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Abstract 
The nonlinear vibration and normal mode shapes of FG cylindrical 
shells are investigated using an efficient analytical method. The 
equations of motion of the shell are based on the Donnell’s non-
linear shallow-shell, and the material is assumed to be gradually 
changed across the thickness according to the simple power law. 
The solution is provided by first discretizing the equations of mo-
tion using the multi-mode Galerkin’s method. The nonlinear nor-
mal mode of the system is then extracted using the invariant mani-
fold approach and employed to decouple the discretized equations. 
The homotopy analysis method is finally used to determine the 
nonlinear frequency. Numerical results are presented for the back-
bone curves of FG cylindrical shells, nonlinear mode shapes and 
also the nonlinear invariant modal surfaces. The volume fraction 
index and the geometric properties of the shell are found to be 
effective on the type of nonlinear behavior and also the nonlinear 
mode shapes of the shell. The circumferential half-wave numbers of 
the nonlinear mode shapes are found to change with time especially 
in a thinner cylinder. 
 
Keywords 
FG cylindrical shells, Invariant manifold (IM), nonlinear normal 
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1 INTRODUCTION 

Functionally graded materials (FGM’s) are the new types of composite materials that have the 
unique feature of both high thermal and high mechanical properties. The constituent materials of 
FGMs (usually ceramic and metal) are combined such that the variation of their volume fractions is 
continuous, giving rise to smooth and gradual change of the mechanical and thermal properties. 
Hence in spite of the traditional composites that may suffer high amounts of thermal stresses at the 
interfaces, FGMs could withstand high temperatures while maintaining their structural integrities 
and providing desirable mechanical properties. These properties makes FGMs a suitable choice for 
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use in aerospace structures such as outer skins of high speed vehicles, which are commonly in the 
form of cylindrical shells. The analysis of functionally graded (FG) cylindrical shells is therefore of 
critical importance and could lead to more efficient structures in the future. Vibration analyses are 
especially one of the main and critical considerations and thus should be given a high priority in 
designing cylindrical shell used in aerospace application. Numerous studies have been performed so 
far on the linear vibration of FG cylindrical shell considering the influence of different parameters 
such as the edge conditions, temperature rise and follower axial forces (Loy et al. 1999, Pradhan et 
al. 2000, Haddadpour et al. 2007, Torki et al. 2014). Vibration amplitudes of cylindrical shell may 
not, however, small enough to be accurately predicted by the linear analysis and thus the geometric 
nonlinearity should be accounted for. This has been the main concern of many studies in recent 
years. The work of Mahmoudkhani et al. (2011) is one of the first attempt in this area which is 
devoted to the analysis of nonlinear primary resonance response of FG cylindrical shells. The multi-
mode Galerkin’s procedure together with the method of multiple scales (MMS) is used to obtain the 
frequency-response curves and identify the ranges of excitation amplitudes and frequencies in which 
the multi-mode response occurs. The effects of temperature and axial loads on the free and forced 
nonlinear vibrations of FG cylindrical shells is investigated by Sheng and Wang (2013) and Bich 
and Xuan Nguyen (2012), using again the Galerkin’s method. Rafiee et al. (2013) investigated the 
piezoelectric FG cylindrical shell under aerodynamic and thermal loads. Sofiyev (2016) studied the 
vibration of orthotropic FG cylindrical shells, giving an expression by the Jacobian elliptic function 
for the nonlinear frequencies. The homotopy perturbation method (HPM) is used to solve the single 
time equation obtained from the Galerkin’s method. Cylindrical shells with different simply-
supported, clamped and free boundary conditions are studied by Strozzi and Pellicano (2013). They 
used the Chebyshev orthogonal polynomial for discretization of the equations. Jafari et al. (2014) 
studied the FG cylindrical shell embedded with a piezoelectric layer and used the Multi-mode Ga-
lerkin and Runge–Kutta method to provide the solution. More detailed information and references 
on this subject may be found in the review paper by Alijani and Amabili (2014).  

