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Abstract

The main aim of this paper is to investigate analytically nonlinear
buckling and post-buckling of functionally graded stiffened circular
cylindrical shells filled inside by Pasternak two-parameter elastic
foundations in thermal environments and under axial compression
load and external pressure by analytical approach. Shells are rein-
forced by closely spaced rings and stringers. The material proper-
ties of shell and the stiffeners are assumed to be continuously grad-
ed in the thickness direction. Using the Reddy third order shear
deformation shell theory, stress function method and Lekhnitskii
smeared stiffeners technique, the governing equations are derived.
The closed form to determine critical axial load and post-buckling
load—deflection curves are obtained by Galerkin method. The ef-
fects of temperature, stiffener, foundation, material and dimension-
al parameters on the stability behavior of shells are shown. The
accuracy of the presented method is affirmed by comparisons with
well-known results in references. The results shown for thick cylin-
drical shells, the use of TSDT for determining their critical buck-
ling load is necessary and more suitable.
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Functionally graded materials (FGM) were firstly introduced by a group of scientists in Sendai,
Japan, in 1984 (Yamanouchi M, Koizumi M. 1990 and Koizumi M. 1993) and then were rapidly
developed by other researchers. Due to essential characteristics such as high stiffness, excellent tem-
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perature resistance capacity, structures made of functionally graded materials have been found wide
applications in many modern industry fields such as space vehicles, aircrafts, nuclear power plants
and many other engineering applications. As a result, many researches focused on the buckling and
postbuckling analyses of FGM plates and shells.

For un-stiffened shells, many researches are focused on the buckling and postbuckling analysis
of shells. Hui and Du (1987) studied initial postbuckling behaviors of imperfect antisymmetric
crossply cylindrical shells under torsional load. Shen (2003) investigated the post-buckling analysis
of pressure-loaded functionally graded FGM cylindrical shells in thermal environments based on the
classical shell theory with von Karman-Donnell-type of kinetic nonlinearity. Also using the Donnell
shell theory, Wu et al. (2005) solved the problem on the thermal buckling of FGM cylindrical shells
with the linear buckling shape deflection. By the Laplace transform in time domain, the coupled
thermoelastic response of FGM circular cylindrical shell was studied by Bahtui and Eslami (2007).
Li and Shen (2008) presented the investigation on a post-buckling analysis of 3D braided composite
cylindrical shells under combined external pressure and axial compression in thermal environment.
They used the higher order shear deformation shell theory and the singular perturbation technique
to determine interactive buckling loads and post-buckling equilibrium paths. Using the Ritz method,
Huang and Han (2008 and 2009), studied the buckling and postbuckling of un-stiffened FGM cylin-
drical shells under axial compression, radial pressure and combined axial compression and radial
pressure according to the Donnell shell theory with the nonlinear strain-displacement relations and
the three-term deflection shape. Bagherizadeh et al. (2011) investigated the mechanical buckling of
FGM cylindrical shells surrounded by Pasternak elastic foundation using the higher-order shear
deformation shell theory. Sofiyev and Kuruoglu (2013) studied the torsional vibration and buckling
of cylindrical shell with FGM coatings surrounded by an elastic medium. Shariyat and Asgari
(2013), based on the third order shear deformation theory with the von Karman-type kinematic
nonlinearity and a nonlinear finite element method, studied the nonlinear thermal buckling and
postbuckling analyses of imperfect cylindrical shells made of bidirectional FGM under uniform tem-
perature rises. Tornabene et al. (2015) studied stress and strain recovery for functionally graded
free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Sofi-
yev (2015) investigated the buckling or vibration of FGM truncated conical shells under external
pressures or axial load. Sofiyev and Kuruoglu (2016) presented results on the stability of FGM
truncated conical shells subject to combined axial and external mechanical loads in the framework
of the shear deformation theory. Nejad et al. (2015) presented elastic analyses of FGM rotating
thick truncated conical shells with axially-varying properties under non-uniform pressure loading.
Ebrahimi and Najafizadeh (2014), by generalized differential quadrature and generalized integral
quadrature methods, studied the free vibration of two-dimensional functionally graded cylindrical
shells based on the Love first approximation classical shell theory. Wang and Nie (2015) proposed
the theoretical model to predict the bi-stable states of initially stressed elastic cylindrical shell struc-
tures attached by two piezoelectric surface layers.

Note that the above introduced works only relate to unstiffened FGM structures or stiffened
isotropic structures. However, in practice, plates and shells including conical shells, usually rein-
forced by stiffeners system to provide the benefit of added load carrying capability with a relatively
small additional weight. Thus, the study on static and dynamic behavior of these structures are

Latin American Journal of Solids and Structures 14 (2017) 950-977



952  P.M. Vuong and D.V. Dung / Nonlinear Analysis on Buckling and Postbuckling of Stiffened FGM Imperfect Cylindrical Shells...

