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Abstract 
The use of Carbon Nanotubes as the reinforcing constituent for 
polymer matrix composites in place of conventional fibers has led 
to the emergence of a new generation of advanced composite mate-
rials. In this paper, the free vibration of functionally graded nano-
composite beams on elastic foundations are studied. Three different 
types of Carbon Nanotubes distributions in the polymer matrix 
material are studied; Uniform distribution, symmetrically function-
ally graded distribution and unsymmetrically functionally graded 
distribution. The analysis is carried out by a mesh-free method 
using the two-dimensional theory of elasticity. The Moving Least 
Square shape functions are implemented to approximate the dis-
placement field. Due to the absence of the Kronecker delta proper-
ty of the shape functions, a transformation technique is used to 
apply the essential boundary conditions. After validation, the ef-
fects of different design parameters such as Carbon Nanotubes 
distribution, slenderness ratios, boundary conditions and founda-
tion stiffness on the vibrational behavior of the structure are inves-
tigated. It can be seen that from a design perspective, the vibra-
tional response of a FG structure may be controlled in two ways; 
one way is through changing the distribution of the CNT’s in the 
matrix material and the other way is by changing stiffness of the 
elastic foundation on which it is resting. A notable observation is 
that increasing the stiffness of the foundation will move the neutral 
axis away from the foundation support of the beam. The current 
approach can serve as a benchmark against which other semi-
analytical and numerical methods based on classical beam theories 
can be compared. 
 
Keywords 
Functionally graded material, Carbon Nanotubes, Vibration, Mesh-
free method, Elastic foundation. 
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1 INTRODUCTION 

Carbon NanoTubes (CNT’s), due to their supreme mechanical, thermal and electrical properties, 
have recently attracted numerous applications in different fields. [Dai (2007), Kang et al. (2006), 
Lau et al. (2006)] In particular, their use as the reinforcing constituent for polymer matrix compo-
sites in place of conventional fibers has led to the emergence of a new generation of advanced com-
posite materials.  

However, one problem with the application of CNT’s as the reinforcing agent in polymers is the 
weak interfacial bonding between the CNT’s and the matrix. This shortcoming can be alleviated 
through the use of Functionally Graded Materials (FGM’s) in which material properties vary 
smoothly and continuously [Yas and Samadi (2012)]. This smooth variation of material properties is 
a major advantage of FGM’s over conventional laminated composites where the sudden change in 
material properties across the interface causes delamination. In addition, in FGM’s, the volume 
fractions of the constituents can be tailored for optimal performance of the structure [Qian and 
Ching (2011)]. It has been suggested by Shen (2009) that using the concept of FGM, i.e., gradual 
distribution of CNT’s in the matrix material can considerably improve the interfacial bonding 
strength between the CNT’s and the matrix. 

Although a large amount of research has been dedicated to accurately obtaining the mechanical 
properties of Carbon NanoTube-Reinforced Composites (CNTRC’s) [Odegard et al. (2003), Hu et 
al. (2005), Fidelus et al. (2005), Bonnet et al. (2007), Han and Elliot (2007), Zhu et al. (2007)], not 
as many studies have yet been conducted on the global response of CNTRC’s to actual structural 
loading conditions in practical applications which is of course the ultimate purpose for the design 
and development of such materials.  

One example of practical applications of such advanced composite materials are in structures 
resting on elastic foundations. In particular, FGM beams on elastic foundations are often used to 
describe a lot of engineering problems and has application in geotechnics, road, railroad and marine 
engineering and bio-mechanics. The selection of the proper CNT’s distribution and foundation stiff-
ness are two important aspects to be taken into account in the design of such structures   