The method of solution adopted in most studies as those mentioned above, begins with discre-
tizing the governing partial differential equations (PDEs) with the modal expansion method and 
then uses either the analytical or numerical methods to determine the periodic response. Among the 
analytical methods, the MMS is most frequently used due to its established routine. Lower order 
MMS may not, however, accurate enough as the oscillation amplitude increases. Using higher order 
MMS may also require heavy mathematical manipulation. Some other analytical methods based on 
the homogony method such as HPM or Homotopy analysis method (HAM) can give more accurate 
first order approximation (He 1999, Liao 2003) and their extension to higher orders can be readily 
performed. Hence they are proper choices for accurate and efficient solution of time equations espe-
cially when applied to a single equation. The single time equation obtained by using a single linear 
mode in the Galerkin’s method is not, however, reliable and may yield erroneous result. Alternative-
ly, the nonlinear normal modes (NNM) can be employed to decouple the set of nonlinear equations 
obtained by the multi-modal Galerkin’s method. The single nonlinear equation that will be obtained 
in this way, could correctly describe the nonlinear behavior of the system.  

The concept of NNM is first introduced by Rosenberg (1962) as a periodic synchronous oscilla-
tion of all degrees of freedom (DOF) of a nonlinear system. Since then, extensive studies have been 
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performed both on their applications and also their methods of computation (Vakakis 1997, Pierre 
et al. 2006, Kerschen et al. 2009, Peeters et al. 2009). The invariant manifold (IM) approach, pro-
posed by Shaw and Pierre (1993) is one of these methods that defines the NNM as a two-
dimensional invariant manifold in phase space. The method extends the invariance property of the 
linear normal modes to nonlinear systems and may be considered as the generalization of the Ros-
enberg’s definition (Peeters 2010). It is to be noted that in contrast to the linear normal modes, the 
NNMs are not orthogonal, but due to their invariance property they could still be suitable for accu-
rate and efficient order reduction in nonlinear oscillatory systems (Kerschen et al. 2009). Moreover 
the mode shapes corresponding to NNMs would change with amplitude and thus with time (Touze 
et al. 2004). 

IM method is applied in the present study to compute the NNMs of the FG cylindrical shell. 
For this purpose, the equations of motion, which are based on the Donnell’s shell theory, are first 
discretized using the multi-mode Galerkin’s method. The obtained ordinary differential equations 
are then decoupled using the IM method and then solved by HAM to determine the frequency-
amplitude relation.  Numerical results are obtained for backbone curves and nonlinear invariant 
surfaces.  Nonlinear mode shapes are also presented by depicting the out-of-plane displacement var-
iations in axial and circumferential directions. 
 
2 FORMULATION 

According to the simple power low, the variation of volume fractions of the ceramic and metal 
through the thickness direction ( z ) can be described as, 
 

/ 2 / 2
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N N

m c

z h z h
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h h
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where mV   and c
V  represent the volume fractions of metal and ceramic, N  is the volume fraction 

index and h  is the thickness of the shell. The effective material properties of FG shell (
eff

P ) includ-

ing Young’s modulus,E , density, r  and Poisson’s ratio, n , are defined as, 
 

,eff m m c cP P V PV= +  (2)
 

where m
P  and c

P  denote the material properties of metal and ceramic. Using Eqs. (1) and (2) the 

effective material properties can be expressed as a function of z , 
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It is evident from Eq. (3) that for 0N = , the volume fraction of ceramic become zero and so 

eff mP P=  i.e. the material composition is pure metal and with the increase in N , the material var-

ies from pure metal to pure ceramic. 
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2.1 Governing Equations 

Considering the coordinate system shown in Figure 1 , the equation of motion and the compatibility 
equation of the FG cylindrical shell can be expressed in terms of redial displacement,w  and the airy 
stress function, F as (Jansen 2008), 
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and, 
 

1A A* -= , 1B BA* -= , 1D D BA B* -= -  (7)
 

where A , B  and D  are the sub-matrices of the stiffness matrix and are defined as, 
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where ijQ  are the components of the 3 3´  stiffness matrix based on the plane-stress Hook’s law 

whose nonzero components are defined as, 
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It must be noted that to drive the compatibility equation, Eq.(5), the in-plane inertial terms 
should be neglected and the stress function, F , would be defined in the way to satisfy the in-plane 
equations of motion as, 
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Figure 1: FG cylindrical shell geometry. 

 

In which sN  and Nq  are the normal stress resultant in axial,s , and circumferential directions,

q , respectively. Also, sN q  is the shear stress resultant. 