significant practical problem. Singer et al. (1967) analyzed the stability of eccentrically stiffened
cylindrical shells under axial compression with stiffeners attached to outside and inside of the shell
skin. Ji and Yed (1990), using the Donnell shell theory and the perturbation technique, presented
the general solution for nonlinear buckling of non-homogeneous axial symmetric ring- and stringer-
stiffened cylindrical shells. Reddy and Starnes (1993) studied the buckling of stiffened laminated
cylindrical shells according to the layerwise theory and the smeared stiffener technique. Shen et al.
(1993) investigated the buckling and post-buckling behavior of perfect and imperfect stiffened cylin-
drical shells under combined external pressure and axial compression by using the boundary layer
theory. The singular perturbation technique to determine the buckling loads and the post-buckling
equilibrium paths is applied in their work. By the perturbation technique and smeared stiffener
technique, Shen (1997) presented thermal postbuckling analysis of imperfect stiffened laminated
cylindrical shell of finite length subjected to uniform or non-uniform parabolic temperature distribu-
tion varying in the circumferential or axial direction. Shen (1998) considered the post-buckling of
imperfect stiffened laminated cylindrical shell of finite length subjected to combined loading of ex-
ternal pressure and a uniform temperature rise. Also using perturbation method, Zeng and Wu
(2003) reported investigation on the post-buckling of stiffened braided thin shells subjected to com-
bined loading of external pressure and axial compression. Sadeghifar et al. (2011) investigated the
buckling of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity based on the
Love first-order shear deformation theory.

For stiffened FGM shells, Najafizadeh et al. (2009) with FGM stiffener system, investigated the
mechanical buckling behavior of functionally graded stiffened cylindrical shells reinforced by rings
and stringer subjected to axial compressive loading based on stability equations given in terms of
displacement. The stiffeners and skin, in their work, are assumed to be made of functionally graded
materials and its properties vary continuously through the thickness direction. Following the direc-
tion of FGM stiffener type, Dung and Hoa(2013 and 2015) obtained results on the static nonlinear
buckling and post-buckling analysis of eccentrically stiffened FGM circular cylindrical shells under
torsional loads without or with thermal element based on the Donnell shell theory and Galerkin
method. Dung and Hoa (2015) presented a semi-analytical approach for analyzing the nonlinear
dynamic torsional buckling of stiffened functionally graded material circular cylindrical shells sur-
rounded by an elastic medium. Following homogenous stiffeners, Bich et al. (2013) studied the non-
linear static and dynamic buckling behavior of eccentrically shallow shells and circular cylindrical
shells based on the Donnell shell theory by analytical approach. Dung and Nam VH (2014) present-
ed results on the nonlinear dynamic analysis of eccentrically stiffened functionally graded circular
cylindrical thin shells under external pressure and surrounded by an elastic medium. Duc et al.
(2015) reported results on the mechanical and thermal stability of eccentrically stiffened functional-
ly graded conical shell panels resting on elastic foundations and in thermal environment.

As can be observed that the studies (Dung and Hoa (2013 and 2015), Bich et al. (2013), Dung
and Nam VH (2014) and Duc et al. (2015) were carried out by using the classical shell theory, so
obtained results only suitable for FGM thin-walled shells. However for FGM thicker shells, it is
necessary to use higher order theories. The new novelty of this work is to use the Reddy third order
shear deformation theory (TSDT) for investigating the buckling and postbuckling of FGM thick
circular cylindrical shells reinforced by stringers and rings and subjected to mechanical load, ther-
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mal load and filled inside by Pasternak two-parameter elastic foundations. Shells are reinforced by
closely spaced rings and stringers. The material properties of shell and stiffeners are assumed to be
continuously graded in the thickness direction. Using the Reddy third order shear deformation shell
theory, stress function method and Lekhnitskii smeared stiffeners technique, the governing equa-
tions are derived. The closed form to determine critical axial load and post-buckling load-deflection
curves are obtained by Galerkin method. The effects of temperature, stiffener, foundation, material
and dimensional parameters on the stability behavior of shells are shown.

2 FGM CYLINDRICAL SHELL MODEL WITH REINFORCEMENT STIFFENERS AND ELASTIC
FOUNDATIONS

Consider a thin circular cylindrical shell as shown in Fig. 1, with mean radius R, thickness h and
length L subjected to axial compression and external pressure load. Two butt-ends of shell are as-
sumed to be only deformed in their planes and they still are circular. The middle surface of the
shells is referred to the coordinates(z, 0, z), y = RO . The coordinate axis z, y, z are chosen in the

generatrix, circumferential directions and thickness direction inward of the shell, respectively. In
addition, assume that the FGM shell is reinforced by closely spaced FGM rings and stringers at-
tached inside to the shell.

Figure 1: Geometry and coordinate system of a stiffened FGM circular cylindrical shell on elastic foundation.

The functionally graded materials of shells and stiffeners are assumed to be varied continuously
in the thickness direction and made from a mixture of ceramic and metal. So the modulus of elastic-

ity, coefficient of thermal expansion of shells and stiffeners are defined as
For shell
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where k > 0, k, > Oand k; > Oare volume fractions indexes of the shell, stringer and ring, respec-

tively and the subscripts ¢, m, sh, s and r denote ceramic, metal, shell, stringers and ring, respec-

tively. Note that h , h denote the thickness of the stringer and ring, respectively; E, ,E , E  are

sh

Young’s modulus of the shell, ceramic and metal, respectively, o, «,, o, are thermal expansion

59
coefficients of shell, stringer and ring respectively.

