, and 

DK  is given by 
 

T
D V

dV= òK B B  (28)
 

where the matrix B  is given by Eq. (19) and GK  is the geometric stiffness matrix 
 

ΔδT T T
n G n V

dVd D = ò cU K U S E  (29)
 

Relative to a couple of nodes (I, J) the matrix GK  is given by 
 

IJ
G IJ IJ IJV

diag G G G dVé ù= ê úë ûòK  (30)
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The strain parameters D  must be eliminated from Eq. (26) at the element level, which leads 
to following element tangent operator TK  and residual vector R  
 

( )L H L1T
T D G

-= - +K K K    ,     L H h +1
int

T
ext

-= -R f f  (32)

 
4 TRANSIENT ANALYSIS OF THE NON-LINEAR FORMULATION 

In order to extend the variational formulation, Eq. (24), to accommodate transient analysis, the 

body force is replaced by V V r¬ -F F u . Then, with this replacement the variational equation 

became 
 

( ) αint iner .T T
n extW d d= + - +U f f f h  , e T

iner V
dVr= òf N u  (33)

 

The acceleration in Eq. (33) is computed from the isoparametric interpolation as in Eq. (11). 
Thus, the inertia term and residual vector may be written as 
 

iner n=f MU  ,    + L H h1int
T

ext n
-= - -R f f MU  (34)

 

where M  is the consistent mass matrix. The Newmark method is a one-step method, which is used 
to advance the solution from time tn to tn+1. Firstly, given the initial displacement and velocity 
vectors, the initial acceleration is determined by solving Eq. (34). The Newmark formula to process 
the solution is given by 
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with the updating formulas 
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U  are displacement, velocity and acceleration vectors given in the initial 

state by 
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The Newmark parameters b  and g are chosen as 0.25b = , 0.5g = . 

 
5 NUMERICAL RESULTS AND DISCUSSION 

The finite element formulation of the present higher order shear strain enhanced solid-shell element 
for nonlinear dynamic analyses of functionally graded material shell structures as presented in the 
previous sections. In this section, a comprehensive investigation concerning the nonlinear dynamic 
response of functionally graded material shell structures with various boundary conditions is given 
to demonstrate the accuracy and reliability of the present higher order solid-shell element.  
 
5.1 Pull-Out of an Open-Ended Isotropic Cylindrical Shell 

The purpose of this example is to demonstrate the ability of the formulation to capture large dis-
placement and illustrate the robustness of the numerical implementation in static analysis. A short 
cylinder, with two pinching vertical forces at the middle section is modeled using one octant Fig. 2a. 
 

 

a/ 

 

b/  

Figure 2: Pull-out of an open-ended cylindrical shell a/ Finite element model, 

b/ Reel deformed configuration at P=40000. 

 
This popular benchmark problem constitutes a severe test of shell finite element formulations 

and has been addressed in Sze et al. (2004) and Payette and Reddy (2014) among others. A 16x16 
meshing is used for this validation test and applying the appropriate symmetry boundary condi-
tions, Fig. 2.a. The length of the cylinder is L=10.35, the radius is R=4.953, and the thickness is h= 

0.094. Material properties for this test are 610.5 10E = ´ , 0.3125n = . The concentrated load 
P=40000 is applied at point A. The automatic incremental/iterative Newton procedure is used with 
a total of 64 load steps. The final reel deformed configuration is given at Fig. 2.b. The radial deflec-
tions vs. the net applied pulling force P are shown in Fig. 3 for points A, B and C. 
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Figure 3: Pull-out force P vs. radial deflections at points A, B and C for the open-ended cylindrical shell. 

 
The results shown in Figs. 3 are visually in unison with radial deflections for points A, B and C 

provided by Payette and Reddy (2014). 
 
5.2. Shallow Spherical Cap Under a Concentrated Load 

In this sub-section, we present numerical simulations in order to illustrate the good performance of 
the proposed formulation. The dynamic behavior of a clamped isotropic spherical shell under a con-
centrated apex load, F=100, is presented. This test is proposed in Duarte Filho and Awruch (2004). 

Material and geometric properties for this test are 710E = , 0.3n = , 0.000245r = , 10.9q =  , 

R=4.76, and h = 0.01576. Loading and finite element mesh are shown in Fig.4.  
 
 

 
 

Figure 4: Shallow spherical cap, geometry and finite element modeling. 

 
The time increment is 0.2t smD =  and the finite element mesh with 192 elements is used. The 

nonlinear dynamic response, represented by the vertical displacement at the mid-span, is shown in 
Fig 5. In the same figure, results obtained from a nonlinear and linear static analyses, as well as the 
linear dynamic analysis are presented. These results are compared with the results of Duarte Filho 
and Awruch (2004). The proposed formulation presents a very close results to Duarte Filho and 
Awruch (2004) results. 
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Figure 5: Dynamic response of the isotropic shallow spherical cap. 