 
2.2 Discretization of PDEs 

The nonlinear PDEs obtained for the equations of motion (i.e., Eqs. (4) and (5)) are first discretized 
using the Galerkin’s method with appropriate trial functions. Various approximations are used for 
this purpose in the literatures, among them the function used by (Amabili et al. 1998) contains the 
minimum number of the linear modal functions needed for accurately predicting the softening be-
havior of the shell. This function is defined as, 
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where, ( )ijW t  ’s are the unknown generalized coordinates to be determined. Substituting the dis-

placement function, Eq. (11), into the compatibility equation, Eq. (5), yields a linear non-
homogeneous differential equation in F  that its particular solution, 

p
F , can be obtained as, 
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where ( )if t ’s are functions of ( )ijW t ’s. The homogenous solution, h
F , can also be written as, 
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where sN , Nq  and sN q  are stress resultants that arise from the constraints on the edges of the 

shell and can be determined in terms of ( )iW t ’s by applying the average in-plane boundary condi-

tions and the continuity requirement of circumferential displacement, v  (Amabili et al. 1998). The 
above equation is not a general homogeneous solution and is chosen to satisfy the average in-plane 
boundary conditions which are defined for the classic simply supported cylindrical shell (i.e., 0v =  

and 0
s

N = ) as follows (Amabili et al. 1998), 
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The continuity of v  is also fulfilled via the following relation, 
 

2

0 0
0,

L v
Rdsd

p
q

q
¶

=
¶ò ò  (16)

 

where 
v

q
¶
¶

can be related to w  and F as, 

 

2 2 2 2
2

21 22 21 222 2 2 2

1
( ) .

2

v F F w w w
A A R B R B w

RR s s Rq qq q
* * * *¶ ¶ ¶ ¶ ¶ ¶

= + + + + -
¶ ¶¶ ¶ ¶ ¶

 (17)

 

In the above equation F  must be replaced by the complete solution of compatibility equation, 

i.e., 
p h

F F F= +  where 
p

F  and h
F  are determined by Eqs. (12) and (13). Then using Eq. (11) sN , 

Nq  and sN q  can be obtained in terms of the generalized coordinates as, 
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Finally, introducing Eqs. (11), (12) and (13) into Eq. (4), and applying the Galerkin’s method, 
four nonlinear ODEs will be obtained as, 
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where 
ij

w s are linear natural frequencies corresponding to the modes used in Eq. (11) and ijmqsC  

and 
ijmq

Q  are the constants that depend on the material and geometric properties of the cylindrical 

shell . 
 
2.3 Extraction of Nonlinear Normal Modes 

Eqs. (19) include coupled quadratic and cubic nonlinear terms that may be decupled via the corre-
sponding NNMs. To extract the NNMs, the IM approach is used by expressing all the generalized 

coordinates, ( )
i

W t ’s and their time derivatives, ( )
i

W t ’s,  in terms of 11
W  and 11

W . This pair, which 

is referred to as the master coordinates, corresponds to the fundamental mode of the shell. Using 
the definition, 

11 11
( ), ( )u W t v W t= =  , the following fifth order polynomial expansion is used to ap-

proximate the slave coordinates: 
 

1 2 3
(1 ) (2 ) (3 )

( 1) ( 3) ( 6)
0 0 0

4 5
(4 ) (5 )

( 10) ( 15)
0 0

1 2 3
(1 ) (2 ) (3 )

( 1) ( 3) ( 6)
0 0 0

( 10

( )

,

( )

k k k k k k
ij ij k ij k ij k

k k k

k k k k
ij k ij k

k k

k k k k k k
ij ij k ij k ij k

k k k

ij k

W t a u v a u v a u v

a u v a u v

Y t b u v b u v b u v

b

- - -
+ + +

= = =

- -
+ +

= =

- - -
+ + +

= = =

+

= + + +

+

= + + +

å å å

å å

å å å
4 5

(4 ) (5 )
) ( 15)

0 0

,

( , ) (0,1),(0, 3),(1,1),(2,1),

k k k k
ij k

k k

u v b u v

i j

- -
+

= =

+

=

å å

 
(20)

 

where ( ) ( )
ij ij

Y t W t=  , and 
ijk

a  and 
ijk

b  are the unknown constants that could be determined by sub-

stitution of Eq. (20) into the state-space form of the Eqs. (19) and equating the coefficients of like 
powers of u  and v . The final fifth order expressions that will be obtained for ( )

ij
W t  are lengthy 

and may not be given here. But to give an insight to the characteristics of the NNMs, the third 
order approximation is presented as follows: 
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where 
ij

