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Abstract 
Heat transfer search (HTS) is a novel metaheuristic optimization 
algorithm that simulates the laws of thermodynamics and heat 
transfer. In this study, the HTS algorithm is adapted to truss 
structure optimization. Sizing optimization searches for the mini-
mum weight of a structure subject to stress and displacement 
constraints. Three truss structures often taken as benchmarks in 
the optimization literature are selected here in order to verify the 
efficiency and robustness of the HTS algorithm. Optimization 
results indicate that HTS can obtain better designs (i.e. lighter 
trusses) than most of the state-of-the-art metaheuristic optimizers. 
The convergence behaviour of HTS also is as good as the other 
algorithms.  
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1 INTRODUCTION 

The main philosophy of metaheuristic optimization algorithms is to perform a pseudo-random 
search mimicking some natural phenomenon. Among methods developed in the last two decades, 
particle swarm optimization (PSO) reproduces the social behaviour of swarms (Kennedy and Eber-
hart, 1995); harmony search (HS) simulates the natural performance processes of musicians search-
ing for a state of harmony (Geem et. al, 2001); artificial bee colony (ABC) is another swarm intelli-
gence method which mimics the intelligent behaviour of honey bee swarms (Karaboga, 2005); big 
bang-big crunch (BB-BC) reproduces the process of expansion-contraction of the universe (Erol and 
Eksin, 2006); charged system search (CSS), developed by Kaveh  and Talatahari (2010), utilizes the 
Newtonian law of mechanics in addition to the electrical physics laws to direct the agents in order 
to recognize the optimum locations; firefly algorithm (FFA) is inspired by social behaviour of fire-
flies and the phenomenon of bioluminescent communication (Yang, 2010); teaching-learning-based 
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optimization (TLBO), developed by Rao et al. (2011), mimics the teaching and learning processes in 
a classroom, in particular influence of a teacher on learners and the mutual interactions of learners; 
flower pollination algorithm (FPA) which simulates the pollination process of flowering plants, first-
ly proposed by Yang (2012); swallow swarm optimization (SSO), developed by Neshat et al. (2013), 
bases on the analogy between swallow swarm behaviours and optimization problems; water evapo-
ration optimization (WEO), developed by Kaveh and Bakhshpoori (2016), mimics the evaporation 
of a tiny amount of water molecules adhered on a solid surface with different wettability which can 
be studied by molecular dynamics simulations.  

Various metaheuristic optimization methods have been applied to sizing optimization of truss 
structures (see, for example, the reviews by Lamberti and Pappalettere (2011), Saka and Dogan 
(2012), and the textbook by Kaveh (2014)). Just to mention a few examples, Sonmez (2011) pro-
posed an artificial bee colony (ABC) algorithm with an adaptive penalty function approach (ABC-
AP) to minimize weight of truss structures; ABC-AP algorithm was found to be competitive in 
terms of optimized weight but showed very poor convergence capability compared with other me-
taheuristic algorithms.  

Degertekin (2012) developed improved harmony search algorithms called efficient harmony 
search (EHS) and self-adaptive harmony search (SAHS) for sizing optimization of truss structures. 
The robustness of the proposed methods was verified by solving four design examples. The results 
demonstrated that SAHS is very powerful compared to classical harmony search and other me-
taheuristic optimization methods. 

Teaching-learning based optimization (TLBO) was used for optimum design of truss structures 
by Degertekin and Hayalioglu (2013); the efficiency of the proposed implementation was verified in 
several truss design examples.  

Camp and Farshchin (2014) proposed a modified teaching–learning-based optimization (TLBO) 
algorithm for optimization of truss structures. Without considering population size, convergence 
criterion, and penalty function structure, TLBO is parameter insensitive. The performance of above 
mentioned modified TLBO was found to be equivalent to other metaheuristic methods without 
applying parameter-based search mechanisms. 

Firefly algorithm (FFA) was applied to optimum design of truss structures by Degertekin and 
Lamberti (2013). FFA proved itself to be very competitive with other metaheuristic optimization 
methods.  

Kaveh et al (2014) hybridized the particle swarm and swallow swarm optimization (HPSSO) to 
solve mathematical optimization problems and truss weight minimization problems. The results 
obtained from design examples prove that HPSSO outperforms other PSO variants and is very 
competitive with state-of-art metaheuristic methods.  

Bekdaş et al. (2015) developed an algorithm called flower pollination algorithm (FPA) for sizing 
optimization of truss structures. The design examples presented in their study showed that FPA 
could produce better results in some cases. However, it was concluded that detailed parametric 
study should be performed in order to find the best parameter setting for the FPA algorithm so 
that it can solve a wider group of structural optimization problems. 

Kaveh and Bakhshpoori (2016) tested the water evaporation optimization (WEO) algorithm in 
six truss design problems from small to normal scale and compared it with the most effective avail-
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able state-of-the-art metaheuristic optimization methods. WEO resulted very competitive in terms 
of solution quality and robustness and the only weak point of the algorithm is its low convergence 
speed. 

A novel metaheuristic search method called heat transfer search (HTS) has been recently devel-
oped by Patel and Savsani (2015) for solving optimization problems. HTS simulates the course of 
action followed by a system to reach thermal equilibrium. The efficiency of HTS was evaluated 
through 24 mathematical optimization problems with explicit cost function and constraints. A de-
tailed comparison with a variety of metaheuristic methods (besides PSO, ABC and TLBO, also 
genetic algorithms, differential evolution and biogeography-based optimization were considered) was 
carried out setting for all algorithms the same limit number of function evaluations or the same 
convergence tolerance with respect to the target optimum. Numerical results demonstrate the effi-
ciency of HTS compared to other metaheuristic methods. 

The main goal of this study is to introduce the HTS algorithm into the optimization of truss 
structures. The performance of HTS is evaluated by considering three truss structures with 25, 72 
and 200 elements. For that purpose, HTS is compared with recently developed metaheuristic opti-
mization methods such as artificial bee colony algorithm with adaptive penalty (ABC-AP), self-
adaptive harmony search algorithm (SAHS), teaching-learning based optimization (TLBO), firefly 
algorithm (FFA), hybrid particle swarm swallow swarm optimization (HPSSO), flower pollination 
algorithm (FPA) and water evaporation optimization (WEO). The considerable amount of data 
available in the literature for the selected test problems provides a valuable basis of comparison to 
evaluate the performance of HTS. 

The remainder of this paper is organized as follows: the structural optimization problem is stat-
ed in Section 2. The HTS algorithm is explained in Section 3. The implementation of HTS algo-
rithm for optimization of truss structures is presented in Section 4. The design examples are de-
scribed in Section 5. Finally, some concluding remarks are presented in Section 6.  
 