In the literature, the works on FGM beams resting on elastic foundations can be classified into 
two main categories. The first group used analytical and semi-analytical methods to study the 
bending and vibrations of FG beams resting on elastic foundations. Ying et al. (2008) presented 
exact solutions for functionally graded simply supported beams resting on a Winkler–Pasternak 
elastic foundation based on the two-dimensional theory of elasticity. Fallah and Aghdam (2011) 
studied the free vibration and post-buckling of FG beams on nonlinear elastic foundations subject 
to axial loads. They used He’s variational method to get the approximate closed form solution of 
the nonlinear governing equation. Arefi (2014) studied the nonlinear response of FG beams on elas-
tic foundations and spring supports using Adomians Decomposition and successive approximation 
methods for the solution of the nonlinear differential equation. Yaghoobi and Torabi (2013) used 
the Variational Iteration Method to study the post-buckling and vibration of geometrically imper-
fect FG beams resting on elastic foundation. The Variational Iteration Method was also used by 
Kanani et al. (2014) to study the free and forced vibrations of FG beams on elastic foundations. 
The second group of works utilized numerical methods to investigate static and dynamic behavior 
of FGM beams resting on elastic foundations. From among numerical methods, the Finite Element 
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Method (FEM) has widely been used for this purpose. Examples of research studies using the FE 
method are the works done by Abbas and Thomas (1978), Ozturk and Sabuncu (2005), Mohanty et 
al. (2011). Differential quadrature (DQ) method is another numerical scheme used to study the 
bending and vibration of FGM beams on elastic foundations. Researchers who have used the DQ 
method to this aim include Pradhan and Murmu (2009); Esfahani et al. (2013); Yas and Samadi 
(2012). 

In recent years, mesh free methods have been used as an efficient numerical method to solve dif-
ferent initial-boundary-value problems. Unlike the finite element method (FEM), in mesh-free 
methods the physical problem domain is modeled by only a set of scattered nodes without the need 
to be connected to form a closed polygon. The main advantage of mesh-free methods as compared 
to the FEM is the elimination of the mesh generation phase which can therefore save a considerable 
amount of time in the pre-processing phase.  In addition, the computed stress by Mesh free methods 
result in smooth strain and stress fields without the need for any post-processing technique. As for 
functionally graded materials, since in mesh-free methods unlike the FEM, the material variation is 
captured at the integration points, fewer nodes will be required in the analysis of the problem for 
the same level of accuracy [Qian and Ching (2011)]. Different mesh-free methods have so far been 
proposed. Examples are the Diffuse Element Method (DEM) [Nayroles et al. (1992)], the Element-
Free Galerkin (EFG) method [Belytschko et al. (1994)], the Hp-Clouds method [Duarte and Oden 
(1996)], the Reproducing Kernel Particle Method (RKPM) [Liu et al. (1995)], the Partition of Unity 
Finite Element Method (PUFEM) [Melenk and Babuska (1996)], and the Meshless Local Petrov-
Galerkin (MLPG) method. [Alturi and Zhu (2000)] 

One of the most frequently used mesh-free methods in the analysis of solid mechanic problems 
is the Element Free Galerkin (EFG) method which utilizes the moving least square (MLS) shape 
functions. The main challenge in this method is the imposition of the essential boundary conditions 
due to the absence of the Kronecker delta property of the MLS shape function. To overcome this 
problem, the EFG method utilizes the Lagrange Multipliers Scheme for the imposition of the essen-
tial boundary conditions. However, this will be at the cost of increasing the number of degrees of 
freedom and resulting in a non-positive definite system matrix. In order to circumvent the afore-
mentioned issue, in the present paper, the transformation technique [Moradi-Datjerdi et al. (2013)] 
is used to impose the essential boundary conditions. In this technique, after the correction of the 
mesh-free shape functions, the essential boundary conditions are imposed as in the FEM causing the 
number of the degrees of freedom to remain unchanged. A very recent work using MLS shape func-
tions is the study of the free vibration of functionally graded cylindrical panels in 3 dimensions con-
ducted by Soltanimaleki et al. (2015). The bulk of the works in the literature are based on the as-
sumptions of beam theories; mostly Euler-Bernoulli and Timoshenko. However, beam is a three-
dimensional structure and although Timoshenko theory is an improvement on the Euler Bernoulli 
theory, the assumptions of the beam theories may not accurately represent the actual response of 
the structure [Labuschagne et al. (2009)]. The objective of the present work is to study the vibra-
tion of functionally graded nanocomposite beams resting on Winkler and Pasternak foundation us-
ing the two-dimensional theory of elasticity by a mesh-free method. In addition to the practical 
applications of the problem under consideration, the distinctive features of the current work are the 
use of a meshless method considering the afore-mentioned advantages and the two dimensional elas-
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ticity solution which can give a more realistic representation of the structure compared to beam 
theories especially as the aspect ratio of the beam increases. 