S , 1
ij

P  and 2
ij

P  are constant terms that depend on the system parameter values. It is evi-

dent from Eq. (21) that the fundamental NNM of the cylindrical shells may depend on both ampli-
tude and velocity. This behavior, which is the common characteristic of nonlinear systems with 
quadratic nonlinearities, implies that every point of the structure in a certain NNM does not reach 
the zero-deformation state at the same instant (Nayfeh and Nayfeh 1995). Substituting Eq. (21) 
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into Eq. (19), the uncoupled modal ODEs associated with the fundamental NNM of the cylindrical 
shell can be obtained as follows: 
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with i
k s being constant terms dependent on the material and geometric properties of the shell. 

 
2.4 Solution by HAM 

An efficient and accurate solution can be provided for Eq. (22) using the HAM (Liao 2003). For this 

purpose, the transformation, NL
tt w=  and 1

( ) ( )X W tt d= -  with w  and d  being the nonlinear 

frequency and the constant drift amplitude respectively, are used as follows, 
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The unknown drift is included in the response, since Eq. (22) has quadratic and quartic terms. 
Considering the initial condition of (0)X W=  and (0) 0X = , it is reasonable to choose the follow-

ing function as an initial guess of the solution, 
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where q  is the embedding parameter that varies from 0 to 1 and ( )qW , ( )qD  and ( ; )qf t  are the 

functions that represent the solution of the ODE when 1q = . The following linear operator is also 

defined in such a way that it’s homogeneous solution is cos( )t , 
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with 0
w  being the first order approximation of NL

w . The zeroth-order deformation equation can 

now be defined as, 
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where k  is the auxiliary undetermined constant parameter that if chosen properly may improve the 
convergence of the solution. Next, ( )qW , ( )qD  and ( ; )t qf  are expanded in the Taylor series as, 
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which converges to the exact solutions of NL
w , d  and ( )X t  when 1q = . That is to say, 
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where ( )
m

X t , m
d  and m

w  are the unknowns that could be defined via constructing the higher-order 

deformation equations by differentiating the zeroth-order deformation equation m  times with re-
spect to q , then dividing it by !m  and finally setting 0q = . The resulted m’th order deformation 

equations is, 
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Eq. (32) is a linear differential equation that along with the initial conditions, (0) 0
m

X =  and 

(0) 0
m

X =  could be readily solved to obtain higher order approximations of the solution. This is 

performed along with eliminating the secular terms (i.e., coefficients of cos( )t ), leading to algebraic 

equations in m
w  and m

d . In numerical analysis of the present problem, it is found that the values of 

m
d  are negligible for various system parameters. This is because that the coefficients of quadratic 

and quartic terms in Eq. (22) are much smaller than those of cubic terms and can be neglected. 

Hence m
d s are set to zero, which leads to the following relation for 0

w : 
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where 11
a W= . The first order approximation of the displacement is also obtained as: 
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The first order solution presented by Eqs. (33) and (34), is adequately accurate for the range of 

initial displacement amplitudes considered in the present study. Arbitrarily higher order solutions 
can however be readily obtained using the mentioned procedure, albeit their corresponding expres-
sions are so lengthy to be given here. 
 
3 NUMERICAL RESULTS AND DISCUSSION 

Numerical results are presented in this section to examine the accuracy of the IM method used for 
extraction of NNMs and also the solution of the obtained single nonlinear equation by the HAM. 
The nonlinear frequency-amplitude of FG cylindrical shells and also the nonlinear mode shapes of 
the cylindrical shell are also presented and compared with their linear counterparts.  

For the verification process it should considered that the solution provided in the present study 
contains three types of approximation. The first approximation corresponds to the discretization of 
the partial differential equations (i.e., Eqs. (4) and (5)) which have led to the discretized equations 
defined by Eq. (19). The second approximation corresponds to the application of the IM approach 
to Eq. (19), and the third one is related to the analytical solution provided by using the HAM. 
Therefore, to assess the validity or accuracy of the results obtained by each of these approximations, 
three numerical studies are performed in Figures 2, 3 and 5. To ensure the validity and convergence 
of the discretization process used for obtaining Eq. (19), the nonlinearity index, 

1
a  defined in 

Mahmoudkhani et al. (2011) by 
1 2

1111

1
1NL

a

w
a

w

æ ö÷ç ÷ç= - ÷ç ÷ç ÷è ø
, is calculated for a cylindrical shell made up of 

the stainless steel and the silicon nitride with 1 5 / 2, / 0.01, 0.1m,n L R h R R= = == , and different 

values of N. The results are compared with the result of Mahmoudkhani et al. (2011), as shown in 
Figure 2. A close agreement can be seen between the results which can ensure the validity of the 
present solution. 
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Figure 2: Nonlinearity coefficient, 
1

a , v.s. the volume fraction index, compared with Mahmoudkhani et al. (2011). 