2 THE STRUCTURAL OPTIMIZATION PROBLEM 

The sizing optimization problem of a truss structure including nm members can be formulated as: 
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where: X  is the vector containing the design variables; ix  is the cross-sectional area of the i-th 

group of bars, taken as the i-th design variable; min
ix  and max

ix , respectively, are the minimum and 

maximum values for cross-sectional areas; W(X) is the weight of the structure; ng is the number of 
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design variables, equal to the number of member groups included in the structure; mk is the total-
number of members in group k ; ρk and Lk, respectively, are the mass density and the length of the 

k-th member in the i-th group. m  is the axial stress of the m-th member; c
m  and t

m , respective-

ly, are the allowable compression and tension stresses for the m-th member. jd is the nodal dis-

placement of the j-th translational degree of freedom, min,jd   and max,jd , respectively, are its lower 

and upper limits; ndof is the number of translational degrees of freedom.  
The design constraints given in Eqs. (3-4) are handled by using the following modified feasible-

based mechanism, successfully applied to sizing optimization of truss structures (Kaveh and 
Talatahari, 2009a; Degertekin and Hayalioglu, 2013): (i) Any feasible design is preferred to any 
infeasible design; (ii) Infeasible designs with a slight constraint violation are taken feasible; (iii) Be-
tween two feasible designs, the one having the better objective function value is preferred; (iv) Be-
tween two infeasible designs, the one having the smaller constraint violation is preferred. 
 
3 THE HEAT TRANSFER SEARCH ALGORITHM 

Heat transfer is the branch of Physics concerned with the exchange of heat between systems having 
different temperatures. Temperature gradients result in a transport of thermal energy within a sys-
tem or between systems in thermal contact to each other. Heat transfer occurs because any system 
attempts to reach the temperature of its surroundings (Hollman, 2010; Çengel, 2008; von Böckh and 
Wetzel, 2012). Clusters of molecules possess different temperature levels in heat transfer. If a system 
is thermally unbalanced with itself and/or its neighbouring systems, it attempts to overcome this 
situation by reaching a state of thermal equilibrium.  

Heat transfer consists of three basic mechanisms: conduction, convection and radiation. Conduc-
tion is the transfer of energy from the more energetic particles of a substance to the adjacent less 
energetic ones as a result of interactions between the particles. Convection is a mode of heat trans-
fer between a solid surface and the adjacent liquid or gas that is in motion; it involves the combined 
effects of conduction and fluid motion. Radiation is the energy emitted by the matter in the form of 
electromagnetic waves as a result of the changes in the electronic configurations of the atoms or 
molecules (Hollman, 2010; Çengel, 2008; von Böckh and Wetzel, 2012).  

Heat transfer has many application areas such as heating, ventilating and air conditioning sys-
tems, thermal power plants, refrigerators and heat pumps, gas separation and liquefaction, cooling 
of machines, processes requiring cooling or heating, heating up or cooling down of production parts, 
rectification and distillation plants etc. The detailed information about the thermal equilibrium and 
heat transfer can be found in the study of Patel and Savsani (2015) and other sources (Hollman, 
2010; Çengel, 2008; von Böckh and Wetzel, 2012). Therefore, the same definitions and equations 
will not be repeated here for the sake of brevity.  

The laws of thermodynamics and heat transfer have been incorporated by Patel and Savsani 
(2015) into the Heat Transfer Search (HTS) metaheuristic optimization algorithm, developed for 
constrained optimization problems. The HTS algorithm consists of three phases called as ‘conduc-
tion phase’, ‘radiation phase’ and ‘convection phase’. The ‘conduction phase’, ‘radiation phase’ and 
‘convection phase’ neutralize the thermal unbalance (i.e. change the energy level) of the system by 
conduction, radiation and convection heat transfer, respectively. A uniformly distributed random 
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number (Rn) between 0 and 1 is initially generated in the HTS algorithm in order to decide which 
phase should be executed. One of these phases is used in an iteration according to the value of Rn 
and each phase has equal probability between 0 and 1 to be carried out. It is demonstrated that 0–
0.3333, 0.3333–0.6666 and 0.6666–1 are suitable intervals for the values of Rn to execute conduc-
tion, radiation and convection phases, respectively.  

Initial population is generated randomly in the HTS algorithm similar to other population-based 
optimization algorithms. After that, new designs are produced by using the conduction, convection 
or radiation phases. If a new trial design yields a better objective function value than the existing 
one, the previous design is replaced. Otherwise, the original design is left unchanged. Moreover, 
worst designs of the current iteration are replaced with elite designs of the previous iteration if the 
elite designs of the previous iteration have better objective function values than the current worst 
ones. Another rule applied in the HTS algorithm is that if duplicate designs are found in the popu-
lation after replacing worst designs with elite designs, one of the duplicate designs is modified. For 
this purpose, a randomly selected design variable of the duplicate design is updated as follows: 
 

old
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old
j

new
j xrxx   if 50.00.0  ir  (5) 

 

old
ji

old
j

new
j xrxx )1(   if 0.150.0  ir  (6) 

 

where: new
jx and old

jx , respectively, are the new and old values of the selected j-th design variable; ir   

is a random number generated between 0 and 1.  
The analogy between the HTS and optimization of truss structures can be established as fol-

lows: different temperatures of molecules represent the different design variables (member groups for 
a truss design), the energy level of the molecules symbolizes the objective function of the truss 
structure, the cluster of molecules in the heat transfer represents candidate designs in the popula-
tion of HTS algorithm. The current best truss design is taken as the surroundings and rest of the 
truss designs are considered as a system.  
 
3.1 Conduction Phase 

The conduction phase is executed if the uniformly distributed random number (Rn) generated is 
between 0 and 0.3333. In this phase, designs are modified based on the randomly selected design 
from the population and only one randomly selected design variable is updated. This phase includes 
two parts. According to the iteration number (it) and the conduction factor (CDF), the first part is 
executed as follows. 

If it<itmax/CDF (where itmax is the maximum iteration number), designs are updated as follows: 
 

1,, CDSXX old
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where j=1,2,….,np ; k ϵ (1,2,….,np)  (j ≠ k) is a randomly selected truss design from the population, 
np is the population size (i.e. total number of truss designs in the population), i ϵ (1,2,….,ng) and i 
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is the randomly selected design variable, ng is the number of design variables (i.e. number of mem-
ber groups in a truss design). CDS1 and CDS2 are the conduction steps given as follows: 
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Since the temperature of the system is continuously changing in the heat transfer process, ther-
mal conductivity and conductance also change. The temperature dependent behaviour of conduct-
ance is accounted for by the variable Rn which can take any value between 0 and 0.3333 at the 
beginning of each generation in the conduction phase. Moreover, to exploit the search space, this 
random variable is modelled by squaring its value so to carry out a fine search (Patel and Savsani, 
2015).  

If it≥itmax/CDF, the second part of the conduction phase is performed as follows: 
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where ri is a randomly generated real number between 0 and 1. As the value of ri varies between 0 
and 1, the optimizer will explore the search space. The conduction factor (CDF) decides the explo-
ration and exploitation tendency of the conduction phase and it is set as 2 (Patel and Savsani, 
2015).  

Hence, in the conduction phase we randomly select the k-th design of population and perturb 
one design variable of each other j-th design included in the population, trying to reach the state of 
the k-th design. Should the j-th design be better than the k-th design, we perturb the k-th design to 
reach the state of the j-th design.  

Furthermore, setting CDF=2 results in exploitation and exploration be equally distributed in 
the conduction phase; Eqs. (9-12) indicate that exploitation characterizes the first half of optimiza-
tion process. While the latter may seem in contrast with the classical flow of metaheuristic optimi-
zation where the best regions of design space found in the exploration phase are locally refined in 
the exploitation phase, it should be noted that thermal conduction is the most important heath 
transfer mechanism inside a continuous medium. The candidate designs included in the population 
converge to the optimum, similar to all temperatures finally reaching the equilibrium temperature. 
In the initial stages of optimization process, designs cover a larger fraction of design space, similar 
to having less closely spaced clusters of molecules. Hence, conduction will mainly occur in the 
neighbourhood of each cluster of molecules, along some preferential direction: this corresponds to 
have each candidate design locally refined through exploitation by perturbing one variable at a 
time.  
 