The FG beam in this study is reinforced by randomly oriented Single-Walled Carbon Nano-
Tubes (SWCNT’s). It is assumed that the material properties vary in the thickness direction and 
are approximated using the Mori-Tanaka method [Mori and Tanaka (1973)]. In the mesh-free 
method, the moving least square (MLS) shape functions are implemented to approximate the dis-
placement field. The model is validated through comparison with the exact solution both for thick 
and thin beams. Once validated, the effects of different design parameters such as CNT’s distribu-
tion, slenderness ratios, boundary conditions and foundation stiffness on the vibrational behavior of 
the structure are investigated. 
 
2 MATERIAL PROPERTIES 

As the reinforcing constituent, CNT’s are either aligned or randomly oriented in the isotropic ma-
trix material. The effects of randomly oriented CNT’s on the elastic properties of CNTRC’s have 
been thoroughly investigated by Shi et al. (2004). Figure 1 shows a representative volume element 
of a polymer matrix reinforced with randomly oriented straight CNT’s. The orientation of the 
straight CNT is identified by angles α and β. 
 

 

Figure 1: Representative volume element of a polymer matrix reinforced with randomly oriented straight CNT’s. 

 
According to shi et al. (2004), despite the CNT’s having transversely isotropic properties, when 

the CNT’s are randomly oriented in the matrix, the composite material can be modeled as an iso-
tropic material. The effective properties of the isotropic materials is derived using the Mori-Tanaka 
approach. The Mori-Tanaka method is based on the assumption that each inclusion is embedded in 
the pristine matrix and subjected to far field average stress and strain [Mori and Tanaka (1973)]. 
The effective bulk modulus K and shear modulus G are defined as [Shi et al. (2004)]: 
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where Km and Gm are the shear and bulk moduli of the matrix material, respectively. Vr and Vm 
denote the volume fractions of reinforcements and matrix, respectively and  
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kr, lr , mr , nr and pr  are the Hill’s elastic moduli of the CNT’s. The effective Young’s Modulus E 
and Poisson’s ratio υ are defined as: 
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The volume fractions of the reinforcement Vr and matrix Vm are related as: 
 

1 mr VV (9)
 

Three different cases are investigated; uniform distribution (UD), symmetrically functionally 
graded (SFG) distribution and unsymmetrically functionally graded (USFG) distribution. The rein-
forcement volume fraction Vr for each case is defined as follows: 
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wr is the mass fraction of reinforcement. ρr and ρm are the densities of reinforcement and matrix, 
respectively. The mass density of the composite is calculated using the rule of mixtures: 
 

mmrr VV   (14)
 

Carbon Nanotubes are distributed in the matrix material in three different patterns; uniformly 
distributed, resulting in a uniform volume fraction through the thickness; symmetrically distributed 
in which the volume fraction of the reinforcement is minimum on the neutral axis and linearly in-
creases away from the neutral axis in the y direction and the unsymmetric distribution in which the 
volume fraction linearly increases through the thickness from the top to the bottom.   Figure 2 
schematically shows the FG beam cross sections for the three different CNT’s distribution types. 
Table 1 lists the material properties of the SWCNT’s reinforcement predicted through replacement 
with an equivalent long fiber [Yas and Heshmati (2012)]. 
 

 

Figure 2: Schematic representation of the CNT’s distribution within the matrix material. 

 
Material Property 

Longitudinal Modulus 649.12 (GPa) 
Transverse Modulus 11.27 (GPa) 

Longitudinal Shear Modulus 5.13 (GPa) 
Poisson’s ratio 0.284 

Density 1400 (kg/m3) 

Table 1: Material properties of the SWCNT’s reinforcement [Yas and Heshmati, (2012)]. 

