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Abstract 
In this paper, a new higher-order layerwise finite element model, de-
veloped earlier by the present authors for the static analysis of lam-
inated composite and sandwich plates, is extended to study the free 
vibration behavior of multilayer sandwich plates. In the present 
layerwise model, a first-order displacement field is assumed for the 
face sheets, whereas a higher-order displacement field is assumed for 
the core. Thanks for enforcing the continuity of the interlaminar dis-
placement, the number of variables is independent of the number of 
layers. In order to reduce the computation effort, a simply four-noded 
C0 continuous isoparametric element is developed based on the pro-
posed model. In order to study the free vibration, a consistent mass 
matrix is adopted in the present formulation. Several examples of 
laminated composite and sandwich plate with different material com-
binations, aspect ratios, boundary conditions, number of layers, ge-
ometry and ply orientations are considered for the analysis. The per-
formance and reliability of the proposed formulation are demon-
strated by comparing the author’s results with those obtained using 
the three-dimensional elasticity theory, analytical solutions and other 
advanced finite element models. From the obtained results, it can be 
concluded that the proposed finite element model is simple and ac-
curate in solving the free vibration problems of laminated composite 
and sandwich plates. 
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1 INTRODUCTION 

Due to their low weight, high stiffness and high strength properties, the composites sandwich struc-
tures are widely used in various industrial areas e.g. civil constructions, marine industry, automobile 
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and aerospace applications. A sandwich is a three layered construction, where a low weight thick core 
layer (e.g., rigid polyurethane foam) of adequate transverse shear rigidity, is sandwiched between two 
thin laminated composite face layers of higher rigidity (Pal and Niyogi 2009). Despite the many 
advantages of sandwich structures, their behavior becomes very complex due to the large variation 
of rigidity and material properties between the core and the face sheets. Therefore, the accuracy of 
the results for sandwich structures largely depends on the computational model adopted (Pandey and 
Pradyumna 2015). 

In the literature, several two-dimensional theories and approaches have been used to study the 
behavior of composite sandwich structures. Starting by the simple classical laminated plate theory 
(CLPT), based on the Kirchhoff’s assumptions, which does not includes the effect of the transverse 
shear deformation, the first-order shear deformation theory (FSDT), where the effect of the transverse 
shear deformation is considered (Reissner 1975, Whitney and Pagano 1970, Mindlin 1951, Yang et al. 
1966), but this theory gives a state of constant shear stresses through the plate thickness, and the 
higher-order shear deformation theories (HSDT) where a better representation of transverse shear effect 
can be obtained (Lo et al. 1977, Manjunatha and Kant 1993, Reddy 1984, Lee and Kim 2013). Regarding 
the approaches used to model the behavior of composite structures, we distinguish the equivalent single 
layers (ESL) approach where all the laminate layers are referred to the same degrees-of-freedom (DOFs). 
The main advantages of ESL models are their inherent simplicity and their low computational cost, due 
to the small number of dependent variables. However, ESL approach fails to capture precisely the local 
behavior of sandwich structures. This drawback in ESL was circumvented by the Zig-Zag (ZZ) and 
layerwise (LW) approaches in which the variables are linked to specific layers (Belarbi and Tati 2015, 
Belarbi et al. 2016, Ćetković and Vuksanović 2009, Chakrabarti and Sheikh 2005, Kapuria and Nath 
2013, Khalili et al. 2014, Khandelwal et al. 2013, Marjanović and Vuksanović 2014, Maturi et al. 2014, 
Sahoo and Singh 2014, Singh et al. 2011, Thai et al. 2016). For more details, the reader may refer to 
(Carrera 2002, Ha 1990, Khandan et al. 2012, Sayyad and Ghugal 2015). 

In the last decades, the finite element method (FEM) has become established as a powerful 
method and as the most widely used method to analyze the complex behavior of composite sandwich 
structures (e.g., bending, vibration, buckling). This is due to the limitations in the analytical methods 
which are applicable only for certain geometry and boundary conditions (Kant and Swaminathan 
2001, Mantari and Ore 2015, Maturi et al. 2014, Noor 1973, Plagianakos and Papadopoulos 2015, 
Srinivas and Rao 1970). Khatua and Cheung (1973) were one of the first to use the FEM in the 
analysis of this type of structures. They developed two triangular and rectangular elements to study 
the bending and free vibration of sandwich plates. 

In the recent years, many researchers have investigated the dynamic response of laminated com-
posite and sandwich plates using finite element models based on Zig-Zag theory. Chakrabarti and 
Sheikh (2004) developed a C1 continuous six-noded triangular plate element with 48 DOFs for dy-
namic analyses of laminate-faced sandwich plate using higher-order zig-zag theory (HZZT). After-
wards, Kulkarni and Kapuria (2008) extended the application of a newly improved discrete Kirchoff 
quadrilateral element, based on third order zigzag theory to vibration analysis of composite and 
sandwich plates. Zhen and Wanji (2006, 2010) carried out free vibration analyses of laminated com-
posite and sandwich plates using an eight-noded quadrilateral element based on a global-local higher 
order shear deformation theories (GLHSDT). 
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Chalak et al. (2013) developed a nine node finite element by taking out the nodal field variables 
in such a manner to overcome the problem of continuity requirement of the derivatives of transverse 
displacements for the free vibration analysis of laminated sandwich plate. An efficient nine-noded 
quadratic element with 99 DOFs is developed by Khandelwal et al. (2013) for accurately predicting 
natural frequencies of soft core sandwich plate. The formulation of this element is based on combined 
theory, HZZT and least square error (LSE) method. Therefore, the zig-zag plate theory presents good 
performance but it has a problem in its finite element implementation as it requires C1 continuity of 
transverse displacement at the nodes which involves finite element implantation difficulties. Also, it 
requires high-order derivatives for displacement when obtaining transverse shear stresses from equi-
librium equations (Pandey and Pradyumna 2015). 