3.2 Convection Phase 

In the convection phase, the system tries to reach thermal equilibrium through convection heat 
transfer. The mean temperature of the system interacts with the surrounding temperature to estab-
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lish a thermal balance between the system and the surrounding (the latter denotes the best design 
in the population). The convection phase is executed for the values of Rn between 0.6666 and 1 (see 
Section 3). All design variables are simultaneously updated to generate new designs with the follow-
ing equation: 
 

i
old
ij

new
ij COSXX  ,,  if )()( kj XWXW   (13)

 

where: j=1,2,…,np; i=1,2,…,ng. The COSi factor is the convection step expressed for the i-th design 
variable as: 
 

)( ,, TCFxxRnCOS imsisi   (14)
 

In Eq. (14), Rn is equal to the probability of selecting convection phase. xs,i and xms,i denote the 
temperature of the surrounding and the mean temperature of the system, respectively. For truss 
optimization problems, xs,i is the considered i-th optimization variable of the best design currently 
included in the population and xms,i is the mean value for the considered optimization variable aver-
aged over the np agents.  

Since the surrounding is treated as a heat sink or heat source in the heat transfer, its tempera-
ture remains constant in the current iteration. In order to take into account this effect and attain 
proper balance between exploration and exploitation, the temperature change factor (TCF) is de-
fined as follows (Patel and Savsani, 2015): 
 

)( irRnabsTCF   if COFitit max  (15)
 

)1( irroundTCF   if COFitit max  (16)
 

where ri is a random number in the range [0,1]. The value of TCF changes randomly between 0 and 
1 in the first part of the convection phase. In the second part of the convection phase, value of TCF 
changes either as 1 or 2. The COF parameter regulates exploration and exploitation of convection 
phase. The results of sensitivity analysis carried out by Patel and Savsani (2015) demonstrated that 
the value of 10 is suitable for the COF parameter. Since population tends to become more and more 
clustered about the current best record as optimization iterations proceed, xs,i and xms,i  will tend to 
coincide thus yielding risk of stagnation and premature convergence. In order to avoid this, HTS 
tries to keep perturbations given to design variables large enough. For that purpose, the difference 
between xs,i and xms,i  is magnified by increasing TCF in the second part of the optimization process. 
Therefore, exploration always plays an important role in the convection phase. This is consistent 
with the physics of the convection phenomenon which affects the whole body surrounded by a heat 
sink/source. Similar to convection which is driven by the average temperature of the body, the 
whole population will have to search for a new configuration in the design space. 
 
3.3 Radiation Phase 

Radiation phase is executed when the generated random number Rn is between 0.3333 and 0.6666 
(see Section 3). In the radiation phase, the system interacts with the surrounding (i.e. best truss 
design) or within the system itself (i.e. other truss designs) to provide a thermal balance. Similar to 
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conduction and convection phases, radiation phase consists of two parts. In the first part, where it 
holds it ≤ itmax/RDF, design is updated as follows:  
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ij   if )()( kj XWXW   (17)

 

2,, RDSXX old
ij

new
ij   if )()( jk XWXW   (18)

 

where: RDF is the radiation factor set equal to 2 as suggested by Patel and Savsani (2015); 
j=1,2,…,np  with j≠k; k ∈ (1,2,…,np) is a randomly selected design from the population, i ∈ 
(1,2,…,ng). All design variables are simultaneously updated in this phase, similarly to what happens 
in the convection phase.  

The radiation steps RDS1 and RDS2 are determined as: 
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where Rn is the probability of selecting the radiation phase.  
In the second part of radiation phase, where it holds it ≥ itmax/RDF, design is updated as fol-

lows:  
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The values of RDS3 and RDS4 steps are now computed as: 
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where ri is a random number generated in the range [0, 1] for the i-th design variable. 
Basically, in the radiation phase, all designs “j” are compared with a randomly selected design 

“k” and move towards this design if such a movement yields improvement in cost function. The 
distance between design “j” and “k” is scaled by the same random number Rn between 0.3333 and 
0.6666 in the first half of the optimization process and other random numbers ri, that change for 
each design variable, in the remaining iterations. This suggests that exploration will characterize the 
first half of the optimization process (somehow similar to having a constant velocity in particle 
swarm optimization) while exploitation is carried out later by locally refining the size of the move-
ment for each agent and/or design variable. It should be noted that since random numbers Rn and 
ri all belong to the (0,1) uniform distribution, they may have the same probability to be generated 
and could even coincide. However, the distance |||| old

k
old
j XX   between designs “j” and “k" decreases 

as we approach the optimum design. 
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The population updating process is consistent with the physics of the radiation phenomenon: 
each cluster of molecules can exchange heat with any other cluster of molecules regardless they are 
in physical contact or not. Radiation is a strongly “individual” process where each part of the system 
emits or receives thermal waves travelling in the space. It is interesting to compare Eqs. (17-24) 
that govern the radiation phase with Eqs. (7-12) that govern the conduction phase. Since heath flux 
intensity increases with thermal gradient, we may think to reach more quickly thermal equilibrium 
by selecting, for example, regions with very large temperature differences. Let us assume that region 
“A” is at higher temperature than region “B”. If A and B are very far, heat flux originating from A 
will have to reach intermediate positions C, D etc in the path from A to B before arriving to B. In 
optimization terns, HTS will have to generate trial designs in the neighbourhood of A to approach 
the position of B in the design space. These trial designs are reached by the thermal front and in 
turn will transfer it to other trial designs until reaching position B. As is clear, this an exploitation 
type mechanism as we cannot perturb too much the current design in order to remain in its neigh-
bourhood. Conversely, the radiation front emitted from A will directly reach B without passing 
through any intermediate position, i.e. other designs of the population: this appears to be a typical 
exploration search mechanism. 
 
4 IMPLEMENTATION OF THE HTS ALGORITHM IN TRUSS SIZING OPTIMIZATION  

The search mechanism of the HTS algorithm was explained in the previous section. The algorithm 
includes three phases each of which is divided in two parts whose activation is based on the current 
number of iterations and depends on the conduction, convection and radiation factors. The number 
of structural analyses performed in each iteration is equal to the population size np. An iteration is 
completed when the randomly selected phase is performed. The HTS algorithm repeats the search 
process until the predetermined total number of iterations is performed. 

The HTS algorithm for sizing optimization of truss structures developed in this study includes 
the following steps: 
Step 1: Initialize the HTS algorithm parameters: population size (np), elite design set size (ies), 

conduction factor (CDF), convection factor (COF), radiation factor (RDF). Set the iteration 
counter: it=0. 

Step 2: Randomly generate an initial population consisting of truss designs. Each design variable in 
a truss design is generated between its minimum ( jxmin ) and maximum       ( j

ix max ) bounda-

ry values using the following equation: 
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j
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j
i xxrandxx   i=1,2,…,ng; j=1,2,…,np (25)

 

Truss designs included in the population are organized into a matrix where each row represents 
a candidate design. An extra-column with the values of cost function computed for each design may 
be added to the matrix. 
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Step 3: Calculate the objective function )(XW , analyze the truss designs and obtain nodal dis-

placements and member stresses using Eqs. (2-4).  
Step 4: Increase the iteration counter, it=it+1. Generate a uniformly distributed random number 

Rn between 0 and 1 in order to decide which heat transfer phase should be performed.  
Step 5: If 0 ≤ Rn ≤ 0.3333, perform the conduction phase by using Eqs. (7-12).  
Step 6: If 0.3333 <Rn < 0.6666, perform the radiation phase by using Eqs (17-24).  
Step 7: If 0.6666 ≤ Rn ≤ 1.0, perform convection phase by using Eqs. (13-16).  
Step 8: Obtain a new truss design, calculate cost function value )(XW  and constraints with Eqs. 