It is evident that, from Egs. (1)-(3), a continuity between the shell and stiffeners is satisfied.

In this work, Poisson ratios of shell, stringer and ring are assumed to be constant i.e..
Vg =V, =V, =V = const.

The reaction-deflection relation of Pasternak foundation model is given by
0y = Kyw — K,V u, (4)
where V? = 8? / 92 + 9* / 9y*, K, (N/m® ) is Winkler foundation modulus and K, (N/m) is the
shear layer foundation stiffness of Pasternak model, w is the deflection of the shell.

3 CONSTITUTIVE RELATIONS

Using the Reddy third order shear deformation shell theory, the strain components at the middle
surface of imperfect circular cylindrical shells relating to displacements u = u (z,y),

v = v(z,y) and w = w(z,y) of the middle surface points along z, y and z, are of the form (Brush
DO, Almroth BO. 1975; Reddy JN. 2004; Shen HS. 2009)

Latin American Journal of Solids and Structures 14 (2017) 950-977



P.M. Vuong and D.V. Dung / Nonlinear Analysis on Buckling and Postbuckling of Stiffened FGM Imperfect Cylindrical Shells... 955

u, + wi / 2+ wthE
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0 * *
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where w’ (:L‘,y) is a known function representing initial small imperfection in comparison with the

thickness of the shell.
The strains across the shell thickness at a distance z from the middle surface are as

0 (1) (3)
e R il il Rt S R e ©
0 1 3 yz yz z
Y| 7Y Y R v
where
1 3
(1] = ’ (3) 1 — _ 7 ’
ky d)y,y ’ ky = ¢ d)y,y - Wyy ’
kg;) d)x,y + ('by,:v ka(mj)) ¢z,y + ¢y,z + QwW (7)
= e , = —3cC ’ ,
WSZ ¢, +w, kg(,f) ¢, +w,
in which ¢ = iQ and ¢,, qﬁy are the rotations of normal to the mid-surface of the shell with respect
3h

to y and x axes, respectively.
The strains from Eq. (5) must be satisfied the deformation compatibility equation as

*

* *
—w,w, + 2w’$yw7z —w_ W, —w, w (8)

0 0 _ _l 2
€ +e - W + w Y TT LYY WY T

0
.Yy yar — TVayay R

The constitutive stress-strain equations by Hooke law for the shell and stiffeners are given
For circular cylindrical shells

g,
osh _ By | e, - (1 + V)ashAT sz __ B, Zzy 0
o 1_ .2 gu—{—ygx—(l—l—v)ozshAT e 2(1+1/) m ©)
y ! sh 5
Yz Yz
For stiffeners

= ) = . 10

o Ee, - Ea,AT| |of, G, (10)

where AT is temperature rise from stress free initial state.
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The middle surface normal force intensities NN, , the bending moment intensities M, and higher

order bending moment intensities P, transverse shearing force intensities (), and the higher order

shear force intensities R, of functionally graded shells reinforced by FGM stiffeners are defined as

h/2 h/2 h/2
Ny = [ oftdet+ NI M, = [ zotdz+ M P = [ Sotdz 4 P,
—h/2 —h/2 —h/2
h/2 h/2
Q= [ oldz+Q" R = [ Foldz+R'i=uay, (11)
—h/2 —h/2
h/2 h/2 h/2
h h 3 __sh
N, = [ otdzM, = [ zofldp, = [ Fold,
—h/2 —h/2 —h/2

where N7, M?,P*,Q’, R} with i = z,y, are respective quantities for stiffeners.

Substituting Egs. (6, 7, 9, 10) into Eq. (11) and using the Lekhnitskii smeared stiffener tech-

nique, after integrating resulting equations we obtain

0 0
N, a1€, +apE, + a’13¢x,x + a14¢y,y taw,, +ogw,, + 7P + Qg
_ 0 0
N, 1t =1098, + 08, + 30, + Gy | + g5+ Goqw Gy + Ay, (12)
N w

0
31V + “32¢z,y + G’SSd)y,z +agw,,

0 0
bye, + b12€y + bi3®, . + b14¢y,y + b15w,m + blﬁw,yy + by7¢y + bigy,
0 0
= 1bye, +bye, T30, + 05,0, + bysw, +bygw, + byrdy + bygdy, 1, (13)
0
Ty b31’yzy + b32¢$,y + b33¢y,z + b34w,a:y

===

0 0
C1€y T 008y t 3Py, T 614%,;/ T W, T W, + 7Py + C3Py

_ 0 0
=G, T CpE, + 30, , T ‘324%,1; t Gw,, Wy, + Cor®y + o3Py, 1 (14)

0
y C31 Yy + c32¢1:,y + 033%,.7: t ey,

0T T

{Q.’L’} _ dllfy.gz + d12¢:1; + dle,J;
Qy dzﬂgz + d22¢y + d23w,y ,

{Rz} _ ruﬁz + €0, + C3W, }7 (16)