Recently, various authors have adopted the layerwise approach to assume separate displacement 
field expansions within each material layer. Lee and Fan (1996) described a new layerwise model 
using the FSDT for the face sheets whereas the displacement field at the core is expressed in terms 
of the two face sheets displacements. They used a nine-nodded isoparametric finite element for bend-
ing and free vibration of sandwich plates. On the other hand, a new three-dimensional (3D) layerwise 
finite element model with 240 DOFs has been developed by Nabarrete et al. (2003) for dynamic 
analyses of sandwich plates with laminated face sheets. They used the FSDT for the face sheets, 
whereas for the core a cubic and quadratic function for the in-plane and transverse, displacements, 
was adopted. In the same year, Desai et al. (2003) developed an eighteen-node layerwise mixed brick 
element with 108 DOFs for the free vibration analysis of multi-layered thick composite plates. Later, 
an eight nodes quadrilateral element having 136 DOFs was developed by Araújo et al. (2010) for the 
analysis of sandwich laminated plates with a viscoelastic core and laminated anisotropic face layers. 
The construction of this element is based on layerwise approach where the HSDT is used to model 
the core layer and the face sheets are modeled according to a FSDT. Elmalich and Rabinovitch (2012) 
have undertaken an analysis on the dynamics of sandwich plates, using a C0 four-node rectangular 
element. The formulation of this element is based on the use of a new layerwise model, where the 
FSDT is used for the face sheets and the HSDT is used for the core. In 2015, Pandey and Pradyumna 
(2015) presented a new higher-order layerwise plate formulation for static and free vibration analyses 
of laminated composite plates. A high-order displacement field is used for the middle layer and a first-
order displacement field for top and bottom layers. The authors used an eight-noded isoparametric 
element containing 104 DOFs to model the plate. The performance of these layerwise models is good 
but it requires high computational effort as the number of variables dramatically increases with the 
number of layers. 

According to the presented literature review on the sandwich models, we found that many authors 
used finite element models having large number of nodes and/or DOFs, especially those based on the 
layerwise approach. Therefore, the present work aims to propose a new C0 layerwise model competitor 
to the majority of aforementioned finite element models, having a reduced number of nodes and 
DOFs. This new model is used for the calculation of natural frequencies of laminated composite and 
sandwich plates. Thanks for enforcing the continuity of the interlaminar displacement, the number 
of variables is independent of the number of layers. The numerical results obtained by developed 
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model are compared favorably with those obtained via analytical solution and numerical results ob-
tained by other models. The results obtained from this investigation will be useful for a more under-
standing of the bending and free vibration behavior of sandwich laminates plates. 
 
2 MATHEMATICAL MODEL 

Sandwich plate is a structure composed of three principal layers as shown in Figure.1, two face sheets 
(top-bottom) of thicknesses (ht), (hb) respectively, and a central layer named core of thickness (hc) 
which is thicker than the previous ones. Total thickness (h) of the plate is the sum of these thicknesses. 
The plane (x, y) coordinate system coincides with mid-plane plate. 
 

 

Figure 1: Geometry and notations of a sandwich plate. 

 
2.1 Displacement Field 

In the present model, the core layer is modeled using the HSDT. Hence, the displacement field is 
written as a third-order Taylor series expansion of the in-plane displacements in the thickness coor-
dinate, and as a constant one for the transverse displacement: 
 

2 3
0

2 3
0

0

c c c
c x x x

c c c
c y y y

c

u u Z Z Z
v v Z Z Z
w w

  

  

   

   



 (1) 

 

where 0u , 0v  and 0w  are respectively, in-plane and transverse displacement components at the mid-

plane of the sandwich plate. ,  c c
x y   represent normal rotations about the x and y axis respectively. 

The parameters c
x , c

y , c
x  and c

y  are higher order terms. 

For the two face sheets, the FSDT is adopted. The compatibility conditions as well as the dis-
placement continuity at the interface (top face sheet-core- bottom face sheet), leads to the following 
improved displacement fields (Fig. 2): 
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Figure 2: Representation of layerwise kinematics and coordinate system. 

 
a) Top face sheet 
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where t
x and t

y  are the rotations of the top face-sheet cross section about the y and x axis, respec-

tively, and the displacement of the core for (z=hc/2) is given by: 
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The substitution of Eq. (3) in Eq. (2) led finally to the following expressions: 
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(4)

 

b) Bottom face sheet 

According to Figure 2, the displacement components of the bottom face-sheet can be written as: 
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where b
x and b

y  are the rotations of the bottom face-sheet cross section about the y and x axis 

respectively, and the displacement of the core for (z=-hc/2) is given by: 
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Substituting equation (6) into equation (5), leads to the following expression: 
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2.2 Strain–Displacement Relations 