(2-4). If the new truss design has better (i.e. lighter) )(XW  value than the previous one, ex-

change them. Otherwise, leave the original design unchanged. Use the four constraint han-
dling rules described in Section 2. Repeat this process until all designs in the population are 
updated.  

Step 9: Replace the worst designs of the current iteration with the elite designs of previous iteration 
if these have better values of cost function than the current worst designs.  

Step 10: If duplicate designs exist in the population after replacing worst designs with elite designs, 
modify one of the duplicate designs with Eqs. (5-6). 

Step 11: Stop the search process if the termination criterion is satisfied. Assign the minimum weight 
truss design with no constraint violation as the final optimum design. Otherwise, go to step 
4.  

 
5 TEST PROBLEMS AND OPTIMIZATION RESULTS 

The efficiency of the HTS algorithm is tested on three classical truss structures (including, respec-
tively, 25, 72 and 200 elements) commonly used as benchmark in the optimization literature. The 
results obtained by HTS are compared with those of artificial bee colony with adaptive penalty 
function (ABC-AP), hybrid big bang-big crunch (HBB-BC), self-adaptive harmony search algo-
rithm (SAHS), teaching-learning based optimization (TLBO), firefly algorithm (FFA), multi-stage 
particle swarm optimization (MSPSO), hybrid particle swarm and swallow swarm optimization 
(HPSSO), corrected multilevel and multipoint simulated annealing (CMLPSA), modified teaching 
learning based optimization (TLBO), flower pollination algorithm (FPA) and water evaporation 
optimization (WEO). 

Thirty independent optimization runs are executed for each test problem starting from thirty 
randomly generated initial populations. The best design obtained in the thirty optimization runs, 
the number of structural analyses required by the best run, the average optimized weight and the 
standard deviation of optimized weight are shown in the tables. The HTS algorithm is coded in 
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Fortran and optimizations are carried out on a standard PC equipped with a single 2.6 GHz Intel® 
Pentium Core i5-3320M CPU.  

It was demonstrated in the study of Patel and Savsani (2015) that the most suitable values for 
control parameters of HTS are 2 for ies, CDF and RDF, and 10 for COF, respectively. Here, a new 
sensitivity analysis was performed starting from the same values of control parameters suggested by 
Patel and Savsani (2015) for mathematical optimization problems. The inherent robustness of HTS 
algorithm made it possible to immediately obtain very competitive results also for truss sizing prob-
lems. Such a behavior has indeed a theoretical explanation. In HTS, conduction, convection and 
radiation phases are activated depending on the value extracted in the interval (0,1) for the uni-
formly distributed random number Rn. Hence, the three mechanisms practically occur the same 
number of times in the optimization process. Conduction and radiation phases are anti-symmetric in 
the sense that the former turns from exploitation to exploration while the latter turns from explora-
tion to exploitation as iterations progress. Since the ideal condition is to reach an exact balance of 
these two mechanisms, setting CDF=RDF=2 is practically a straightforward option as the iteration 
history is divided in two equal parts. As far as it concerns the setting of convection factor COF, we 
found that setting this parameter between 5 and 15 results in small variations of convergence be-
havior. This can be explained with the following informal argument. Conduction/radiation mecha-
nisms are twice more likely to be selected than convection because the Rn number is uniformly dis-
tributed. Since convection passes from exploitation to exploration and conduction/radiation mecha-
nisms are anti-symmetric, it is preferable to “limit” the exploitative part of convection phase to have 
enough search freedom over the whole optimization process. In order to satisfy this goal, we started 
with setting COF=4, that is equal to the sum (CDF+RDF), and then increased COF to the square 
power (CDF+RDF)2=16. Interestingly, the average of these bounds is just 10, i.e. the value sug-
gested in literature for the COF parameter. 

Population size (np) was set equal to 50 after many numerical trials because using smaller popu-
lations resulted in a premature convergence of optimization process while larger values than 50 did 
not improve optimum design significantly. Evidence gathered from sensitivity analysis led to set the 
maximum number of iterations as 400 for the first and the second design examples and 500 for the 
last design example, respectively. The maximum number of structural analyses performed by HTS 
is equal to the product between population size and limit number of iterations: 20000 for the first 
and second design examples and 25000 for the last design example, respectively.  

Although sizing design of truss structures may appear computationally trivial, and multi-start 
gradient-based optimization can efficiently solve this problem, truss sizing optimization still is a 
legitimate testing grounds for new global optimization algorithms for at least two reasons. First, 
gradient-based optimizers may exhibit premature convergence if search starts very far from opti-
mum or from an infeasible region. Interestingly, particle swarm optimization is the metaheuristic 
algorithm that most suffers from premature convergence because its formulation somehow reflects 
the line search process of gradient-based optimization (see, for example, Perez and Behdinan 
(2007)).  

Second, there are many references on truss problems in the technical literature. This makes the 
problem of developing/testing new algorithms more challenging even for simpler problems because 
any algorithm never applied before to a specific type of optimization problems always should im-
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prove existing results or at least reach a very good compromise between capability to find global 
optimum, fastness and robustness. However, it appears from the literature that practically any 
state-of-the-art metaheuristic algorithm neither converges to slightly heavier designs than those 
quoted in the leading studies even for small/average scale problems, nor it can maintain the same 
level of efficiency in all test cases. In our specific case, the apparent easiness of truss structures is 
counterbalanced by the existence of local minima besides the global optimum: this happens, for 
example, of the 25-bar and 200-bar truss problems. 
 
5.1 Spatial 25-Bar Truss Structure 

The spatial 25-bar truss structure shown in Fig. 1 is chosen as first design example. The structure is 
made of aluminium: Young’s modulus is 10 Msi while mass density is 0.1 lb/in3. The structure is 
subject to the two independent loading conditions listed in Table 1. Because of structural sym-
metry, bars can be divided in eight groups: the corresponding sizing variables and the allowable 
stress values for all groups are listed in Table 2. Cross-sectional area of elements must be greater 
than 0.01 in2. The displacement of each free node in all coordinate directions must be less than 
±0.35 in.  
 

 

Figure 1: Schematic of the spatial 25-bar truss structure. 

 
 Condition 1 Condition 2 

Node Fx Fy Fz Fx Fy Fz 
1 0.0 20.0 -5.0 1.0 10.0 -5.0 
2 0.0 -20.0 -5.0 0. 10.0 -5.0 
3 0.0 0.0 0.0 0.5 0. 0. 
6 0.0 0.0 0.0 0.5 0. 0. 

Note: loads are in kips 

Table 1: Loading conditions for the spatial 25-bar truss. 
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Design variables 
Ai (in2) 

Allowable compressive 
stress (ksi) 

Allowable tensile  
stress (ksi) 

A1 35.092 40.0 
A2-A5 11.590 40.0 
A6-A9 17.305 40.0 

A10-A11 35.092 40.0 
A12-A13 35.092 40.0 
A14-A17 6.7590 40.0 
A18-A21 6.9590 40.0 
A22-A25 11.082 40.0 

Table 2: Allowable stresses in element groups for the spatial 25-bar truss. 