0
Ry €17y T 622% tepuw,

where ¢1a ¢137 ¢1r7 ¢27 ¢Qsa ¢27~7 ¢4a ¢45a ¢47~ are given by
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h/2
(¢17¢2»¢4 f E )AT( )(1,2,23)61,2’,
—h/2
h/2+h,
(¢157¢257¢4s f E AT( >(1,Z,23)d2,
h/2
h/2+h,
(¢1T,¢27,,¢4T f E AT( )(1,z,zs)dz,
h/2
and the coefficients @ b, iv Cij> dZ], ;; can be found in Appendix A.
The strain-force reverse relations are found from Eq. (12) as
0 * * * * * * * * *
€ a N, + a’12Ny + “13¢z,z + “14%,;/ taw,, taogw,, + a7 + 4y + Ay,
0 . * * * * * * * * *
€ (= 1V, + 0N, + G530, , + 05,0, + QoW F oW+ Gyr Py + Aoy + Ay, (17)
0 * * * *
’yzy a’31N$y + a32¢z,y + a’33¢y,z + a’34w,zy
Substituting these relations into Egs. (13, 14, 15, 16), we obtain
bV, + blZNy + b13¢x,:z: + b14¢y,y + b15w,;m- + ble,yy + 070 + bisdy + bigdy,
M, 01705 + bigPyg
My = b21N + b22N + b23¢ + b24 y T bz)w + by Wy T b27¢1 + b28¢15 + b29¢1r (18)
Mxy +b27¢2 + b28¢2'r
bSley + b32¢z,y + b ¢ + b34w
P C11N + ‘312N + C13¢1 . T ‘314¢JJ + C15 s T Clﬁw w T 017¢1 + Cls¢1s + C19¢1, + 704 + 0y,
P = CQ]Nar + C22Ny + 023¢’a:,a: + 024%;, + 025 o T 626 T 027¢1 + 628¢15 + C29¢1r + Cyrdy + o3y, (19)
RL'J/ c3lel:y + C32¢m,y + CS3¢’;/,:1: + C34w,.’L'y
Qz — d11¢90 + d12w,z (20)
Qy d21¢)y + d22w,y
R, . {611% tepw,
y 621% +epuw,
where the coefficients a; i bZ], ;, d;;, e:j can be found in Appendix B.

4 NONLINEAR EQUILIBRIUM EQUATIONS AND STRESS FUNCTION

According to the Reddy third order shear deformation theory, the nonlinear equilibrium equations
of a imperfect circular cylindrical shell filled inside by an elastic foundation and under uniform ex-
ternal pressure of intensity ¢ are of the form (Brush DO, Almroth BO. 1975; Reddy JN. 2004; Shen
HS. 2009)
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{NT,T + NT/?/,?/ } — {0} (22)
Nzy,z + N?MJ 0

1 *
Q. TQ,, — 36<Rz,z tR, ) + C(Pr,m + 28y + By ) * ENy MR (wm e ) ! (23)

2wa(w7$y i w;y)JrNy(w,yy + wfyy)+ ¢ - Kw+ Ky (w, +w, )=0,

M,, +M,,, —Q +3R, —c(P, +P, )=0, (24)
M, +M,, —@Q + 3R, — C(Pmm + Py,y) =0. (25)

By introducing a stress function f(z,y) as
Ny =1y Ny = For Ny = —Fy» (26)

it is obvious that the Eq. (22) are identically satisfied.
Replacing Eq. (26) into Egs. (18, 19), then substituting them and Egs. (20, 21) into Egs. (23,
24, 25), yields

CCIQfImr + Cc21fyyyy + C(Cll + Coo — 2631 )fzzyy + CCISU},mcm’ + 6026w,yyyy
+ C(Clﬁ + 025 + 2034 )w,:myy + 0013¢z,zzm + CC24¢y,yyy + 0(623 + 2032 )¢z,zyy
+ 0(614 + 2633 )¢y,ym$ + (dll - 36611 )¢T,T + (d21 - 36621 )¢y,y (27)

+ (dl*Z - 306;‘2 + K2 )wﬁm + (d;2 - 306;2 + K2 )w,yy + %fm
+ Ly (w,mc + w:rz ) -2f,, (w@y + wj;y ) + [ (wﬁyy + w;y ) +q¢—Kw=0,

(b1*2 - CC;? )szT + (b1*1 - b; - CC; + 66;1 )f,zyy + (b1*5 - ccf5 )wzzac
+ (bl*(j + b;4 - Ccfﬁ - 00;4 )w,xyy + (bf3 - 00;3 )('bzlz + (b;Q - 00;2 )¢z,yy (28)
+ (b1*4 + b:j:?, - ccf4 - 00;3 )%W + (_d1*1 + 366?1 )¢x + (_dl*Q + 366152 )wT =0,

(b; - CC; )fyyy + (b;2 - b;l - CC;Z + CC;l )f:my + (bgﬁ - CC;B )w,yyy
+ (b;5 + b§4 - CC;E) - CC;4 )w,mcy + (b;4 - CC;; )¢y,yy + (b;3 - Cc?ts )¢y,m (29)
+ (b;?, + b; - 002*3 — cc;:2 )¢ + (—d; + 306;1 )% + (—d;2 + 366;2 )w =0.