The strain-displacement relations derived from the displacement model of Eqs. (1), (4) and (7) are 
given as follows: 

For the core layer,  
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For the top face sheet, 
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For the bottom face sheet, 
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2.3 Constitutive Relationships 

In this work, the two face sheets (top and bottom) are considered as laminated composite. Hence, the 
stress-strain relations for thk  layer in the global coordinate system are expressed as: 
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The core is considered as an orthotropic composite material and its loads resultants are obtained 
by integration of the stresses through the thickness direction of laminated plate. 
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 (12) 

 

where ,  N M  denote membrane effort, bending moment, respectively, and ,N M  denote higher order 

membrane and moment resultants, respectively. V is the shear resultant; S and R are the higher order 
shear resultant. 

It is informative to relate the loads resultants of the core defined in Eq. (12) to the total strains 
in Eq. (8). From Eqs. (8) and (12), we obtain: 
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 (13a)
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 (13b)

 
where A ,  Bij ij       , etc. are the elements of the reduced stiffness matrices of the core, defined by: 
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 (14)

 

According to the FSDT, the constitutive equations for the two face sheets are given by: 
 

0
0   

0 0

f f f f
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f f f f
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f f f
c c

N A B
M D
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
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

     
    
    
         

 (15)

 

where the elements of reduced stiffness matrices of the face sheets are given as follows: 
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a. Top face sheet, 
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b. Bottom face sheet, 
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3 FINITE ELEMENT FORMULATION 

In the present study, a four-node C0 continuous quadrilateral element, named QSFT52 (Quadrilateral 
Sandwich First Third with 52-DOFs), with thirteen DOFs per node 

 0 0 0                                 
Tc c c c c c t t b b

x y x y x y x y x yu v w            has been developed. Each node contains: two rota-

tional DOF for each face sheet, six rotational DOF for the core, while the three translations DOF are 
common for sandwich layers (Figure.3). 
 

 

Figure 3: Geometry and corresponding DOFs of the present element. 
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The displacements vectors at any point of coordinates (x, y) of the plate are given by: 
 

     
1

,,
n

i i
i

x yx y N 


   (18)

 

where i  is the nodal unknown vector corresponding to node i (i = 1, 2 3 4), Ni is the shape function 

associated with the node i. 
The generalized strain vector for three layers can be expressed in terms of nodal displacements 

vector as follows: 
 

   ( ) ( )
i

k k
iB       (19)

 

where the matrices ( )k
iB    relate the strains to nodal displacements. 

 
4 GOVERNING DIFFERENTIAL EQUATION 

In this work, Hamilton’s principle is applied in order to formulate governing free vibration problem, 
which is given as: 
 

 
2

1

0
t

t

T U dt      (20)

 

where t is the time, T is the kinetic energy of the system and U is the potential energy of the system. 
The first variation of kinetic energy of the three layers sandwich plate can be expressed as: 
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 (21)

 

where ui, vi and wi are the displacement in x,y and z directions, respectively, of the three-layered 
sandwich (i = t, c, b), i  and iV  are the density of the material and volume, of each component, 

respectively, and (..) is a second derivative with respect to time. 
The first variation of the potential energy of the sandwich plate is the summation of contribution 

from the two face sheets and from the core as: 
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In the present analysis, the work done by external forces and the damping are neglected. Hence, 
Eq. (20) leads to the following dynamic equilibrium equation of a system. 
 

      0e eM K    (23)
 

where  eM  and  eK
 
denote the total element mass matrix and the total element stiffness matrix 

respectively, which are computed using the Gauss numerical integration. The total element stiffness 
matrix is the summation of contribution from the two face sheets and from the core as: 
 

       t c b
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where the element stiffness matrix of the core  c
eK 

 
 are given by, 

 

                   

                 

                 

1 0 1 1

1 2 1 3 2 0

0 0 0 1 0 2

0 3 T T

T T T

c T T T

T

e

B B B B D B

B E B B F B B D B

B A B B B B B D B

                B E B

              

K

  

   

   

     

     

 













                         

                      

                    










 

                 

                 

           

2 1 2 2 2 3

3 0 3 1 3 2

0 0 03 3
s s s

T T T

T T T

T TT s

B E B B F B B L B

B E B B F B B L B

                 B H B B A B B B

             

                

     

     

    

  

  

  

                      

                      

                    
 

           

           

1

0 2 1 0 1 1

1 2 2 0 2 1

s

s s s s s s

s s s s s s

s

T T Ts s s

T T Ts s s

B

B D B B B B B D B

B E B B D B B E B

                

                

           



     

     

  

  

     

                                

                                
   2 2

s s

T sB F B dA                 

 (25)

 
For the two face sheets, the element stiffness matrix can be written as: 

a. Top face sheet: 
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 (26)
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b. Bottom face sheet: 
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 (27)

 
The total element mass matrix, for the three-layer sandwich plate, can be written as  

 

              ( ) ( ) ( )+T T Tt c b
eM N m N N m N N m N dA             (28)

 

where ( )tm   , ( )cm    and ( )bm    are the consistent mass matrices of the top face sheet, core and the 

bottom face sheet, respectively, containing inertia terms. Now, after evaluating the stiffness and mass 
matrices for all elements, the governing equations for free vibration analysis can be stated in the form 
of generalized eigenvalue problem. 
 