 
The results obtained by the HTS algorithm and other metaheuristic optimizers are compared in 

Table 3. HTS found an optimum design weighing 545.13 lb after 7653 structural analyses, hence 
much before the limit number of 20000 analyses set for this test problem. This design is better than 
those found by ABC-AP (Sonmez, 2011), FFA (Degertekin and Lamberti, 2013), MSPSO 
(Talatahari et. al, 2013), HPSSO (Kaveh et. al, 2014), TLBO (Camp and Farshchin, 2014), FPA 
(Bekdaş et. al, 2015) and WEO (Kaveh and Bakhshpoori, 2016), but it is between 0.01 and 0.04 lb 
heavier than the optimum designs of SAHS (Degertekin, 2012) and TLBO (Degertekin and 
Hayalioglu, 2013) that are the best quoted in the literature. Furthermore, the number of structural 
analyses required by HTS for completing the optimization process is the smallest among the me-
taheuristic algorithms compared in this study.  

It should be noted that the designs optimized by HPSSO (Kaveh et. al, 2014) and FPA (Bekdaş 
et. al, 2015) violate slightly design constraints while HTS converged to a strictly feasible design. 
Another optimized design often cited in literature is that obtained by Kaveh and Talatahari 
(2009b): their hybrid big bang-big crunch algorithm found an optimum weight of 545.16 lb within 
12500 structural analyses. Since this design violates constraints by 2.06%, it was not included in 
Table 3 for the sake of brevity. 

It can be seen from Table 3 that HTS is robust enough compared with the other metaheuristic 
algorithms. WEO (Kaveh and Bakhshpoori, 2016), TLBO (Degertekin and Hayalioglu, 2013), FFA 
(Degertekin and Lamberti, 2013), SAHS (Degertekin, 2012) and HPSSO (Kaveh et. al, 2014) 
achieved a smaller standard deviation than HTS (between 0.083 and 0.432 lb vs. 0.476 lb) but at a 
considerably higher computational cost (between 12199 and 25014 vs. only 7653 structural analyses) 
or even violating optimization constraints (HPSSO and FPA). 

The optimization histories plotted in Fig. 2 for HTS and other representative algorithms cover 
only the first 8000 structural analyses, thus including the 7653 analyses required by HTS to find its 
best design. It can be seen that the present algorithm could rapidly approach optimum weight (in 
particular, it required about 6000 structural analyses to find an intermediate design only 0.01% 
heavier than the final weight of 545.13 lb reported in Table 3). Furthermore, it is very competitive 
with the other metaheuristic optimizers in terms of convergence speed although the best agent in-
cluded in the HTS initial population very often yield a larger structural weight than for the other 
algorithms. WEO (Kaveh and Bakhshpoori, 2016) showed the slowest convergence rate overall 
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while TLBO (Degertekin and Hayalioglu, 2013) was initially very fast but its convergence rate de-
creased significantly between 1200 and 2500 structural analyses.  
 

Design  
variables 
 Ai (in2) 

ABC-AP 
(Sonmez, 

2011) 

SAHS  
Degertekin,

2012) 

TLBO 
(Degertekin  

and 
Hayalioglu, 

2013) 

FFA  
(Degertekin 
and Lam-

berti, 
2013) 

MSPSO  
(Talatahari
et. al, 2013)

HPSSO 
(Kaveh  
et. al 
2014) 

TLBO  
(Camp and
Farshchin, 

2014) 

FPA  
(Bekdaş 

et al, 2015) 

WEO 
(Kaveh  
et. al 
2016) 

HTS  
This study

A1 0.011 0.010 0.010 0.010000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

A2-A5 1.979 2.074 2.0712 1.962884 1.9848 1.9907 1.9878 1.8308 1.9184 2.0702 

A6-A9 3.003 2.961 2.9570 3.030559 2.9956 2.9881 2.9914 3.1834 3.0023 2.970031 

A10-A11 0.010 0.010 0.0100 0.010000 0.0100 0.0100 0.0102 0.0100 0.0100 0.01000 

A12-A13 0.010 0.010 0.0100 0.010000 0.0100 0.0100 0.0100 0.0100 0.0100 0.01000 

A14-A17 0.690 0.691 0.6891 0.6837895 0.6852 0.6824 0.6828 0.7017 0.6827 0.67079 

A18-A21 1.679 1.617 1.6209 1.680585 1.6778 1.6764 1.6775 1.7266 1.6778 1.61712 

A22-A25 2.652 2.674 2.6768 2.651661 2.6599 2.6656 2.6640 2.5713 2.6612 2.6981 

Weight (lb) 545.193 545.12 545.09 545.18 545.16 545.164 545.175 545.159 545.166 545.13 

Average 
weight (lb) 

N/A 545.94 545.41 545.394 546.03 545.556 545.483 545.730 545.226 545.47 

Std dev (lb) N/A 0.91 0.42 0.37 0.8 0.432 0.306 0.59 0.083 0.476 

Constraint 
tolerance 

(%) 
None None None None None 0.0013 None 0.138 None None 

No. struct. 
analyses 

300,000 9051 15318 25014 10800 13326 12199 8149 19750 7653 

Table 3: Optimization results for the 25-bar truss problem. 
 

 

Figure 2: Comparison of convergence curves corresponding to the best optimization  

run of each metaheuristic algorithm for the 25-bar truss problem. 
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5.2 Spatial 72-Bar Truss Structure 

The spatial 72-bar truss structure shown in Fig. 3 is chosen as second test problem. Material prop-
erties are the same as for the previous example. Cross-sectional areas of members are divided into 
16 groups because of structural symmetry: (1) A1-A4, (2) A5-A12, (3) A13-A16, (4) A17-A18, (5) A19-
A22, (6) A23-A30, (7) A31-A34, (8) A35-A36, (9) A37-A40, (10) A41-A48, (11) A49-A52, (12) A53-A54, (13) 
A55-A58, (14) A59-A66, (15) A67-A70, (16) A71-A72. 

The structure is subject to the two independent loading conditions listed in Table 4. The allow-
able stress for all members is 25 ksi in tension/compression while the maximum displacement of 
the four top nodes of the structure in all coordinate directions is 0.25 in. The lower limit of cross-
sectional areas is set as 0.1 in2 and 0.01 in2, respectively, for Case 1 and Case 2.  

Tables 5 and 6 present, respectively, for Case 1 and Case 2, the results obtained by the HTS al-
gorithm and the other metaheuristic optimization methods considered in this study. In Case 1, HTS 
found the optimum design weighing 379.73 lb after 13166 structural analyses, hence much before 
the limit number of 20000 analyses set for this test problem (see Table 5). This weight is only 0.1 lb 
heavier than the lightest weight found by TLBO (Degertekin and Hayalioglu, 2013). Although FPA 
(Bekdaş et. al, 2015)converged to the very small structural weight of 379.095 lb, it should actually 
be considered the worst algorithm because the corresponding optimized design violated problem 
constraints.  
 