 
Next the accuracy of the NNM extracted by the IM approach from the discretized equations is 

examined in Figure 3, by comparing the fundamental nonlinear mode’s response, obtained by the 
numerical solution of Eq.(22), with the results of numerical simulation of the set of four equations 
given in Eq. (19). The system parameters used for simulations are 

1 10 / 2, / 0.004, 0.5 m,n L R h R R= = == . The shell is also assumed to be composed of stainless 

steel and silicon nitride with the material properties given in Table 1. For the initial conditions 

(ICs), 11 11
(0)W a=  and 11

(0) 0W =  are used and the remaining ICs, required for solution of Eqs. (19), 

are obtained using the IM approach to determine (0)
ij

W  ( ( , ) (1,1)i j ¹ ) in terms of  11
W  and 11

W  

(i.e., the fifth order version of Eq. (21)). The results, given in Figure 3 match well for 11
/a h  lower 

than 1.5 even when the third order IM is used. For higher values of initial displacement, it is seen 

that the fifth order IM remains accurate when 11
/a h  grows to 2. 

 

Material  0
P  

1
P

-  
1

P  
2

P  
3

P  

Stainless steel 

E  201.04e+9 0 3.079e-4 -6.534e-7 0 

a  12.330e-6 0 8.086e-4 0 0 

n  0.3262 0 -2.002e-4 3.797e-7 0 
r 8166 0 0 0 0 

Silicon nitride 

E  348.43e9 0 -3.07e-4 2.160e-7 -8.946e-11 

a  5.8723e-6 0 9.095e-4 0 0 

n  
0.2400 

 
0 0 0 0 

r  2370 
 

0 0 0 0 

Table 1: Material properties of FGM’s from Reddy and Chin (1998). 

 

N

 1

0 5 10 15

-0.0275

-0.027

-0.0265

-0.026

Mahmoudkhani et al.
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(a) (b) 

Figure 3: Comparison of the numerical solution of the single equation obtained by the third and fifth order IM (Eq. 

(22)) by the numerical solution of set of four equations, Eq. (19), for (a) 
11
(0) / 1.5W h =  (b) 

11
(0) / 2W h = . 

 
The accuracy of the HAM solution is also assessed in Figure 5 by comparing the numerical solu-

tion of Eq. (22) with the HAM solution. The system parameters are the same as those used in the 
previous study. To improve the convergence of the solution, the variations of the estimated nonline-
ar frequency and also the response amplitude at an arbitrary time instant with k   are depicted first 
in Figure 4 Different-order HAM approximations are included in this figure. The best accuracy may 
be obtained by choosing k  from the region where the variation of the solution with k  is minimal. 
Hence 1k = -  might be proper choice for the analysis. Time histories obtained by different order 
HAM for 

11
/ 2a h =  is compared in Figure 5-(a) with the numerical solution. Excellent agreement is 

seen in Figure 5-(a) with even first order HAM. To emphasize on the accuracy of the HAM for 
higher initial displacement, results obtained for  

11
/ 6a h =  are also given in Figure 5-(b), which 

shows that the fourth-order HAM have completely matched with the numerical result. 
 

 
Figure 4: Variation of the frequency ratio and the response amplitude at  

time 0
0.004t =  sec with the auxiliary parameter k . 

 
The HAM, then is used to calculate the nonlinear backbone curves of the cylindrical shell with 

the same geometric properties of the previous study and different values of the volume fraction in-
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dex, N  . The variation of the nonlinear frequencies (
NL

w ) with nondimensional amplitude (
11

/a h ) 

is given in Figure 6-(a). As N  increases it is seen that the corresponding frequencies increase due to 
higher contribution of the ceramic part in the FGM. All the curves also show the softening behavior. 
To better illustrate the effect of N on the strength of the softening nonlinearity, 

11
/

NL
w w  v.s. 