     2 0K M     (29)

 
where,   denote the natural frequency,  K  is he global stiffness matrix,  M  is the global mass 

matrix,    are the vectors defining the mode shapes. 

 
5 NUMERICAL RESULTS AND DISCUSSIONS 

In this section, several examples on the free vibration analysis of laminated composite and sandwich 
plates will be analyzed to demonstrate the performance and the versatility of the developed finite 
element model. The MATLAB programming language is used to solve the eigenvalue problem. The 
obtained numerical results are compared with the analytical solutions and others finite elements 
numerical results found in the literature. 

Table 1 shows the boundary conditions, for which the numerical results have been obtained, 
where CCCC, SSSS, CSCS and CFCF respectively indicate: fully clamped, fully simply supported, 
two opposite edges clamped and other two simply supported, two opposite edges clamped and other 
two free. Table 2 shows the material models (MM) considered for different numerical evaluation. 
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Boundary conditions Abbreviations Restrained edges 

Simply supported SSSS 
0

0  

      0 / 2

     / 20

c c c t b
x x x x x

c c c t b
y y y y y

w at x a

w at by

    

    

    

     

 

 


 

Clamped CCCC 0           0c c c c c c t t b b
x y x y x y x y x yw                     

Simply supported- Clamped SCSC 
Simply supported at / 2x a   

Clamped at / 2y b   

Clamped-free CFCF 
Clamped at / 2x b   

Free at / 2y b   

Table 1: Boundary conditions used in this study. 

 
 
 

Elastic 

properties 
Unit MM1 MM2 MM3 MM4 MM5 MM6 MM7 MM8 

E11 GPa 24.51 0.1036 276.0 0.5776 40 Open 131.0 0.00690 

E22 GPa 7.77 0.1036 6.9 0.5776 E22 E22 10.34 0.00690 

G12 GPa 3.34 0.05 6.9 0.1079 0.6E22 0.6E22 6.9 0.00344 

G13 GPa 3.34 0.05 6.9 0.1079 0.5E22 0.6E22 6.2 0.00344 

G23 GPa 1.34 0.05 6.9 0.2221 0.5E22 0.5E22 6.9 0.00345 

 - 0.078 0.32 0.25 0.0025 0.25 0.25 0.22 10-5 

 Kg/m3 1800 130 681.8 1000 1 1 1627 97 

Table 2: Material models (MM) considered for different laminated and sandwich plate. 

 
 
5.1 Convergence Study 

In the first example, the convergence of the developed quadrilateral element is studied for a seven- 
layer simply supported square sandwich plate. Two sandwich plates with various lay-ups on face 
sheets [0/90/0/core/0/90/0] and [45/-45/45/core/-45/45/-45] are considered. The core is made of 
HEREX-C70.130 PVC foam (MM1) and the face sheets are made of glass polyester resin (MM2). The 
geometrical properties of the plate are (a/h = 10, a/b = 1, hc/h = 0.88) where h is the total thickness 
of the plate. The convergence of the non-dimensional results of natural frequencies, for the first four 
modes, is shown in Table 3 with different mesh sizes (6×6, 8×8, 10×10, 12×12, 14×14 and 16×16). 
The comparison was made with the analytical solutions based on LW approach (Jam et al. 2010, 
Rahmani et al. 2010), the 3D-finite element models also based on LW approach (FEM-3D-LW) (Ma-
lekzadeh and Sayyidmousavi 2009, Burlayenko et al. 2015), the FEM-Q9 and Q4 solution based on 
HSDT (Nayak et al. 2002) and other analytical solution based on HSDT (Meunier and Shenoi 1999). 
The results of the comparison show the performances and convergence of the present formulation. 
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References FE Models 
Various lay-
ups on face 

sheets 

Frequencies (Hz) 

Mode 1 Mode 2 Mode 3 Mode 4 

Present element (6×6) 
Present element (8×8) 

Present element (10×10) 
Present element (12×12) 
Present element (14×14) 
Present element (16×16) 
Burlayenko et al. (2015) 
Rahmani et al. (2010) 
Malekzadeh, K et al. 

(2009) 
Jam et al. (2010) % errora 

 
Meunier and Shenoi (1999) 

Nayak et al. (2002) 
Nayak et al. (2002) 

QSFT52 
QSFT52 
QSFT52 
QSFT52 
QSFT52 
QSFT52 

FEM-3D-LW 
Analytical-LW 
FEM-3D-LW 

Analytical-LW 
 

Analytical-HSDT 
FEM-Q9-HSDT 
FEM-Q4-HSDT 

Case 1a 

14.736* 
14.583 
14.513 
14.477 
14.452 
14.440 
14.620 
14.270 
14.740 
15.040 
(-3.989) 
15.280 
15.040 
15.340 

28.207 
27.499 
27.173 
26.999 
26.893 
26.826 
26.800 
26.310 
26.830 
26.733 
(0.347) 
28.690 
28.100 
30.180 

28.802 
28.115 
27.796 
27.626 
27.524 
27.456 
27.400 
27.040 
27.530 
27.329 
(0.464) 
30.010 
29.200 
31.960 

37.584 
36.627 
36.167 
35.954 
35.777 
35.706 
35.550 
34.950 
35.600 
35.316 
(1.104) 
38.860 
37.760 
40.940 

Present element (6×6) 
Present element (8×8) 

Present element (10×10) 
Present element (12×12) 
Present element (14×14) 
Present element (16×16) 
Burlayenko et al. (2015) 
Jam et al. (2010) % error 

 
Malekzadeh, K et al. 