 
 
5.3 FGM Plate Under Constant Distributed Load 

This example consists on a square functionally graded plate subjected to a constant uniformly dis-

tributed loading of 6 210 /q N m=- . This numerical test has been addressed in Praveen and Reddy 

(1998) among others. The side length or the plate is a=b=0.2m and the thickness h = 0.01m.  
The plate is made of the constituent materials: aluminum (bottom surface) and zirconia (top 

surface). Young’s modulus, Poisson’s ratio and density for the aluminum are 70mE GPa= , 

0.3n = , 32707 /kg mr = , and for zirconia are 151cE GPa= , 0.3n = , 33000 /kg mr = , respec-

tively. The used law distribution of the FGM plate is the classical power-law which can be obtained 
by the general four-parameter power-law distribution Eq. (3): ( )1,0, ,pIIFGM c . By noting the sym-

metry, only one quadrant of the plate is modeled with 8x8x1 elements. The time increment is 
510t s-D = . The center deflection and time were non-dimensionalized according to the following 

expressions: center deflection ( )2/mw wE h qa=  and time ( )2/m mt t E a r= . 

Figs. 6 and 7 show the dynamic response of the Aluminum-Zirconia plates simply supported 
and clamped boundary conditions respectively. The accuracy of the present model is verified by 
comparing the computed non-dimensionalized center deflection with available results of Praveen 
and Reddy (1998). It is clear that the presently computed non-dimensionalized center deflection is 
in general in good agreement with Praveen and Reddy (1998) finite element solutions. However, a 
discrepancy exists for a higher magnitude of deflection in the simply supported plate, Fig.6. This 
can be explained by the major difference between the present formulation and Praveen and Reddy 
(1998): the present formulation is full 3D enhanced Green-Lagrange formulation and Praveen and 
Reddy (1998) is a 2D FSDT of plate with PSA and von-Karman nonlinearity. 
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Figure 6: Temporal evolution of center deflection of simply supported FGM  

square plates under suddenly applied uniform load. 

 

 

Figure 7: Temporal evolution of center deflection of clamped FGM  

square plates under suddenly applied uniform load. 

 
5.4 Clamped Circular FGM Plate Under Distributed Transverse Load 

This example, investigated in Nguyen and Nguyen-Xuan (2015), consists on clamped circular FGM 
plates under uniform pressure 106 N/m2. The radius is R=0.5 m and the thickness is h=0.1 m. The 
circular FGM plate is made of the same constituent materials as the previous example, Aluminum-
Zirconia. The used law distribution of the FGM plate is the classical power-law which can be ob-
tained by the general four-parameter power-law distribution Eq. (3): ( )1,0, ,pIIFGM c . Using sym-

metry boundary conditions, one quadrant of the shell is modeled with 192 elements, Fig. 8. A time 
step of 10-5 s is used in this problem. The center deflection and time were non-dimensionalized ac-

cording to the following expressions: center deflection ( )2. /mw wE h qR=  and time 

( )2/m mt t E R r= . 
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Figure 8: A quadrant of the clamped FGM circular plate modeled by 192 elements, 434 nodes. 

 
Fig. 9 illustrates the central deflection dynamic response of the clamped FGM circular plate. In 

this figure, ANSYS solutions, for full metal and full ceramic, using quadratic finite elements and 
approximately 140436 degrees of freedom, are given in Nguyen and Nguyen-Xuan (2015). The pre-
sent solutions, using only 1302 degrees of freedom, match very well with the ones obtained using 
ANSYS software. In addition, Fig. 9 shows the results obtained using several values of the power 
low index, 0.2, 0.5, 1 and 2. The present results are in good agreement with the published ones giv-
en in Nguyen and Nguyen-Xuan (2015) using 2535 degrees of freedom. 
 

 

Figure 9: Temporal evolution of center deflection of clamped FGM  

circular plate under suddenly applied uniform load. 

 
5.5 Simply Supported FGM Plate Under Varying Distributed Load 

This numerical example consist on a simply supported square functionally graded plate of side 
length a=b=1m and thickness h = 0.01 m. The FGM plate is subjected to a uniformly distributed 
excited transverse load ( ) sin( )q t N t= W . The FGM plate is made of the constituent materials: alu-

minum (bottom surface) and alumina (top surface). Young’s modulus, Poisson’s ratio and density 

for the aluminum are 70mE GPa= , 0.3mn =  and 32707 /m kg mr =  and for alumina are 
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380cE GPa= , 0.3cn =  and 33800 /c kg mr = , respectively. The used law distribution of the 

FGM plate is the classical power-law which can be obtained by the general four-parameter power-
law distribution Eq. (3): ( )1,0, ,pIIFGM c . This numerical problem is investigated in Duc and Cong 

(2015) with a sigmoid-FGM material. By noting the symmetry, only one quadrant of the plate is 
modeled with 8 x 8 x 1 elements. A time step of 10-3 s is used in this numerical test. 

Fig. 10.a shows the nonlinear dynamic response, represented by graph of maximum deflection 
(p=1, N=1500N/m², Ω= 500). In the same conditions Fig. 10.b shows the relation of maximum 
deflection and the velocity of maximum deflection. 
 