11
/a h  is depicted in Figure  6-(b). The slight increase in the bending of the curves is greater for 

intermediate values of N  ( 1,5N = ). Similar study is also performed in Figure 7 for other system 

parameters taken as, 1 8 / 2, / 0.001, 1m,n L R h R R= = == . The nonlinearity is mostly hardening 

in this case, which is completely different from the previous one. The curves obtained in Figure 7-
(b), also show the considerable effect of N  on the nonlinearity. As is evident, for some intermediate 
values of N  ( 5,10N = ), 

11
/

NL
w w  initially decrease with amplitude and then, after a certain am-

plitude, begins to rise. For other values of N , the most strong nonlinearity (i.e., bending of the 
backbone curve) occurs for 0N = which decreases as N grows. 
 

 
(a) (b) 

Figure 5: Displacement time history of the fundamental NNM amplitude obtained by the  

numerical method and HAM for (a) 
11
(0) / 3W h =  (b) 

11
(0) / 6W h = . 
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Figure 6: (a) Amplitude v.s. 
NL

w  (b) Amplitude v.s. 
11

/
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w w . Corresponding to the  

fundamental NNM with 1
10 / 2,,n L R == 0.5mR = , / 0.004h R = . 
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(a) (b) 

Figure 7: (a) Amplitude v.s. 
NL

w  (b) Amplitude v.s. 
11

/
NL

w w . Corresponding to the  

fundamental NNM with 1
8 / 2,,n L R == 1mR = , / 0.001h R = . 

 
The invariant nonlinear modal surfaces corresponding to the fundamental NNM of the shell are 

next obtained in Figures 8 and 9, for the two cases of the cylindrical shells studied above. These 

surfaces depict the variation of the linear modal amplitudes, 01
W , 03

W  and 21
W  with 11

W  and 11
W . 

The results presented in Figure 8 for the first case study, show that 01
W  and 03

W  have a small 

dependence on 11
W  although they considerably varies with 11

W . It is in contrast with 21
W , which 

has comparable dependency on both 11
W  and 11

W . However, the contribution of the mode associat-

ed with 21
W  to the NNM is not considerable as the magnitude of 21

W  is much smaller than the 

magnitudes of 01
W  and 03

W . This implies that the axisymmetric modes are mainly responsible for 

the softening behavior observed in Figure 6. 
The invariant surfaces of the second case study are shown in Figure 9. Comparing with the re-

sult of Figure 8, 
11

W  is seen to have more influence, in this case, on 
01

W  and 
03

W , although the 

effect of 
11

W  is still dominant. Moreover, 
21

W  has the greatest amplitude and thus the correspond-

ing mode is the most dominant mode in the NNM compared to the axisymmetric modes. This mode 
is, therefore, the main cause of the hardening type nonlinearity seen in Figure 7. Also, due to the 
considerable effect of 

11
W  on 

21
W , and also considering that 

11
W  and 

21
W  correspond to the modes 

with one longitudinal half wave number and different circumferential wave numbers, it may be 
inferred that the nonlinear mode shape may significantly vary with time along the circumferential 
direction. This is examined in the next numerical studies in Figures 10 and 11. In these figures, the 
nonlinear mode shapes of the cylindrical shell is compared with their linear counterparts. 
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(a) (b) 

(c) 

Figure 8: The nonlinear invariant modal surface obtained for fundamental NNM by fifth order  

IM (a)
01

/W h   (b) 
03

/W h  (c) 
21

/W h  v.s. 
11

/W h  and 
11

/
NL

W hw  for  

1
10 1 / 2, / 0.004, 0.5m, ,n N L R h R R= = = == . 