(2009) 
Meunier and Shenoi (2000) 

Nayak et al. (2002) 
Nayak et al. (2002) 

QSFT52 
QSFT52 
QSFT52 
QSFT52 
QSFT52 
QSFT52 

FEM-3D-LW 
Analytical-LW 

 
FEM-3D-LW 

Analytical-HSDT 
FEM-Q9-HSDT 
FEM-Q4-HSDT 

Case 2b 

15.674 
15.536 
15.473 
15.437 
15.419 
15.405 
15.420 
15.786 
(-2.445) 
15.810 
16.380 
16.090 
16.430 

28.756 
28.069 
27.754 
27.587 
27.485 
27.417 
27.170 
27.316 
(0.270) 
27.230 
29.650 
28.930 
31.170 

28.756 
28.069 
27.754 
27.587 
27.485 
27.417 
27.460 
27.316 
(0.270) 
27.230 
29.650 
28.930 
31.170 

38.363 
37.478 
37.053 
36.805 
36.698 
36.592 
36.240 
36.216 
(1.038) 
36.260 
40.000 
38.760 
42.780 

* The natural frequencies are expressed as:  

a Percentage error = [(Present result - Analytical result) / Analytical result] × 100 
b Various lay-ups on face sheets : Case 1: [0/90/0/core/0/90/0] and Case 2 : [45/-45/45/core/-45/45/-45]. 

Table 3: Non-dimensional natural frequencies for a square multi-layered  
sandwich plate with various lay-ups on face sheets. 

 
5.2 Square Sandwich Plate (0/90/C/90/0) Having Two-Ply Laminated Stiff Sheets at the Faces 

In this problem, a simply supported square sandwich plate having two laminated stiff layers is inves-
tigated. The thickness of each laminate layer is 0.05h, whereas the thickness of the core is 0.8h. The 
mechanical properties MM3 and MM4 of table 2 are adopted, respectively, for laminated face sheets 
and core. The non-dimensional natural frequencies, for the first six modes, are presented in table 4 
using a mesh size of 12×12. In the present analysis, different thickness ratios (a/h = 6.67, 10 and 20) 
are considered. The obtained results are compared with the 3D-elasticity solution given by Kulkarni 
and Kapuria (2008), analytical results of Wang et al. (2000) using p-Ritz method and some existing 

2
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finite element results based on HZZT (Chakrabarti and Sheikh 2004, Kulkarni and Kapuria 2008). It 
is clear, from the table 4, that the results of developed element are in excellent agreement with 
numerical results found in the literature. 
 

 Modes 
Present 

QSFT52 

Kulkarni et al. 
(2008) 

3D-Elasticity 

Kulkarni et al. 
(2008) 

FEM-Q4-TSDT

Wang et al. 
(2000) 

Anal-Solution 

Chakrabarti et al. 
(2004) 

FEM-T6-HZZT 

6.67 

1st 

2nd 

3rd 

4th 

5th 

6th 

10.564* 

16.329 

18.962 

22.745 

23.867 

28.722 

10.524 

16.149 

18.728 

22.434 

23.172 

27.879 

13.315 

21.561 

23.177 

28.713 

31.140 

34.055 

11.414 

17.552 

20.426 

24.436 

- 

- 

10.560 

14.455 

18.735 

20.580 

23.373 

26.165 

10 

1st 

2nd 

3rd 

4th 

5th 

6th 

9.871 

15.681 

18.310 

21.999 

22.816 

27.861 

9.828 

15.505 

18.075 

21.696 

22.202 

26.915 

12.088 

20.615 

22.152 

27.675 

30.143 

35.329 

10.555 

16.830 

19.648 

23.616 

- 

- 

10.051 

14.409 

18.962 

19.424 

21.252 

24.496 

20 

1st 

2nd 

3rd 

4th 

5th 

6th 

7.742 

14.039 

16.196 

19.992 

21.278 

25.604 

7. 688 

13.845 

15.920 

19.656 

20.676 

24.948 

8.721 

17.705 

18.530 

24.105 

27.714 

32.136 

8.029 

14.858 

16.984 

21.111 

- 

- 

7.927 

13.042 

17.315 

18.834 

20.091 

24.139 

* The natural frequencies are expressed as:  

Table 4: Non-dimensional fundamental frequencies with different modes for simply  
supported sandwich plate with laminated face sheets (0/90/C/90/0). 