 

 

Figure 3: Schematic of the spatial 72-bar truss structure. 
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 Condition 1 Condition 2 
Node Fx Fy   Fz Fx Fy   Fz 
17 5.0 5.0 -5.0 0.0 0.0 -5.0 
18 0.0 0.0 0.0 0.0 0.0 -5.0 
19 0.0 0.0 0.0 0.0 0.0 -5.0 
20 0.0 0.0 0.0 0.0 0.0 -5.0 

Note: loads are in kips 

Table 4: Loading conditions for the spatial 72-bar truss. 

 

Design  
variables 
Ai (in2) 

HBB-BC  
(Kaveh and  
Talatahari, 

2009b) 

SAHS  
(Degertekin, 

2012) 

TLBO  
(Degertekin and 
Hayalioglu, 2013) 

FPA  
(Bekdaş et. al, 

2015) 

HTS  
This study 

A1-A4 1.9042 1.860 1.8807 1.8758 1.9001 
A5-A12 0.5162 0.521 0.5142 0.5160 0.5131 
A13-A16 0.100 0.100 0.1000 0.1000 0.1000 
A17-A18 0.100 0.100 0.1000 0.1000 0.1000 
A19-A22 1.2582 1.293 1.2711 1.2993 1.2456 
A23-A30 0.5035 0.511 0.5151 0.5246 0.5080 
A31-A34 0.100 0.100 0.1000 0.1001 0.1000 
A35-A36 0.100 0.100 0.1000 0.1000 0.1000 
A37-A40 0.5178 0.499 0.5317 0.4971 0.5550 
A41-A48 0.5214 0.501 0.5134 0.5089 0.5227 
A49-A52 0.100 0.100 0.1000 0.1000 0.1000 
A53-A54 0.1007 0.100 0.1000 0.1000 0.1000 
A55-A58 0.1566 0.168 0.1565 0.1575 0.1566 
A59-A66 0.5421 0.584 0.5429 0.5329 0.5407 
A67-A70 0.4132 0.433 0.4081 0.4089 0.4084 
A71-A72 0.5756 0.520 0.5733 0.5731 0.5669 

Weight (lb) 379.66 380.62 379.632 379.095 379.73 
Average weight 

(lb) 
381.85 382.42 379.759 379.534 382.26 

Std dev (lb) 1.201 1.38 0.149 0.272 1.94 
Constr. tol (%)  None None None 0.2039 None 

No. struct.  
analyses 

13200 13742 21542 9029 13166 

Table 5: Optimization results for Case 1 of the 72-bar truss problem. 

 
HTS was slightly less robust than SAHS (Degertekin, 2012) and HBB-BC (Kaveh and 

Talatahari, 2009b). TLBO (Degertekin and Hayalioglu, 2013) was the most robust algorithm overall 
with a standard deviation on optimized weight of only 0.149 lb. However, such a small dispersion 
was obtained for a considerably larger number of structural analyses than in the case of HTS (i.e. 
21542 analyses vs. only 13166 required by HTS). 

The present algorithm was the fastest optimizer overall as it required considerably less structur-
al analyses than TLBO (Degertekin and Hayalioglu, 2013): only 13166 analyses (well below the 
limit number of 20000) vs. 18460 analyses. SAHS (Degertekin, 2012) required almost the same 
number of analyses as HTS (13742 vs. 13166) but converged to a 0.9 lb heavier weight than HTS. 
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The present algorithm found practically the same design as HBB-BC (Kaveh and Talatahari, 
2009b) within the same number of structural analyses. 

Convergence curves shown in Fig. 4 (yet limited to the first 14000 structural analyses that were 
enough for HTS to find its best weight) demonstrate the computational efficiency of HTS which 
required only 4500 structural analyses to find intermediate designs always better than those found 
by SAHS (Degertekin, 2012). The optimization histories of HTS and TLBO (Degertekin and 
Hayalioglu, 2013) instead coincide after 5000 structural analyses.  
 

 

Figure 4: Comparison of convergence curves corresponding to the best optimization  

run of each metaheuristic algorithm for Case 1 of the 72-bar truss problem. 

 
In Case 2, all of the compared algorithms were highly effective: in fact, optimized structural 

weight ranged between 363.833 lb (FFA) and 364.05 lb (SAHS), with only 0.22 lb dispersion in 
spite of their completely different optimization formulations (see Table 6). HTS found another very 
competitive optimized design weighing 363.885 lb. The results of the 30 independent optimization 
runs indicate the present algorithm to have the largest dispersion on optimized weight (about the 
same as SAHS). However, most of the other algorithms performed additional analyses to achieve 
more robust designs. 

The number of structural analyses required by the HTS algorithm to complete the optimization 
process is 13592 (again well below the limit of 20000 analyses) whereas TLBO (Degertekin and 
Hayalioglu, 2013), MSPSO (Talatahari et. al, 2013), WEO (Kaveh and Bakhshpoori, 2016), FFA 
(Degertekin and Lamberti, 2013) and ABC-AP (Sonmez, 2011) were considerably slower than the 
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present algorithm and performed, respectively, 17954, 18400, 19860, 39404 and 400,000 structural 
analyses to obtain their optimum designs. Apart from SAHS (Degertekin, 2012) which required only 
12852 structural analyses but converged to a slightly heavier design than HTS (i.e. 364.05 vs. 
363.885 lb), the present algorithm was the second fastest optimizer overall, ranking right after 
HPSSO (Kaveh et. al, 2014) which required 13086 structural analyses to find the optimum design. 
 

Design 
variables 
Ai (in2) 

ABC-AP 
(Sonmez, 

2011) 

SAHS 
(Degerte-

kin, 
2012) 

TLBO 
(Degertekin 

and 
Hayalioglu, 

2013) 

FFA 
(Degertekin 

and  
Lamberti, 

2013) 

MSPSO 
(Talataha-

ri, 
et. al, 
 2013) 

HPSSO 
(Kaveh 
et. al,  
2014) 

WEO 
(Kaveh  

and 
Bakhshpoori, 

2016) 

This 
study 

A1-A4 1.8907 1.889 1.8929 1.8945 1.9005 1.893260 1.8618 1.9000 

A5-A12 0.5166 0.520 0.5160 0.5179 0.5056 0.511132 0.5206 0.5238 

A13-A16 0.0100 0.010 0.0100 0.0100 0.0100 0.010000 0.0105 0.0100 

A17-A18 0.0100 0.010 0.0100 0.0100 0.0100 0.010000 0.0100 0.0100 

A19-A22 1.2968 1.289 1.29170 1.2906 1.2914 1.291227 1.2455 1.3039 

A23-A30 0.5191 0.524 0.51759 0.5170 0.5158 0.515116 0.5177 0.5073 

A31-A34 0.0100 0.010 0.01000 0.0100 0.0100 0.010000 0.0101 0.0100 

A35-A36 0.0101 0.010 0.01000 0.0100 0.0100 0.010000 0.0100 0.0100 

A37-A40 0.5208 0.539 0.52294 0.5213 0.5178 0.536082 0.5327 0.5194 

A41-A48 0.5178 0.519 0.51925 0.5204 0.5188 0.521176 0.5109 0.5169 

A49-A52 0.0100 0.015 0.01000 0.0100 0.0108 0.010019 0.0100 0.0100 

A53-A54 0.1048 0.105 0.09970 0.1045 0.1165 0.110878 0.1205 0.1067 

A55-A58 0.1675 0.167 0.16795 0.1675 0.1659 0.166691 0.1655 0.1674 

A59-A66 0.5346 0.532 0.53594 0.5328 0.5479 0.533984 0.5397 0.5330 

A67-A70 0.4443 0.425 0.44566 0.4455 0.4437 0.453724 0.4554 0.4536 

A71-A72 0.5803 0.579 0.58181 0.5804 0.5619 0.574581 0.5995 0.5786 

Weight 
(lb) 

363.8392 364.0 363.841 363.833 363.900 363.8581 363.9827 363.885 

Average  
weight (lb) 

N/A 366.57 364.42 363.26 364.350 364.065 364.3536 366.03 

Std dev 
(lb) 

N/A 2.02 0.49 0.369 0.320 0.305 0.2188 2.29 

Const. tol 
(%) 

None None None None 0.0864 None None None 

No.  
structural 
analyses 

400,000 12852 17954 39404 18400 13086 19860 13592 

Table 6: Optimization results for Case 2 of the 72-bar truss problem. 