 
As is previously mentioned, the nonlinear mode shapes may not remain the same at different 

instants. Hence the mode shapes in Figures 10 and 11 are presented for three different time instants. 
Moreover at each time instants, the displacement distributions in longitudinal and circumferential 
directions are given in the same two dimensional plot. For the longitudinal distribution, q  is set to 
zero and for the circumferential direction, s  is set to / 2L . The linear mode shapes are also includ-

ed in these figures to illustrate the effects of the nonlinearity on the mode shapes. Results in Figure 
10 correspond to the first case study, whose corresponding invariant surfaces are presented in Fig-

ure 8. The mode shapes at 0t =  where 11
W  is zero, are shown in Figure 10-(a). Slight differences 

between the linear and nonlinear mode shapes, both for longitudinal and circumferential directions, 

can be recognized, although the overall shapes are the same. Mode shapes at 0.25
NL

t T=  where 

2 /
NL NL

T p w=  is depicted in Figure 10-(b). The displacement amplitude ( 11
W ) is nearly zero at this 
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point, while 11
W  is close to its maximum value. The nonlinear mode’s displacement distribution in 

both longitudinal and circumferential direction deviate considerably from their linear counterparts 
such that the number of circumferential half-wave numbers are doubled at this instant. This hap-

pens due to the fact that the amplitude of 21
W , which corresponds to the mode with 2 1n  circumfer-

ential half-wave number, becomes dominant at this time. However, since 21
W  have much lower am-

plitudes in most times than the modes with 1n  circumferential half-wave numbers (see Figure 8), 

thus the nonlinear mode shape seen in Figure 10-(b) can be observed only in a small interval of 

time. The mode shapes at 0.5
NL

t T=  are also similar to those at 0t = , especially in the circumfer-

ential direction.  
 

  

(a) (b) 

(c) 

Figure 9: The nonlinear invariant modal surface obtained for fundamental NNM by fifth  

order IM 
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(a) t = 0 (b) t = 0.25TNL (c) t = 0.5TNL 

Figure 10: Fundamental nonlinear mode shape of the cylindrical shell in different instants for 

= = = ==
1

10 1, / 2, / 0.004, 0.5m,,n N L R h R R  

 
Mode shapes of the second case study, shown in Figure 11, exhibits a rather different nonlinear 

mode shapes in comparison to the first case. The displacement distribution in the longitudinal di-
rection is nearly the same as the linear mode shapes, at different instants of time. However, the 
distributions in the circumferential direction are very different from the linear modes, such that at 

0t =  and 0.5
NL

T  the mode shapes are similar to the trapezoidal form rather than the sinusoidal 

form. This is in fact due to larger amplitudes of 21
W  as is seen in Figure 9. Moreover, the circumfer-

ential wave numbers at 0.25
NL

t T=  (where the velocity has its maximum value), is twice the wave 

number of the linear mode shape. This is similar to what is observed for the first case in Figure 10-
(b), except that the mode’s maximum amplitude is much larger in this case and the nonlinear mode 
shape with 2 1n  circumferential half-wave number is much more pronounced. 
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Figure 11: Fundamental nonlinear mode shape of the cylindrical shell in different  

instants for 
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4 CONCLUSIONS 

The nonlinear mode shapes of the FG cylindrical shell was calculated using the fifth-order IM ap-
proach and was employed along with the HAM to provide an expression for the frequency-
amplitude relation of FG cylindrical shells. For this purpose, the governing PDEs were discretized 
using the most influential linear modes of the structure. These equations were then decoupled using 
the NNM, leading to a single nonlinear ordinary equation for the fundamental mode. The HAM was 
applied to solve this equation which was shown to give an accurate result even with the first ap-
proximation, in the reasonable range of displacement amplitudes considered in the present study. 

Numerical studies were performed to examine the accuracy of the IM and HAM. Moreover the 
backbone curves, the nonlinear invariant surfaces and also the nonlinear mode shapes of the FG 
cylindrical shell were obtained for two different thickness to radius ratios. The softening nonlineari-
ty with minimal dependence on N  was observed for the thicker shell. The thinner cylinder, howev-
er, exhibited the hardening behavior with the most nonlinearity occurred for lower values of N . It 
was found that the axisymmetric mode with twice circumferential wave number (i.e., mode (2,1)) is 
the dominant mode, compared to the axisymmetric modes, that contributes to the NNM in the 
thinner cylinder. Moreover, the dependence of (2,1) mode’s amplitude on both the displacement and 
velocity of the mode (1,1) was found to be comparable, in contrast to the axisymmetric modes that 
were mostly dependent on the displacement. Hence in times that the displacement and velocity of 
the (1,1) mode reach their zero and maximum values, respectively, the amplitude of the mode (2,1) 
becomes dominant leading to the nonlinear mode shapes with circumferential wave number twice 
those observed for the linear mode shapes. This was in fact more pronounced for the thinner cylin-
der. 
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