 
3 PROBLEM FORMULATION 

The standard variational form of the equation of motion is expressed as follows: 
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where σ, ɛ, F, u and ܝ		ሷ represent stress, strain, surface traction, displacement and acceleration vec-
tors respectively. ᒥ is a part of boundary of domain Ω   on which traction F is applied. Stress and 
strain vectors are related through Hook’s law: 
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Dεσ  (16)
 

In the present work, moving least square (MLS) shape functions introduced by Lancaster and 
Salkauskas (1981) are used to approximate the displacement vector u at any point of interest using 
the nodes in the local support domain of that point. For a two dimensional problem: 
 

uφu ˆ (17)
 

ɸ and ܝෝ are the shape function matrix and the nodal values vector, respectively; n denotes the 
number of the nodes in the local support domain of the point of interest. 
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The strain-displacement relation can be expressed in terms of the nodal values ܝෝ as follows: 
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Substituting equations 16, 17 and 20 into the equation of motion yields: 
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In the above-given equation the surface traction will be the reaction force of the elastic founda-

tion which can be written in terms of nodal displacements: 
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KW, known as the Winkler coefficient, is the spring stiffness of the foundation controlling the 
transverse deflection of the structure. KP, known as Pasternak coefficient, is the stiffness of a shear 
layer which accounts for the shear interactions on the vertical springs of the foundation. Figure 3 
shows the geometry of a beam on Winkler-Pasternak foundation. 
 

 

Figure 3: The geometry of the beam on a Winkler-Pasternak foundation. 

 
Rearranging equation 22 considering the fact that it should hold for any arbitrary δ(ܝෝ)T leads 

to : 
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N is the total number of nodes in the problem domain. For numerical integration, the problem do-
main is discretized to a set of background cells with gauss points inside each cell. Then global stiff-
ness matrix K is obtained numerically by sweeping all gauss points inside Ω. . Similarly global force 
vector f is formed numerically in the same manner but by sweeping all gauss points on ᒥ. Since the 
MLS shape functions do not possess the Kronecker delta property, the essential boundary condi-
tions may not be directly imposed on the nodal vector	܃෡. To alleviate this problem, a transfor-
mation matrix is constructed which relates the real nodal displacement vector,  ܃ to	܃෡  : 
 

UTU ˆ (30)
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where  
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Using equation 30, equation 26 can be rewritten as: 
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where 
 

1ˆ  MTTM T
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The essential boundary conditions can now be imposed on the modified system (equation 32) 
similar to the finite element analysis. 
 
4 RESULTS 

Table 2 lists the fundamental frequency parameters for simply supported beams on Winkler and 
Pasternak foundations compared with the exact solution obtained by Chen et al. (2004). They as-
sumed trigonometric functions for the variations of the axial deflection, transverse deflection, trans-
verse normal stress and shear stress such that simply supported end conditions are satisfied. The 
results are seen to be in very good agreement with the literature for both thin and thick beams.  
 

Foundation Stiffness L/h=120 L/h=15 L/h=5 

 ഥp/π2 Present࢑ ഥw࢑
Exact [Chen 
et al. (2004)] 

Present 
Exact [Chen 
et al. (2004)]

Present 
Exact[Chen 
et al. (2004)] 

0 0 3.142080 3.141417 3.130338 3.1302475 3.048003 3.0479950 
 0.5 3.478399 3.476589 3.468103 3.4667123 3.395937 3.3945841 
 1.0 3.738382 3.735859 3.728751 3.7265663 3.660169 3.6580220 
 2.5 4.300635 4.296879 4.291623 4.2880929 4.221790 4.2183417 
        

100 0 3.748612 3.748219 3.739004 3.7389477 3.670508 3.6705003 
 0.5 3.961896 3.960669 3.952622 3.9516807 3.884874 3.8839762 
 1.0 4.145417 4.143565 4.136320 4.1347188 4.067915 4.0663637 
 2.5 4.585363 4.582264 4.576383 4.5734720 4.501957 4.4991384 
        

10000 0 10.024074 10.02404 9.995839 9.9958219 7.340804 7.3408115 
 0.5 10.036194 10.03610 10.007854 10.007782 7.340877 7.3408839 
 1.0 10.048271 10.04813 10.019825 10.019699 7.340948 7.3409553 
 2.5 10.084243 10.08394 10.055478 10.055193 7.341157 7.3411636 

Table 2: Fundamental frequency parameters for simply supported beams on Winkler and Pasternak foundations. 
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The convergence process of the above-obtained results is highlighted in table 3 showing how the 
dimensionless natural frequency of the beam vary with the number of nodes. The convergence is 
seen to have occurred for N=91x19 which will be used for the analyses and modified accordingly for 
different slenderness ratios. 
 