 
Optimization histories for this design example are plotted in Fig. 5 for the most efficient meth-

ods compared in Table 6. The plot covers only the first 14000 structural analyses, thus including 
the 13592 analyses required by HTS to find its best design. It can be seen from the figure that con-
vergence rate of HTS is as good as those of the other algorithms, especially if the best agent includ-
ed in the HTS initial population yield a larger structural weight than for other optimizers (for ex-
ample, TLBO and SAHS).  
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WEO (Kaveh and Bakhshpoori, 2016) and MSPSO (Talatahari et. al, 2013) were definitely the 
slowest optimizers: this is consistent with the very large numbers of structural analyses required by 
these algorithms (see Table 6). Convergence curves of HTS and HPSSO (Kaveh et. al, 2014) 
crossed each other between 600 and 1000 structural analyses. In particular, HPSSO (Bekdaş et. al, 
2015) started the optimization process from a larger structural weight than HTS but it soon recov-
ered this gap and generated intermediate designs better than those of HTS. The present algorithm 
returned to produce better designs between 1800 and 5000 structural analyses, and convergence 
curves of HTS and HPSSO (Kaveh et al, 2014) practically coincided since that point. 
 
 

 

Figure 5: Comparison of convergence curves corresponding to the best optimization  

run of each metaheuristic algorithm for Case 2 of the 72-bar truss problem. 

 
 
5.3 Planar 200-Bar Truss 

The last test problem considered in this study is the weight minimization of the planar 200-bar 
truss structure shown in Fig. 6. This test case has often been taken as an example of average-scale 
optimization. The structure is made of steel: Young’s modulus is 30 Msi while mass density is 0.283 
lb/in3. Because of structural symmetry, elements are divided in 29 groups as indicated in Table 7.  

Three independent loading conditions act on the structure: (1) 1.0 kip acting in the positive X-
direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71; (2) 10.0 kips acting in the negative Y-
direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28,29 30, 31, 32, 33, 
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34,36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 
73, 74 and 75; (3) loading conditions (1) and (2) acting together. 

The structure must be designed against stress constraints: the allowable stress in ten-
sion/compression is 10 ksi. No constraints on nodal displacements are defined for this optimization 
problem. Cross-sectional areas of elements must be greater than 0.1 in2. 
 
 

 

Figure 6: Schematic of the planar 200-bar truss structure. 
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Design  
variables 

Member number 
Design  

variables 
Member number 

1 1,2,3,4 16 
82,83,85,86,88,89,91,92, 

103,104,106,107,109,110,112,113 
2 5,8,11,14,17 17 115,116,117,118 

3 19,20,21,22,23,24 18 119,122,125,128,131 

4 
18,25,56,63,94,101,132, 

139,170,177 
19 133,134,135,136,137,138 

5 26,29,32,35,38 20 140,143,146,149,152 

6 
6,7,9,10,12,13,15,16,27, 

28,30,31,33,34,36,37 
21 

120,121,123,124,126,127,129, 
130,141,142,144,145,147,148, 

150,151 

7 39,40,41,42 22 153,154,155,156 

8 43,46,49,52,55 23 157,160,163,166,169 

9 57,58,59,60,61,62 24 171,172,173174,175,176 

10 64,67,70,73,76 25 178,181,184,187,190 

11 
44,45,47,48,50,51,53,54, 
65,66,68,69,71,72,74,75 

26 
158,159,161,162,164,165,167, 
168,179,180,182,183,185,186, 

188,189 
12 77,78,79,80 27 191,192,193,194 

13 81,84,87,90,93 28 195,197,198,200 

14 95,96,97,98,99,100 29 196,199 

15 102,105,108,111,114   

Table 7: Member grouping and sizing variables defined in the 200-bar truss problem. 

 
 

Table 8 compares the optimization results for HTS, CMLPSA (Lamberti, 2008), ABC-AP 
(Sonmez, 2011), SAHS (Degertekin, 2012), TLBO (Degertekin and Hayalioglu, 2013), FFA  (Deger-
tekin and Lamberti, 2013), HPSSO (Kaveh et. al, 2014), FPA (Bekdaş et al, 2015) and WEO (Ka-
veh and Bakhshpoori, 2016). It can be seen that the present algorithm obtained the third lowest 
weight (25517.31 lb), only 0.12% heavier than the designs optimized by TLBO and SAHS (i.e. 
25488.15 and 25491.9 lb). It should be noted that the best weight quoted in literature for this prob-
lem is 25156.5 lb, achieved by the HPSACO algorithm (Kaveh and Talatahari, 2009c) by hybridiz-
ing harmony search, particle swarm and ant colony. However, since stress constraints were violated 
by 9.97%, such a design should not be considered very indicative. The second best weight quoted in 
literature for metaheuristic algorithms is 25445.63 lb, achieved by the CMLPSA algorithm (Lam-
berti, 2008). As the scaled weight of CMLPSA to recover the 0.071% stress constraint violation of 
its optimized design is 25463.7 lb, the present HTS algorithm designed a structure only 0.21% heav-
ier than that designed by CMLPSA. 

The present algorithm is considerably more robust than HPSSO (Kaveh et. al, 2014) and WEO 
(Kaveh and Bakhshpoori, 2016) and enough more robust than SAHS (Degertekin, 2012). The other 
algorithms are characterized by a smaller standard deviation but also by a higher computational 
cost or constraint violation. 
 



394     S.O. Degertekin et al. / Heat Transfer Search Algorithm for Sizing Optimization of Truss Structures 

Latin American Journal of Solids and Structures 14 (2017) 373-397 

Design  
variables 
Ai (in2) 

CMLPSA 
(Lamber-

ti, 
2008) 

ABC-AP 
(Son-
mez, 
2011) 

SAHS 
(Degerte-

kin, 
2012) 

TLBO 
(Degerte-

kin 
and 

Hayalioglu, 
2013) 

FFA 
(Degerte-

kin 
and  

Lamberti, 
2013) 

HPSS
O 

(Kaveh 
et al, 
2014) 

FPA 
(Bekda
ş 

et al, 
2015) 

WEO 
(Kaveh  

and 
Baksh-
spoori, 
2016) 