 
Moreover, the same plate is analyzed by considering two different boundary conditions, CCCC 

and SCSC. The non-dimensional natural frequencies, for the first six modes, are reported in table 5 
for different thickness ratios (a/h = 5, 10 and 20). The first six mode shapes obtained for SSSS, CFCF 
and CFFF square laminated sandwich plate with a/h =10 are shown in Figures 4, 5 and 6. It can be 
observed that, in comparison with the FEM solution based on HZZT (Khandelwal et al. 2013, Chalak 
et al. 2013, Kulkarni and Kapuria 2008, Chakrabarti and Sheikh 2004), the present element gives 
more accurate results than the other models. 

a
h
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Bound-
ary 

condition 

Mode
s 

Present  
QSFT52 

Khandelwal et 
al. (2013) 
FEM-Q9-

HZZT 

Chalak et al. 
(2013) 

FEM-Q9-
HZZT 

Kulkarni et al. 
(2008) 

FEM-Q4-
HZZT 

Chakrabarti et 
al. (2004)  

FEM-T6-HZZT 

5 

SCSC 

1st 

2nd 

3rd 

4th 

5th 

6th 

11.445 

18.267 

19.707 

24.448 

27.657 

29.866 

11.591 

17.108 

20.409 

24.079 

24.593 

29.989 

11.408 

18.014 

19.485 

24.086 

26.559 

29.014 

11.516 

18.379 

19.626 

24.722 

27.409 

29.231 

11.063 

15.199 

18.255 

19.781 

20.127 

22.907 

CCCC 

1st 

2nd 

3rd 

4th 

5th 

6th 

12.200 

18.733 

21.120 

25.614 

27.959 

29.866 

12.121 

18.453 

20.706 

25.058 

26.849 

30.908 

12.138 

18.469 

20.764 

25.138 

26.860 

31.050 

12.440 

19.106 

21.442 

26.691 

28.043 

32.257 

11.864 

15.672 

19.477 

20.057 

21.167 

23.628 

10 

SCSC 

1st 

2nd 

3rd 

4th 

5th 

6th 

10.346 

16.399 

18.547 

22.523 

24.079 

27.934 

10.860 

16.131 

18.962 

22.438 

22.628 

27.532 

10.344 

16.310 

18.349 

22.294 

23.554 

27.211 

10.378 

16.411 

18.395 

22.494 

23.718 

27.258 

10.422 

15.021 

19.135 

20.372 

21.642 

25.215 

CCCC 

1st 

2nd 

3rd 

4th 

5th 

6th 

11.318 

16.967 

19.332 

23.187 

24.428 

27.934 

11.349 

16.900 

19.214 

23.003 

23.925 

28.502 

11.356 

16.909 

19.236 

23.041 

23.935 

28.539 

11.468 

17.135 

19.494 

23.659 

24.253 

28.918 

11.524 

15.691 

19.946 

20.783 

22.356 

25.812 

20 

SCSC 

1st 

2nd 

3rd 

4th 

5th 

6th 

8.635 

14.604 

16.581 

20.390 

22.006 

26.107 

9.502 

14.853 

17.233 

20.708 

21.310 

25.768 

8.666 

14.645 

16.367 

20.234 

21.767 

25.342 

8.649 

14.601 

16.357 

20.233 

21.673 

25.324 

8.623 

13.533 

17.601 

19.441 

20.416 

24.620 

CCCC 

1st 

2nd 

3rd 

4th 

5th 

6th 

10.253 

15.530 

17.605 

21.217 

22.568 

26.107 

10.330 

15.598 

17.644 

21.246 

22.354 

26.636 

10.336 

15.609 

17.659 

21.278 

22.368 

26.683 

10.332 

15.600 

17.674 

21.404 

22.323 

26.893 

10.536 

14.709 

18.708 

20.182 

21.369 

25.406 

Table 5: Non-dimensional fundamental frequencies for laminated  
sandwich plate (0/90/C/90/0) with different boundary conditions. 

a
h
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Mode 1 Mode 2 Mode 3 

 

Mode 4 Mode 5 Mode 6 

Figure 4: First six mode shapes of SSSS square laminated sandwich plate (0/90/C/90/0) with a/h =10. 

 
 

 

Mode 1 Mode 2 Mode 3 

 

Mode 4 Mode 5 Mode 6 

Figure 5: First six mode shapes of CFCF square laminated sandwich plate (0/90/C/90/0) with a/h =10. 

 



2282   M-O. Belarbi et al. / On the Free Vibration Analysis of Laminated Composite and Sandwich Plates: A Layerwise Finite Element Formulation 

Latin American Journal of Solids and Structures 14 (2017) 2265-2290 

 
Mode 1 Mode 2 Mode 3 

 
Mode 4 Mode 5 Mode 6 

Figure 6: First six mode shapes of CFFF square laminated sandwich plate (0/90/C/90/0) with a/h =10. 

 
5.3 Skew Laminated Plates 

In order to evaluate the performance of the developed element for the study of free vibration response 
of irregular plates, a five layer symmetric cross-ply skew laminated plates (90/0/90/0/90) with simply 
supported edges is considered. The geometry of the skew plates is shown in Figure 7. The material 
properties MM5 of Table 2 is used for this analysis. The skew angle α is varied from 0°, 15°, 30°, 45° 
and 60°. The non-dimensional natural frequencies for the first four modes are reported in Table 6, 
considering the thickness ratios (a/h) as 10. A mesh size of 12×12 is considered for the analysis. The 
first six flexural mode shapes obtained for α = 45° are shown in Figure. 8. The comparison was made 
with the analytical solutions of Wang (1997) using B-spline Rayleigh-Ritz method, the solution of 
Ferreira et al. (2005) based on Radial Basic Function (RBF), as well as with the finite element models 
of Nguyen-Van (2009) and Garg et al. (2006). The results of the comparison show the effectiveness 
of the present element in the analysis of this type of structures. 
 