Foundation Stiffness Number of nodes 
 ഥp/π2  21X5 31X7 61X13 91X19 121X25࢑ ഥw࢑
100 0  3.670611 3.670551 3.670515 3.670508 3.670505 

 0.5  3.884931 3.884900 3.884879 3.884874 3.884872 
 1.0  4.067940 4.067929 4.067918 4.067915 4.067914 
 2.5  4.501920 4.501947 4.501956 4.501957 4.501957 

Table 3: Variations of the fundamental frequency parameter with the number of nodes (L/h=5). 
 

Table 4 shows how the first 3 dimensionless frequencies for different distribution types and vol-
ume fractions vary with foundation stiffness. The introduction of Winkler and Pasternak founda-
tions are seen to increase the rigidity and consequently the frequency parameter of the structure. 
The frequencies and stiffness foundations are nondimensionalized as follows: 
 

11

1

A
IL 

       11
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A
LKk W

W 
    11A

Kk P
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A11 and I11 are the stiffness and inertia terms of a homogeneous beam.  
 

෠ܸr  
 (0.1,0.05)=(ഥp࢑,ഥW࢑) (0.1,0)=(ഥp࢑,ഥW࢑) (0,0)=(ഥp࢑,ഥW࢑)

⍵ഥ1 ⍵ഥ2 ⍵ഥ3 ⍵ഥ1 ⍵ഥ2 ⍵ഥ3 ⍵ഥ1 ⍵ഥ2 ⍵ഥ3 

0.11 
UD 1.1299 2.6864 3.8633 1.1712 2.7032 3.8634 1.3750 3.0236 3.8668 
SFG 1.1762 2.7274 3.8485 1.2160 2.7441 3.8486 1.4119 3.0618 3.8519 

USFG 1.1023 2.6311 3.8479 1.1447 2.6484 3.8479 1.3546 2.9794 3.8505 

0.16 
UD 1.2174 2.8935 4.1645 1.2554 2.9089 4.1646 1.4458 3.2064 4.1678 
SFG 1.2693 2.9259 4.1389 1.3059 2.9413 4.1390 1.4882 3.2377 4.1422 

USFG 1.1730 2.8046 4.1376 1.2125 2.8206 4.1376 1.4112 3.1313 4.1402 

0.26 
UD 1.3619 3.2346 4.6641 1.3953 3.2481 4.6642 1.5658 3.5121 4.6673 
SFG 1.4152 3.2369 4.6146 1.4475 3.2506 4.6147 1.6106 3.5166 4.6177 

USFG 1.2865 3.0833 4.6122 1.3219 3.0975 4.6122 1.5035 3.3781 4.6148 

Table 4: The first 3 dimensionless frequencies (⍵ഥ ) for different distribution types and volume fractions (L/h=5). 
 

Figure 4 shows the variations dimensionless fundamental frequency for different CNT’s distribu-
tion types against the stiffness of the Winkler layer. It can be seen that for a given CNT’s volume 
fraction and foundation stiffness, due to the symmetrically linear distribution of CNT’s in the ma-
trix material i.e., the existence of more CNT’s in the high bending stress regions farther from the 
neutral axis, the SFG has the highest bending stiffness and consequently the highest natural fre-
quency of all the three cases. Similarly, the unsymmetrical distribution of CNT’s leads to the USFG 
distribution type having the lowest natural frequency. 
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Figure 4: Effect of the stiffness of the Winkler springs on dimensionless  

fundamental frequency (C-C) 	ࢂ෡ ࢘ ൌ ૙. ૛૟, L/h=5,	࢑ഥ࢖ ൌ ૙. 

 
In figure 5, the effect of the shear layer stiffness on the fundamental frequency of the structure 

is illustrated for two different slenderness ratios. Increasing the foundation stiffness results in a 
more rigid structure thereby giving rise to the frequency of the vibration. From a design perspec-
tive, the vibrational response of a FG structure may be controlled in two ways; one way is through 
changing the distribution of the CNT’s in the matrix material and the other way is by changing 
stiffness of the elastic foundation on which it is resting. However, as can be seen for thin beams, the 
latter approach seems more practical. 
 

 

Figure 5: Effect of the shear layer stiffness on dimensionless  

fundamental frequency (C-C) 	ࢂ෡ ࢘ ൌ ૙. ૛૟, L/h=5,	࢑ഥ࢝ ൌ ૙. ૝. 