2y Y

Setting Eqgs. (17) and (26) into Eq. (8), after some calculations, we obtain

* * * * * * * * *
0’25w7zm:z + a’16w,yyyy + <a15 + a26 - a34 )w,zzyy + allf:yyyy + ((112 + a’21 + a’31 )f,lm’yy
* * * * * * *
+ a??frmrx + a23¢x,m‘x + (a13 - CL32 )¢J;,zyy + a’14 Y, Yyy + (CL24 - a’33 )d)y,y.mc (30)
- 2 2 * *
- _w,zz + w,my - w,zzw,yy + w,zyw,zy - wA,mw,yy - wA,yyw,a:z .
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Egs. (27, 28, 29) and (30) are four important governing equations used to investigate the non-
linear buckling of imperfect eccentrically stiffened functionally graded circular cylindrical shells sur-
rounded by elastic foundation. Until now, there are no analytical investigations which have been
reported in the literature on the postbuckling analysis of FGM thick cylindrical shells reinforced by
FGM stiffeners system using Reddy TSDT. Therefore, the transformations and derivations to Egs.
(27, 28, 29, 30) are one of the most important results in this work.

As can be seen the above system of equations is more complex than the one established by us-
ing the classical shell theory or the nonlinear stability analysis of un-stiffened FGM cylindrical
shells. However, the higher-order theories (including the Reddy third order shear deformation theo-
ry) can represent better the kinematic behavior. This is also the main reason why these theories are
used to investigate the nonlinear buckling and postbuckling of thicker FGM shells.

5 SOLUTION PROCEDURE AND GALERKIN METHOD

Suppose that the FGM cylindrical shell is simply supported, subjected to external pressure uniform-
ly distributed q and axial compression of intensity P. The associated boundary conditions are of the

form

w=0M =0N, =0,N, =0,¢ =0at v=02z=0L
The solutions of w, ¢, qﬁy satisfying the mentioned boundary condition are chosen as follows

w W, sin Mz sin Ny

G, 1 = 1 Dy COS Mz sin Ny t, (31)
QSU ¢UO sin Mz cos Ny

mm n . . C 1 g .
where M = T,N = = and m is a number of half wave in axial direction, n is a number of wave

in circumferential direction of the shell, W, are amplitude of the deflection.

The initial imperfection w" is assumed to have the same form as the deflection w
w' = &hsin Mz sin Ny, (32)

in which the coefficient ¢ € [0,1] is an imperfection size of the shell.

Setting Eqgs. (31) and (32) into Eq. (30), after some calculations, leads to

[ = fcos2Mz + f, cos2Ny + f; sin Mz sin Ny + %Nl_oy?, (33)
where
N? M?
h= ?)QJ‘—WW()(WO +26h), f, = m—m%(% +26h), f; = ViWy + Vadyg + Vadyo
22 11
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in which

M2 * * * * *
T 2N —ap M N~ (ar5 + ags — ag, ) M2N?

af1N4 + a;2M4 +(af2 +a;1 + ‘Z;)MQNQ
agM* + (ayy — ag, ) MN?

_ale4 + a;M4 + (af2 + a; —l—a;l)MQN2
ap, N +(a;4 _“;3)M2N

_a;NA‘ + a;2M4 + (a; + a; —|—a;1)M2N2

=SS
I

Replacing Egs. (31, 32, 33) into the left side of Eqgs. (27, 28, 29) and then applying Galerkin
method for resulting equations in the ranges0 < y < 27R, 0 < z < L, we obtain

Ho Wy (Wy + ER) (W, + 26h) + Hy, W, (W, + ¢h)
+ HogWy (W, + 26h) + Hyy,0 (W, + €R) + Hyz,o (W, + €R)

46 06 (35)

+ HyWy + Hyz 0,0 + Hog®yp — M?N,, <Wo + fh) + Mﬂﬁﬁq =0,
Hy, W (Wy + 26 ) + H,Wy + Hydyg + Hyydyg = 0, (36)
Hy Wy (Wo + 28h) + HypWy + Hybyg + Hyy6y = 0, (37)

where Hoi , Hii, Hai are defined in Appendixes (C).
From Egs. (36) and (37), solving ¢,, and ¢,o Wwith respect to W, then substituting into Eq.

(35) we have

Hy Wy (W, + &) (W, + 26h) + Hy, W, (W, + €h) + HygW, (W, + 2¢h)

+ Hy Wy — M?N (W, +§h)+%q—0, 38)
in which
Hgl _ H01 + H04 HHy — Hy,Hy, + H05 H11H23 — H13H21 7
HygHyy — HyHyy HygHy, — Hy Hyy
H& _ H02 + H04 Hy Hyy — HyHy, + H05 H12H23 — H13H22’
HygHy, — Hy Hyy HygHyy — Hy Hyg
Hgs _ H03 + H07 HHy — Hy,Hy, + Hos H11H23 — H13H21’
HygHyy — HyHyy HygHyy — HyyHyy
H& _ Hos + H07 Hy Hyy — HyHy, + Hos H12H23 — H13H22.
HygHy, — Hy Hyy HygHy, — Hy Hyy
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Eq. (38) is the general and explicit governing relation used to analyze the nonlinear buckling of
ES-FGM imperfect circular cylindrical shells filled inside by elastic foundation in thermal environ-
ment under mechanical compressive loads, thermal and thermo-mechanical loads.