 
Figure 7: A skew plate with mesh arrangement (mesh size: m × n). 
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Skew angle References FE Models 
Frequencies (Hz) 

Mode 1 Mode 2 Mode 3 Mode 4 

0° 

Present element 

Nguyen-Van (2009) 

Ferreira et al. (2005) 

Wang (1997) 

Garg et al. (2006) 

Garg et al. (2006) 

QSFT52 

MISQ20 

RBF 

Anal Solution 

FEM-Q9-TSDT 

FEM-Q9-FSDT 

1.5816* 

1.5733 

1.5791 

1.5699 

1.5703 

1.5699 

3.0082 

- 

- 

3.0371 

2.8917 

3.0372 

3.8583 

- 

- 

3.7324 

3.8041 

3.7325 

4.6476 

- 

- 

4.5664 

4.5314 

4.5664 

15° 

Present element 

Nguyen-Van (2009) 

Ferreira et al. (2005) 

Garg et al. (2006) 

Garg et al. (2006) 

QSFT52 

MISQ20 

RBF 

FEM-Q9-TSDT 

FEM-Q9-FSDT 

1.6799 

1.6896 

1.6917 

1.6877 

1.6874 

3.0467 

- 

- 

3.0458 

3.1413 

4.1075 

- 

- 

4.0264 

3.9600 

4.7327 

- 

- 

4.4818 

4.6073 

30° 

Present element 

Nguyen-Van (2009) 

Ferreira et al. (2005) 

Wang (1997) 

Garg et al. (2006) 

Garg et al. (2006) 

QSFT52 

MISQ20 

RBF 

Anal Solution 

FEM-Q9-TSDT 

FEM-Q9-FSDT 

2.1074 

2.0820 

2.0799 

2.0844 

2.0840 

2.0884 

3.2736 

- 

- 

3.5127 

3.4023 

3.5147 

4.9556 

- 

- 

4.6997 

4.7176 

4.7033 

5.0316 

- 

- 

4.8855 

4.7674 

4.8864 

45° 

Present element 

Nguyen-Van (2009) 

Ferreira et al. (2005) 

Wang (1997) 

Garg et al. (2006) 

Garg et al. (2006) 

QSFT52 

MISQ20 

RBF 

Anal Solution 

FEM-Q9-TSDT 

FEM-Q9-FSDT 

2.7691 

2.8855 

2.8228 

2.8825 

2.8925 

2.8932 

3.7711 

- 

- 

4.2823 

4.1906 

4.2852 

5.2930 

- 

- 

5.5868 

5.4149 

5.5886 

6.6081 

- 

- 

6.1808 

6.2868 

6.1874 

60° 

Present element 

Nguyen-Van (2009) 

Ferreira et al. (2005) 

QSFT52 

MISQ20 

RBF 

4.5523 

4.5412 

4.3761 

5.2950 

- 

- 

6.4896 

- 

- 

8.0651 

- 

- 

* The natural frequencies are expressed as:  

Table 6: Non-dimensional natural frequencies for symmetric cross-ply  
skew composite laminates (90/0/90/0/90) with a/h = 10. 

 
5.4 Simply Supported Cross-Ply Multilayered Composite Plate (0/90/…/0) 

In this example, the effects of number of layers (n) and modulus ratio (E11/E22) on fundamental 
frequencies ( ) are studied. Simply supported square cross ply laminated composite plate of equal 
thickness is considered. In the present analysis, different number of layers with various modular ratios 
(E11/E22) are adopted. The material properties MM6 of Table 2 are used for this analysis. The results 
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are obtained for thickness ratio a/h = 5. The non-dimensional results of natural frequencies are 
reported in Table 4 using a 12×12 mesh. 

It is clear, from the table 7, that the results obtained from developed element are in excellent 
agreement when compared with those obtained from the 3D-elasticity solution given by Noor (1973), 
the FEM-Q9 and Q4 solution based on LW (Marjanović and Vuksanović 2014), the FEM-Q8 solution 
based on GLHSDT (Zhen et al. 2010), the FEM-Q9 and Q4 solution based on HSDT (Nayak et al. 
2002) and other analytical results (Owen and Li 1987, Vuksanović 2000, Matsunaga 2000). From 
Figure 9, it can be seen that the values of natural frequencies of laminated plate increase with in-
creasing in E11/E22 modular ratios, whatever the number of layer. 
 