 
How Winkler foundation stiffness affects the fundamental frequency of the structure is depicted 

in figure 6.  It is observed that increasing Winkler stiffness increases the frequency of the vibration; 
however, the rate of this increase gradually diminishes such that after a certain value of stiffness, no 
sensible change in the frequency occurs. 
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Figure 6: Variations of dimensionless fundamental frequency with the  

stiffness of the Winkler springs (C-C) 	ࢂ෡ ࢘ ൌ ૙. ૛૟, L/h=5,	࢑ഥ࢖ ൌ ૙. ૙ૡ. 

 
The variation of deformation along the thickness which may not be accurately described by 

simplified beam theories, can be investigated through the use of the dimensional elasticity. The use 
of two-dimensional elasticity theory as compared to beam theories will permit the investigation of 
through-thickness variations of deformations. The effect of elastic foundations on the through-
thickness variations of the transverse deflections is presented in figure 7. A notable observation is 
that increasing the stiffness of the foundation will move the neutral axis away from the foundation 
support of the beam.  
 

 

Figure 7: Through-thickness variations of the transverse deflections (C-C) 	ࢂ෡ ࢘ ൌ ૙. ૛૟, L/h=5. 

 
The effect of CNT’s volume fraction on the frequency of UD and SFG distribution is shown in 

figure 8. Increasing the volume fraction of the reinforcement is seen to increase the rigidity and 
consequently the natural frequency of the structure for both distribution types. While for low 
CNT’s volume fraction, there is little difference between the responses of the SFG and UD beams, 
increasing the volume fraction of the reinforcement is seen to be highlighting the symmetrical dis-
tribution effect of the SFG beam on increasing the frequency parameter of the structure.  
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Figure 8: Effect of the CNT’s volume fraction on dimensionless  

fundamental frequency (C-C) 	ࢂ෡ ࢘ ൌ ૙. ૛૟, L/h=5,	࢑ഥ࢝ ൌ ૙. ૝. 

 
To study the effect of boundary conditions on the vibration of the SFG beams four combina-

tions of free, simply supported, and clamped boundaries designated as C-C, C-S, S-S, C-F have 
been considered as shown in Figure 9a. The letters F, S, and C denote free, simply supported and 
clamped, respectively. It is seen that the fundamental frequency increases with greater geometric 
constraint in the following sequence (C-F, C-S, S-S, and C-C) which is due to the increase in the 
bending stiffness of the structure. A noteworthy observation is that unlike other boundary condi-
tions, for the C-F type, the fundamental frequency tends to slightly decrease with increasing the 
Pasternak stiffness. Such a trend, however, as seen in figure 9b, is not observed when increasing the 
Winkler stiffness of the structure.  
 

 

Figure 9a: Effect of boundary conditions on dimensionless  

fundamental frequency 	ࢂ෡ ࢘ ൌ ૙. ૛૟, L/h=5,	࢑ഥ࢝ ൌ ૙. ૝. 
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Figure 9b: Effect of boundary conditions on dimensionless fundamental frequency 	ࢂ෡ ࢘ ൌ ૙. ૛૟, L/h=5,	࢑ഥ࢖ ൌ ૙. ૙૛. 

 
5 CONCLUSIONS 

The vibration behavior of functionally graded beams reinforced by randomly oriented SWCNT’s on 
elastic foundations is studied using a mesh-free method. Three different types of CNT’s distribu-
tions in the polymer matrix material are investigated; uniform distribution (UD), symmetrically 
functionally graded (SFG) distribution and unsymmetrically functionally graded (USFG) distribu-
tion. The current two dimensional elasticity approach can serve as a benchmark against which other 
semi-analytical and numerical methods based on classical beam theories can be compared.  Based 
on the obtained results the following observations are made: 