 

Figure 10: Nonlinear dynamic response of the square FGM plate (a) maximum  

deflection versus time (b) velocity versus maximum deflection. 

 

 

Figure 11: Nonlinear dynamic response of the square FGM plate under different loads. 

 
Fig.11 shows the nonlinear response of the FGM square plate with different intensity of loads: 

N=1500N/m² and N=2500N/m²; Ω= 500, p=1. From obtained results, one can see that amplitudes 
increase, when increasing the intensity of loads. The non-linear transient responses perform the 
phenomenon like periodic cycles. 
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Figure 12 shows the nonlinear response of the FGM square plate with different power-law in-
dex: p=1, p=2 and p=3; N=1500N/m², Ω= 500. From obtained results, one can see that ampli-
tudes decrease, when increasing the power law index. This is because the plate is stiffened due to 
increasing the volume fraction index of the ceramic phase. The non-linear transient responses per-
form the phenomenon like periodic cycles. 

The results shown in Figs. 10, 11 and 12 are visually in unison with those provided by Duc and 
Cong (2015) using a sigmoid distribution instead of the present power low distribution. 
 

 

Figure 12: Nonlinear dynamic response of the square FGM plate under different power-law index. 

 
5.6 Non-Linear Dynamic Analyses of FGM Cylindrical Shells 

This numerical example, examined in Bich and Nguyen (2012), consist on an FGM cylindrical shell 
with radius of curvature R, thickness h and length L subjected to an external pressure uniformly 
distributed on the surface of the shell ( ) sin( )q t N t= W . Suppose that the material composition of 

the shell varies following a simple power law in terms of the volume fractions which can be deduced 
by the general four-parameter power-law distribution ( )1,0, ,pIIFGM c . We consider the FGM cylin-

drical shells composed of ZrO2 and Ti–6Al–4V with the material properties for ZrO2: 

154.3211cE GPa= , 35700 /c kg mr = , 0.298cn =  and for Ti–6Al–4V: 105.6960mE GPa= , 

34429 /m kg mr = , 0.2981mn = . Simply supported boundary conditions are considered at 0x =  

and x L= . By noting the symmetry, only one octant of the cylindrical shell is modeled with 
16x16x1 elements.  

Fig. 13 illustrate the effect of the power law index p on the nonlinear dynamic response of 
ZrO2/Ti–6Al–4V FGM cylindrical shells with / 2L R = , / 500R h =  and ( ) 1500sin(600 )q t t= . 

As remarked in previous test, the amplitude of the nonlinear dynamic of the FGM shells increases 
when increasing the power low index p. 

Fig. 14 gives the effect of the thickness ration R/h on the nonlinear response of FGM cylindrical 
shell with / 2L R = , 2p =  and ( ) 1500sin(600 )q t t= . As had been anticipated, the amplitude of 

the FGM cylindrical shells increase when the ration R/h increase.  
 



A. Hajlaoui et al / Nonlinear Dynamics Analysis of FGM Shell Structures with a Higher Order Shear Strain Enhanced Solid-Shell Element     89 

Latin American Journal of Solids and Structures 14 (2017) 72-91 

 

Figure 13: Effect of power law index p on the responses of FGM cylindrical shell. 

 

 

Figure 14: Effect of ratio R/h on the responses of FGM cylindrical shell. 

 
6 CONCLUSION 

This paper presents a numerical investigation on the nonlinear dynamic response of FGM shell 
structures.  Material properties of the shell structure are assumed to vary continuously through the 
thickness according to the general four-parameter power-law distribution in terms of the volume 
fractions of the constituents. 

The finite element formulation is based on the higher order shear strain enhanced solid-shell el-
ement. To avoid locking in the thin shell cases, the ANS method, for the transverse shear strains 
and thickness strain, is used instead of the continuum components in the compatible part of strain 
tensor. In the enhanced strain part, parabolic functions in terms of natural thickness coordinate are 
considered for the transverse shear strains. This permit to remove shear correction factors and im-
proves the accuracy of transverse shear stresses. In addition, the enhancements of membrane part 
and the transverse strain are considered to avoid the in-plane bending and volumetric locking.  

In the present solid-shell element, the nonlinear dynamics of FGM shell is done by the lineariza-
tion of the nonlinear dynamic weak form. This was performed for use in the iterative solution for 
the kinematics quantities via the Newton's method. A time stepping algorithm based on the New-
mark’s scheme is employed in our time discrete weak form. From a demonstrative numerical simu-
lation of complex FGM structures, it is found that the proposed method shows accurate results with 
good convergence characteristics. 
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Results of the present formulations are verified by comparing the present results with those 
available in literatures. The obtained results show the effects of material, boundary conditions, exci-
tation and geometrical parameters on the dynamical response of FGM structures. Thus, it is obvi-
ous that the dynamic response of the considered FGM structures depends on many factors signifi-
cantly: power low index, boundary conditions, excitation and geometrical parameters of the FGM 
structures.  

In addition, the present higher order solid-shell model can be used in complex FGM or compo-
site shell’s structures analysis, unlike the analytic formulation that can be employed only for smooth 
differentiable geometry of shell structures. 
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