References FE Models No. of layers
 

3 10 20 30 

Present element 

Noor (1973) 

Owen and Li (1987) 

Vuksanović (2000) 

Marjanović and Vuksanović (2014)

Marjanović and Vuksanović (2014)

Nayak et al. (2002) 

Zhen et al. (2010) 

Matsunaga (2000) 

QSFT52 

3D-Elasticity 

RHSDT 

HSDT 

FEM-Q9-LW 

FEM-Q4-LW 

FEM-Q9-HSDT 

FEM-Q8-GLHSDT 

Analytical solution

3 Layersa

0.2646* 

0.2647 

0.2695 

0.2673 

0.2621 

0.2683 

0.2623 

0.2620 

0.2627 

0.3252 

0.3284 

0.3392 

0.3318 

0.3262 

0.3297 

0.3264 

0.3258 

0.3266 

0.3640 

0.3842 

0.3898 

0.3749 

0.3691 

0.3685 

0.3667 

0.3688 

0.3696 

0.3840 

0.4109 

0.4194 

0.4015 

0.3927 

0.3886 

0.3941 

0.3928 

0.3936 

Present element 

Noor (1973) 

Owen and Li (1987) 

Vuksanović (2000) 

Marjanović and Vuksanović (2014)

Marjanović and Vuksanović (2014)

Nayak et al. (2002) 

Matsunaga (2000) 

QSFT52 

3D-Elasticity 

RHSDT 

HSDT 

FEM-Q9-LW 

FEM-Q4-LW 

FEM-Q9-HSDT 

Analytical solution

5 Layersb

0.2662 

0.2659 

0.2699 

0.2684 

0.2618 

0.2683 

0.2636 

0.2638 

0.3404 

0.3409 

0.3453 

0.3442 

0.3330 

0.3396 

0.3372 

0.3362 

0.3966 

0.3979 

0.4030 

0.3939 

0.3858 

0.3918 

0.3929 

0.3901 

0.4300 

0.4314 

0.4370 

0.4269 

0.4166 

0.4219 

0.4257 

0.4215 

Present element 

Noor (1973) 

Nayak et al. (2002) 

Nayak et al. (2002) 

Zhen et al. (2010) 

Matsunaga (2000) 

QSFT52 

3D-Elasticity 

FEM-Q9-HSDT 

FEM-Q4-HSDT 

FEM-Q8-GLHSDT 

Analytical solution

9 Layersc

0.2672 

0.2664 

0.2636 

0.2641 

0.2636 

0.2645 

0.3459 

0.3443 

0.3372 

0.3378 

0.3402 

0.3414 

0.4086 

0.4054 

0.3929 

0.3935 

0.4002 

0.4015 

0.4467 

0.4421 

0.4257 

0.4263 

0.4362 

0.4376 

* The natural frequencies are expressed as:  
b Number of layers : a: [0/90/0], b: [0/90/0/90/0] and c : [0/90/0/90/0/90/0/90/0]. 

Table 7: Non-dimensional fundamental frequencies for simply supported square cross-ply  
multilayered composite plate (0/90/…/0) using different E11/E22 ratios. 
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Mode 1 Mode 2 Mode 3 

 

Mode 4 Mode 5 Mode 6 

Figure 8: First six mode shapes of simply supported square skew laminated plate for α = 45°. 

 

 

Figure 9: Variation of natural frequencies with respect to modular ratio (E11/E22) for laminated composite square Plates. 

 
5.5 Unsymmetric Laminated Sandwich Plate (0/90/C/0/90) 

To study the effect of the core thickness ratio (hc/hf) and aspect ratio (a/b) on the fundamental 
frequencies, a simply supported square sandwich plate with unsymmetric laminated face sheets and 
isotropic core is considered. The mechanical properties MM7 and MM8 of table 2 are adopted, re-
spectively, for the laminated face sheets and the core. The thickness ratio (a/h) is taken to be 10. A 
comparison has been made with 3D-elasticity solution of Rao et al. (2004) to assess the suitability of 
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the present formulation. Figure 10 shows the effect of the core thickness on the fundamental frequency 

of vibration. It is seen that the values of non-dimensional natural frequencies, 2
22c fb h E   , 

increase with the increasing in hc/hf ratio. 
 

 

Figure 10: Effect of hc/hf ratio on the fundamental frequencies of a simply supported square laminated sandwich plate. 

 
Further, the same sandwich plate was analyzed for different aspect ratios (a/b) keeping the same 

ratios a/h = 10 and hc/hf = 10. Figure 11 shows the effect of aspect ratio on the fundamental fre-
quency. It is found that the variation of the fundamental frequency decrease with increase in aspect 
ratio. It is concluded that, from Figure 10 and 11, the present results are in very close agreement with 
the 3D-elasticity solution (Rao et al. 2004). 
 

 

Figure 11: Effect of a/b ratio on the fundamental frequencies of a simply supported laminated sandwich plate. 
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5 CONCLUSION 

A new higher-order layerwise finite element model was proposed for free vibration analysis of lami-
nated composite and sandwich plates. The developed model is based on a proper combination of 
higher-order and first-order, shear deformation theories. These combined theories satisfy interlaminar 
displacement continuity. Although the model is a layerwise one, the number of variables is independ-
ent of the number of layers. Thus, the plate theory enjoys the advantage of a single-layer plate theory, 
even though it is based on the concept of a layerwise plate approach. Based on this model, a four-
noded C0 continuous isoparametric element is formulated. The performance and the efficiency of the 
newly developed FE model are demonstrated by several numerical examples on free vibration analysis 
of laminated composite, symmetric/unsymmetric sandwich and skew plates, with varying material 
combinations, aspect ratios, number of layers, geometry and boundary conditions. The results ob-
tained by our model were compared with those obtained by the analytical results and other finite 
element models found in literature. The comparison showed that the element has an excellent accu-
racy and a broad range of applicability. It is important to mention here, that the proposed FE for-
mulation is simple and accurate in solving the free vibration problems of laminated composite and 
sandwich plates. 
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