It is observed that for a given foundation stiffness, functionally graded CNT’s with SFG i.e. the 
symmetric distribution has better capability to increase the frequency of the structure in compari-
son with other distribution types. This is because of the existence of more CNT’s in the high bend-
ing stress regions farther from the neutral axis. In fact, the frequency of the structure can be con-
trolled either by the distribution type of the CNT’s in the matrix material or changing the stiffness 
of the elastic foundation. The rate of frequency increase due to foundation stiffness is seen to be 
higher for thin beams in comparison with thick beams. The results also indicate that increasing the 
stiffness of the foundation after a certain value has no impact on the frequency of the structure. 
Unlike beam theories, the present approach will allow one to investigate the deformation along the 
thickness direction. The results show that increasing the foundation stiffness moves the neutral axis 
away from the foundation support of the beam. Greater geometric constraint is seen to increase the 
flexural rigidity and thus the fundamental frequency of the structure. From the four different 
boundary conditions studied; C-F, C-S, S-S, and C-C, only for the C-F boundary condition, increas-
ing the Pasternak stiffness of the foundation results in a slight decrease in the frequency of the 
beam. 
 
Acknowledgement 

This work was supported by the Natural Sciences and Engineering Research Council of Canada-
Discovery Grant Program 



A. Sayyidmousavi et al. / Free Vibration Analysis of Functionally Graded Nanocomposite Beams on Elastic Foundation Using a Mesh-Free...     2121 

Latin American Journal of Solids and Structures 14 (2017) 2107-2122 

References 

Abbas, B.A.H., Thomas, J. (1978). Dynamic stability of Timoshenko beams resting on an elastic foundation. Journal 
of Sound and Vibration 60 (1): 33–44. 

Arefi, M. (2014). Nonlinear analysis of a functionally graded beam resting on the elastic nonlinear foundation. Jour-
nal of Theoretical and Applied Mechanics 44: 71-82. 

Atluri, S.N., Zhu, T. (2000). The Meshless Local Petrov-Galerkin (MLPG) Approach for solving problems in elasto-
statics. Computational Mechanics 25(2): 169-179. 

Belytschko, T., Lu, Y.Y., Gu, L. (1994). Element-Free Galerkin Methods. International Journal for Numerical Meth-
ods in Engineering 37(2): 229-256.  

Bonnet, P., Sireude, D., Garnier, B., Chauvet, O. (2007). Thermal properties and percolation in carbon nanotube–
polymer composites. Journal of Applied Physics 91, 2019–2030. 

Chen, W.Q., Lu, C.F., Bian, Z.G. (2004). A mixed method for bending and free vibration of beams resting on a 
Pasternak elastic foundation. Applied Mathematical Modeling 28(10): 877-890.  

Dai, H. (2007). Carbon nanotubes: Opportunities and challenges. Surface Science 500(1-3): 218–241. 

Duarte, C.A., Oden, J.T. (1996).  H-p Clouds − an hp Meshless Method. Numerical Methods for Partial Differential 
Equations. 12(1-4): 673-705.   

Esfahani, S.E., Kiani, Y., Eslami, M.R. (2013). Non-linear thermal stability analysis of temperature dependent FGM 
beams supported on non-linear hardening elastic foundations. International Journal of Mechanical Sciences 69:10-20. 

Fallah, A., Aghdam, M.M. (2011). Nonlinear free vibration and post-buckling analysis of functionally graded beams 
on nonlinear elastic foundation. European Journal of Mechanics, A/Solids 30:571-583. 

Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K., Wagner, H.D. (2005). Thermo-mechanical properties of randomly 
oriented carbon/epoxy nanocomposites. Composites Part A. 36(11): 1555–1561. 

Han, Y., Elliott, J. (2007). Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube 
composites. Computational Materials Science 39, 315–323. 

Hu, N., Fukunaga, H., Lu, C., Kameyama, M., Yan, B. (2005). Prediction of elastic properties of carbon nanotube 
reinforced composites. Proceedings A of the Royal Society 461, 1685–1910. 

Kanani, A.S., Niknam, H., Ohadi, A.R., Aghdam, M.M. (2014). Effect of nonlinear elastic foundation on large ampli-
tude free and forced vibration of functionally graded beam. Composite Structures 115: 60-68. 

Kang, I., Heung, Y., Kim, J., Lee, J., Gollapudi, R., Subramaniam, S., Narasimhadevara, S., Hurd, D., Kirkera, G., 
Shanov, V., Schulz, M., Shi, D., Boerio, J., Mall, S., Ruggles-Wren, D. (2006). Introduction to carbon nanotube and 
nanofiber smart materials. Composites Part B. 37(6): 382–394. 