HTS 
This 
study 

1 0.1468 0.1039 0.154 0.146 0.155 0.1213 0.1425 0.1144 0.151 
2 0.9400 0.9463 0.941 0.941 0.941 0.9426 0.9637 0.9443 0.948 
3 0.1000 0.1037 0.100 0.100 0.100 0.1220 0.1005 0.1310 0.101 
4 0.1000 0.1126 0.100 0.101 0.100 0.1000 0.1000 0.1016 0.103 
5 1.9400 1.9520 1.942 1.941 1.944 2.0143 1.9514 2.0353 1.947 
6 0.2962 0.293 0.301 0.296 0.299 0.2800 0.2957 0.3126 0.297 
7 0.1000 0.1064 0.100 0.100 0.105 0.1589 0.1156 0.1679 0.100 
8 3.1042 3.1249 3.108 3.121 3.109 3.0666 3.1133 3.1541 3.115 
9 0.1000 0.1077 0.100 0.100 0.100 0.1002 0.1006 0.1003 0.102 
10 4.1042 4.1286 4.106 4.173 4.111 4.0418 4.1100 4.1005 4.202 
11 0.4034 0.4250 0.409 0.401 0.406 0.4142 0.4165 0.4350 0.404 
12 0.1912 0.1046 0.191 0.181 0.193 0.4852 0.1843 0.1148 0.171 
13 5.4284 5.4803 5.428 5.423 5.449 5.4196 5.4567 5.3823 5.430 
14 0.1000 0.1060 0.100 0.100 0.100 0.1000 0.1000 0.1607 0.101 
15 6.4284 6.4853 6.427 6.422 6.439 6.3749 6.4559 6.4152 6.426 
16 0.5734 0.5600 0.581 0.571 0.579 0.6813 0.5800 0.5629 0.568 
17 0.1327 0.1825 0.151 0.156 0.134 0.1576 0.1547 0.4010 0.159 
18 7.9717 8.0445 7.973 7.958 7.993 8.1447 8.0132 7.9735 7.957 
19 0.1000 0.1026 0.100 0.100 0.100 0.1000 0.1000 0.1092 0.100 
20 8.9717 9.0334 8.974 8.958 8.983 9.0920 9.0135 9.0155 8.957 
21 0.7049 0.7844 0.719 0.720 0.708 0.7462 0.7391 0.8628 0.721 
22 0.4196 0.7506 0.422 0.478 0.421 0.2114 0.7870 0.2220 0.482 
23 10.8636 11.3057 10.892 10.897 10.871 10.9587 11.1795 11.0254 10.901 
24 0.1000 0.2208 0.100 0.100 0.100 0.1000 0.1462 0.1397 0.103 
25 11.8606 12.2730 11.887 11.897 11.883 11.9832 12.1799 12.0340 11.942 
26 1.0339 1.4055 1.040 1.080 1.037 0.9241 1.3424 1.0043 1.078 
27 6.6818 5.1600 6.646 6.462 6.689 6.7676 5.4844 6.5762 6.456 
28 10.8113 9.9930 10.804 10.799 10.825 10.9639 10.1372 10.7265 10.819 
29 13.8404 14.70144 13.870 13.922 13.847 13.8186 14.5262 13.9666 13.918 

Weight 
(lb) 

25445.63 25533.79 25491.9 25488.15 25497.8 25698.85 25521.81 25674.83 25517.31 

Aver. 
weight 
(lb) 

25446.03 N/A 25610.2 25533.14 25560.12 28386.72 25543.51 26613.45 25565.33 

Std dev 
(lb) 

N/A N/A 141.85 27.44 63.95 2403 18.13 702.80 114.33 

Constr. tol 
(%) 

0.071 13.136 None None None None 0.169 None None 

No. struct  
Analyses 

9650 1,450,000 19670 28059 95680 14406 10685 19410 19661 

Table 8: Optimization results for the 200-bar truss problem. 

 
HTS reached its optimum design after 19661 structural analyses (once again much before the 

limit number of 25000 analyses set for this test problem) whereas ABC-AP (Sonmez, 2011), FFA 
(Degertekin and Lamberti, 2013) and TLBO (Degertekin and Hayalioglu, 2013), respectively, re-
quired 1,450,000, 95680 and 28059 analyses; HTS, SAHS (Degertekin, 2012) and WEO (Kaveh and 
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Bakhshpoori, 2016) required practically the same number of analyses. HPSSO (Kaveh et. al, 2014) 
was 27% faster than HTS but its optimized weight is 0.71% heavier than that found by HTS. The 
optimum design found by HTS strictly satisfies stress constraints while ABC-AP (Sonmez, 2011) 
and FPA (Bekdaş et. al, 2015) converged to unfeasible designs. Comparison with CMPLSA (Lam-
berti, 2008) is not indicative as this algorithm utilized gradient information that are explicitly avail-
able in sizing optimization of truss structures while HTS carries out a strictly metaheuristic search.  

Figure 7 compares the optimization histories of HTS, SAHS (Degertekin, 2012), TLBO (Deger-
tekin and Hayalioglu, 2013), HPSSO (Kaveh et. al, 2014) and FFA (Degertekin and Lamberti, 
2013). Convergence curves cover only the first 24000 structural analyses of the search process in 
order to highlight the following facts: (i) HTS and SAHS (Degertekin, 2012) successfully terminate 
their search well before reaching the limit number of analyses; (ii) FFA (Degertekin and Lamberti, 
2013) and HPSSO (Kaveh et. al, 2014) approach optimum design more slowly and HPPSO (Kaveh 
et. al, 2014) is trapped in a local optimum. It should be noted that HTS, SAHS (Degertekin, 2012) 
and TLBO (Degertekin and Hayalioglu, 2013) started their best runs from a better population than 
HPSSO (Kaveh et. al, 2014) and FFA (Degertekin and Lamberti, 2013): in fact, the most efficient 
initial designs for these algorithms were up to two times heavier than those selected by the other 
optimizers (i.e. about 114000 lb for HPSSO (Kaveh et. al, 2014) and 94000 lb for FFA (Degertekin 
and Lamberti, 2013) vs. 50000-60000 lb for HTS, SAHS (Degertekin, 2012)and TLBO (Degertekin 
and Hayalioglu, 2013). In spite of this, optimum designs finally obtained by each algorithm differ by 
only 0.83%. However, while HPSSO (Kaveh et. al, 2014) prematurely converged to a local opti-
mum, structural weights of all intermediate designs found by HTS, SAHS (Degertekin, 2012), 
TLBO (Degertekin and Hayalioglu, 2013) and FFA (Degertekin and Lamberti, 2013) differed by 
less than 0.5% after only 17000 structural analyses.  
 

 

Figure 7: Comparison of convergence curves corresponding to the best run of each  

metaheuristic algorithm for the planar 200-bar truss problem. 
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6 CONCLUDING REMARKS 

The heat transfer algorithm (HTS), a metaheuristic optimization method developed very recently 
(2015), was applied for the first time ever to sizing optimization of truss structures. The three de-
sign examples discussed in the article demonstrate that HTS often obtained better designs than 
those found by other state-of-the-art metaheuristic optimization methods. The convergence capabil-
ity of HTS is also as good as for the other methods. The presented data on average weight and 
standard deviation of optimized weight obtained from thirty independent runs prove the robustness 
of HTS which hence has the ability to find the global optimum or a nearly global optimum design. 
This is due to the inherent ability of HTS to keep a very good balance between exploration and 
exploitation mechanisms throughout the optimization process. In fact, exploration and exploitation 
are alternatively activated by the sequence of conduction, convection and radiation phases as well 
as they alternate in each specific phase. The proposed HTS algorithm is very general and could be 
applied to sizing and layout optimization of other structural systems like frames and domes in fu-
ture investigations. 
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