6 POSTBUCKLING ANALYSIS OF ES-FGM SHELLS SUBJECTED TO AXIAL COMPRESSION
FORCE

In this case we have

q=0,N,, =—Ph. (39)

Replacing Eq. (39) into Eq. (38), leads to

H, H, Hyy Wo(Wy +2¢h)  Hy,, W,
P=— OlVVO<VVO+2§h>— 02 - 03 0( 0 5 )_ 04 0 ) (40)
Mh M M (Wy+6h) MK (W, +¢h)
Eq. (40) is explicit expression used to determine postbuckling P x W, curves of shell.
If the shell is perfect, Eq. (40) reduces to
P:_H()l W2_H02+H03W_H04' (41)
a2’ Mo Y M2
Taking W, — 0, from Eq.(41), the critical static compressive load may be obtained as
P = _ Hy, _ _ 1 ( Hy,Hyy — HyHy, +H Hy,Hyy — Hy3H,, ). (42)
' M?h M o HigHyy — Hy Hyg ” HygHyy — HyHy,

Minimizing Eq. (42) with respect to m and n, we will find the upper critical load P, .

7 POSTBUCKLING ANALYSIS OF ES-FGM SHELL SUBJECTED TO EXTERNAL PRESSURE AND
THERMAL LOADS

Assume that the shell is simply supported and immovable at two edges x = 0, z = L. So the im-
movable condition, u = 0 at x = 0, L is fulfilled on the average sense as

27R L

0
f fa—udxdy =0. (43)
0 097
In order to integrate this relation, firstly from Eq. (5), yields
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2
w *
ou oY (44)

or  * 2 e

Substituting Eqgs. (17) and (26) into this equation, leads to
ou *

* * * * *
% = a’llf,yy + ale;Lm + al3¢.’1;,:1; + al4¢y,y + a’l5w,1'1' + a’lﬁw,yy
2 (45)
* * * wﬂ; *
+ a0 + agdy + a0, — o wLW,

Substitution of Egs. (31, 32) and (33) into Eq. (45) and then into Eq. (43), and integrating re-
sulting equation, finally we get

o o a MW, (W, 4 2¢h
N.,,,.oz—[%w%w 19¢1,,]+ oMo +26h) 6)
ayy 01y ayq 8ay,

Introducing the expression (46) into Eq. (38), gives us

MW, (W, + 2¢h a a a
0< 2 >_ %(ﬁl—'—%gﬁls—k 1*9¢1T =
8ay, yq ayq yq

Hyy Wo (Wy +26h)
mr (W +¢h)
Hy, W, N 46,6, .
M? (W, +&h)  MPNLaR(W, + ¢h)

Hy, Hy,
WWO (W, +2¢n) + WWO +

Suppose that environment temperature is uniformly raised from initial value 7; at which the
shell is thermal stress free, to final one T, and temperature change AT = T, - T, is constant and

independent to thickness variable. So the thermal parameters of shell, stringer and ring, in this case,
can be found respectively in terms of AT as follows

¢
¢15
¢1’V‘

E E E
E”L G{Tn + m aL""L + Ccm a"L + Cm. aCWL hA T
' k+1 2k +1
F E E
ECOKC + Yme + me%e meme SAT
’ ky +1 2k, +1
E E
El’al, + (3a77LC + TVLCO{C WLlla77L(f hTA T
o ky +1 2k, + 1

(48)

If the shell only subjected to thermal loads without external pressure i.e ¢ = 0. Setting Eq. (48)

into Eq. (47), after some calculations, leads to
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W, (W, + 2&h W
AT = LW, (W, +2¢h) + LW, + Ly oMy +260) ) Wy (49)
(Wo +¢h) (Wo +¢n)
where
@ a;? [E + E"La(’ﬂl + E(‘"Laﬂl Ermarm + af& El + E(’aTI’L(’ + ETI’L(’a(' ETI’L('aTﬂ('
= = | O e - | e — — — "%
an* k+1 2k +1 ay, ky +1 2k, +1
+ ai&) Ecac + Ecamc + Emcac + Emcamc hr’
a U ks +1 2k, +1
oMM Hy) o Hy oo Hy oo Hy
oolse, M2) P oM oMm? Y oM

Eq. (49) is the analytical relationship to determine the temperature-deflection curves for both of
the perfect and imperfect circular cylindrical shells under thermal loads.
For a perfect shell, Eq. (49) reduces to

AT = LW + (L, + Ly )W, + L,. (50)

Taking W, — 0, from Eq.(50) the thermal buckling load may be obtained as

H. 1 H, H,, —H.H H ., H, —H_.H
AT, =L, = __042 - (Hyg + Hy H14H22 H12H24 +Hy, H12H23 H13H22 ). (51)
oM oM 13819q — Hyyllyz 13819q — Hyydlyz

Minimizing Eq. (51) with respect to m and n, we will find a critical value AT, .