Labuschagne, A., VanRensburg, N.F.J., Van der Merwe, A.J. (2009). Comparison of linear beam theories. Mathe-
matical and Computer Modeling 49(1-2): 20-30. 

Lancaster, P., Salkauskas, K. (1981). Surface generated by moving least squares methods. Mathematics of Computa-
tion 37(154): 141–58. 

Lau, K.T., Gu, C., Hui, D. (2006). A critical review on nanotube and nanotube/nanoclay related polymer composite 
materials. Composites Part B. 37(6): 425–436. 

Liu, W.K., Jun, S., Zhang, Y.F. (1995). Reproducing Kernel Particle Methods. International Journal for Numerical 
Methods in Engineering 38(10): 1081-1106.  

Melenk, J.M., Babuska, I. (1996). The partition of Unity Finite Element Method: Basic theory and applications. 
Computer Methods in Applied Mechanics and Engineering 139(1-4): 289-314. 

Mohanty, S.C., Dash, R.R., Rout, T. (2011). Parametric instability of a functionally graded Timoshenko beam on 
Winkler's elastic foundation Nuclear Engineering and Design 241: 2698-2715 



2122     A. Sayyidmousavi et al. / Free Vibration Analysis of Functionally Graded Nanocomposite Beams on Elastic Foundation Using a Mesh-Free... 

Latin American Journal of Solids and Structures 14 (2017) 2107-2122 

Moradi-Dastjerdi, R. Foroutan, M., Pourasghar, A., (2013). Dynamic analysis of functionally graded nanocomposite 
cylinders reinforced by carbon nanotube by a mesh-free method. . Materials and Design 44, 256-266. 

Mori, T., Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclu-
sions Acta Metallurgica 21(5): 571–574. 

Nayroles, B., Touzot, G., Villon, P. (1992). Generalizing the finite element method: Diffuse approximation and dif-
fuse elements. Computational Mechanics 10(5): 307-318.  

Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J. (2003). Constitutive modeling of nanotube-reinforced 
polymer composites. Composite Science and Technology 63(11): 1671–1687. 

Ozturk, H., Sabuncu, M. (2005). Stability analysis of a cantilever composite beam on elastic support. Composite 
Science and Technology 65: 1982–1995. 

Pradhan, S.C., Murmu, T. (2009) Thermo-mechanical vibration of FGM sandwich beam under variable elastic foun-
dations using differential quadrature method. Journal of Sound and Vibration 321:342-362. 

Qian, L.F., Ching, H.K. (2011). Static and dynamic analysis of 2-D functionally graded elasticity by using meshless 
local petrov- galerkin method. Journal of Chinese Institute of Engineers 27(4): 491-503. 

Shen, H.S. (2009). Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal 
environments. Composite Structures 91(1): 9–19. 

Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., Gao, H. (2004). The effect of nanotube waviness and agglomera-
tion on the elastic property of carbon nanotube reinforced composites. Journal of Engineering Materials and Tech-
nology 126(3): 250–257. 

Soltanimaleki, A., Foroutan, M., Alihemmati, J. (2015). Free vibration analysis of functionally graded fiber rein-
forced cylindrical panels by a three dimensional mesh-free model.  Journal of Vibration and Control Doi: 
10.1177/1077546315570717 

Yaghoobi, H., Torabi, M. (2013). Post-buckling and nonlinear free vibration analysis of geometrically imperfect func-
tionally graded beams resting on nonlinear elastic foundation. . Applied Mathematical Modelling 37: 8324-8340. 

Yas, M.H., Heshmati, M. (2012). Dynamic analysis of functionally graded nanocomposite beams reinforced by ran-
domly oriented carbon nanotube under the action of moving load. Applied Mathematical Modeling 36(4): 1371-1394. 

Yas, M.H., Samadi, N. (2012). Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timo-
shenko beams on elastic foundation. International Journal of Pressure Vessels and Piping 98: 119-128. 

Ying, J., Lü, C.F., Chen, W.Q. (2008). Two-dimensional elasticity solutions for functionally graded beams resting on 
elastic foundations. Composite Structures 84: 209-219. 

Zhu, R., Pan, E., Roy, A.K. (2007). Molecular dynamics study of the stress–strain behavior of carbon-nanotube 
reinforced Epon 862 composites. Materials Science and Engineering: A 447(1-2): 51–57. 