8 NUMERICAL RESULTS AND DISCUSSION
8.1 Validation of the present study

To verify the accuracy of the present solution, three comparisons are considered below.

Table 1, using Eq. (42) compares the critical buckling load of un-stiffened isotropic cylindrical
shell under axial compression with the results in the monograph of Brush and Almroth (Brush DO,
Almroth BO. 1975).

Table 2 compares the critical axial load for un-stiffened FGM cylindrical shell without founda-
tion and under axial load with the results given by Huang and Han (Huang H, Han Q. 2010). The
input parameters are taken as

E, =168.08 GPa, E, = 105.69 GPa, v, = v, = 0.3, L =1 m; R = 0.5 m.
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Table 3 compares the results on the critical buckling load of stiffened isotropic homogeneous cy-
lindrical shells with the result of Brush and Almroth (Brush DO, Almroth BO. 1975) and with the
result of Bich et al. (Bich DH et al. 2013).

L/R=1,L=1m R=1m L/R=2,L=1m, R=05m

P'N/m Brush et al. (1975) Present Brush et al. (1975) Present
P" =P /(2rR) P'=Ph P =P /(2nR) P =P
R/h = 100 4237248.80 (3,9)" 4220777.25(5,6) 2118297.97 (5.9) 2108844.79 (11,4)
R/h = 150 1882930.10 (3,11) 1877146.65 (7,3) 941465.05 (6,11) 938573.32 (14,3)
R/h = 200 1059151.83 (7,9) 1056710.09 (8,4) 529575.91 (14,9) 528355.04 (16,4)
R/h = 300 470733.91 (10,1) 469994.86 (10,2) 235366.26 (19,7) 234997.43 (20,2)
R/h = 400 264787.25 (5,18) 264490.51 (11,8) 132393.66 (23,3) 132238.44 (23,3)
R/h = 500 169463.93 (10,17) 169310.29 (13,1) 84731.97 (20,17) 84655.14 (26,1)

* the numbers in the parentheses denote the buckling mode (m,n)

Table 1: Comparisons of critical buckling load P* for un-stiffened isotropic

cylindrical shells under axial compression (E=70 GPa, » = 0.3)

P, MPa Huang H, Han Q. (2010) Present

Critical load versus k

k=02 189.26 (2,11) 189.67 (26,1)
R/h = 500 k=1 164.35 (2,11) 164.50 (26,1)
k= 144.47 (2,11) 144.14 (25,6)
Critical load versus R/h
R/h = 400 236.58 (5,15) 237.07 (23,4)
k=10.2 R/h = 600 157.98 (3,14) 158.11 (28,6)
R/h = 800 118.85 (2,12) 118.61 (33,1)

* the numbers in the parentheses denote the buckling mode (m,n)

Table 2: Comparisons of critical buckling axial load for un-stiffened FGM cylindrical shells

. Brush and Almroth. (1975) Bich et al. (2013) Present
P h{N/m P* _ P/(zﬂ'R) P* _ Tsmh P* _ P(,Th
R/h — 100 3.0906 (6,7)" 3.0725 (6,7) 3.0691 (6,7)
R/h = 200 1.4328 (6,7) 1.4147 (6,7) 1.4116 (6,7)
R/h = 500 0.7057 (5.6) 0.6924 (5.6) 0.6915 (5.6)

* the numbers in the parentheses denote the buckling mode (m,n)

Table 3: Comparisons of critical buckling axial load of stiffened isotropic homogeneous
cylindrical shells under axial compression (E = 70 GPa, » = 0.3, L = 1 m,
R =0.5m, hs = hr = 0.01 m, bs = b = 0.0025 m, 50 rings, 50 stringers)

As can be shown in Tables 1, 2 and 3 that good agreements are obtained in these comparisons.
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8.2 Significance of the Use of the Reddy Third Order Shear Deformation Theory for Thicker Shells

In order to demonstrate the significance of the use of TSDT, the FGM cylindrical shells under axial
load are considered with the following geometric, material properties and foundation parameters as
E =380GPa, E, =70GPa,v =03,k=k =k, =1, K1 =0 N/m3 , K2 =0N/m. AT =0 K,
R =05m, L =2R, m = ns = 0. The ratio R/h is chosen to be 10, 20, 30, 40, 50, 80, 100, 200 and
500.

Using Eq. (42) in this study and Eq. (31) in study’s Bich et al. (2013) , results of upper critical
loads based on the Reddy’s third order shear deformation shell theory and classical shell theory, are
given in Table 4.

As can be seen, for thin shells, the difference between the upper critical loads found from classi-
cal shell theory and TSDT is quite small. However, for the thicker shells, the difference is quite big.
For example, from Table 4, in comparison P, = 0.2499 MPa (based on CST) and P, = 0.2497
MPa (based on TSDT) corresponding to R/h = 500 (thin shell), the percentage error is 0.0864%,
but when R/h = 10 (thick shell), the corresponding the percentage error is 4.0985%. It means, when
studying the thick shells, should using the Reddy’s third order shear deformation shell theory, for
higher precision.

R/h be found by TSDT be found by CST ( Bich et al. (2013)) % error
10 599.1071 (4,2)" 624.7108 (2,3) 4.0985%
20 153.3657 (6,1) 156.2451 (5,2) 1.8429%
30 68.5312 (7,2) 69.4125 (6,3) 1.2697%
40 38.7018 (8,2) 39.0444 (4,6) 0.8775%
50 24.8002 (9,2) 24.9937 (8,3) 0.7738%
80 9.7131 (11,3) 9.7628 (7,8) 0.5089%
100 6.2203 (12,4) 6.2471 (8,9) 0.4289%
200 1.5584 (17,5) 1.5618 (17,2) 0.2149%
500 0.2497 (27,6) 0.2499 (27,1) 0.0864%

* the numbers in the parentheses denote the buckling mode (m,n)

Table 4: Upper critical loads P, MPa found by CST and TSDT.

In subsections below, consider a shell with geometric and material properties as follows
E, =380GPa, E, =70GPa,v = 03,k=Fk =k =1, K1 = 25 x10'N/m’, K, = 1.5x10°
N/m. AT =0 K,R=1m, h= R/50, hs = h, h = h, bs = h/2, br = h/2.

8.3 Effects of Reinforcement Stiffener

The effect of reinforcement stiffener on critical buckling axial load are shown in Table 4 in which
six cases are considered as: an un-stiffened shell, a stiffened shell with stringers n, = 15, a stiffened
shell with rings n_ = 15, a stiffened shell with stringers n, = 15 and rings n, = 15, a stiffened shell
with stringers n, =20 and rings n, = 20, a stiffened shell with stringers n, = 30and rings

n, = 30.
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As can be seen that the critical load increases with the increase of the stiffener number. This in-
crease is considerable. For example, the value of Per = 2590.16 MPa (ns = 15, m+ = 0, L = R) in
comparison with Per = 2704.84 MPa (ns = 20, m = 20, L = R) increases about 4.2%. This is rea-
sonable because the reinforcement stiffeners make the shells to become stiffer, so it has better carry-
ing capacity.

Table 4 also shows effects of the ratio L/R on the critical compressive load. We can see the val-
ue of the critical compressive load decreases when the ratio L/R increases.

Stiffeners L=R L=2R L=23R
un-stiffened 2501.15 (4,3)™ 2501.15 (8,3) 2497.22 (13,1)
ng=15n, =0 2590.16 (2,7) 2590.16 (4,7) 2590.16 (6,7)
ng=0,n, =15 2538.32 (3,6) 2521.19 (7,5) 2515.28 (11,5)
ng =15, n, =15 2659.66 (3,6) 2649.64 (6,6) 2641.46 (8,6)
ng =20, n, = 20 2704.84 (3,6) 2687.63 (5,6) 2673.62 (8,6)
n, = 30,n, = 30 2793.23 (3,6) 2749.08 (5,6) 2736.52 (8,6)

* the numbers in the parentheses denote the buckling mode (m,n)

Table 5: Effects of Stiffeners on critical load P MPa. k=1, R=1m, h = hs = l» = R/50,
bs = br = h/2, K1 = 2.5x10" N/m® | K2 = 2.5x10° N/m.

8.4 Effects of the Ratio R// on Critical Loads

Table 5 presents effects of the ratio R/h on the critical compressive load of shell with input parame-
tersas k=1, R = 1m, h = hs = h: = R/50, bs = b = h/2, K1 = 2.5x10" N/m® | K2 = 2.5x10°
N/m, e = ns = 20.

It is observed that when ratio R/h varies from 50 to 500, the value of critical compressive load
decreases from 20704.84 MPa to 388.52 MPa (in the case L = R). These characteristics are ade-
quate to true property of shell i.e. the shell is thinner; the load bearing capacity is smaller.

R/h L=R L =2R L=3R

50 2704.84 (3,6)* 2687.63 (5,6) 2673.62 (8,6)
100 1349.04 (4,9) 1341.13 (8,9) 1338.37(12,9)
150 916.71 (6,9) 915.43 (12,9) 914.99 (18,9)
200 711.81 (7,10) 709.99 (15,9) 709.12 (23.8)
250 593.12 (9,7) 589.89 (19,3) 588.44 (28,4)
300 516.84 (10,6) 512.81 (21,1) 511.80 (31,1)
500 388.52 (14,1) 387.06 (27.1) 386.60 (41,1)

* the numbers in the parentheses denote the buckling mode (m,n)

Table 6: Effects of R/h on critical load P MPa.

8.5 Effects of Volume Fraction Indexes &, A2 and 43 on Critical Axial Loads

Table 6 and Fig. 2 describe effects of volume fraction indexes k, k2 and k3 on the critical load of the
shell. It is seen that critical axial loads of shells decrease when k increases. This is expected because
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the higher value of k corresponds to a metal-richer shell which usually has less stiffness, so the load
carrying capacity of the shell decreases. This decrease is significant. For example Per =4559.36 MPa
(k= 0.1, L = 2R) in comparison with Per = 2081.58 MPa (k = 2, L=2R) decreases about 2.2 times.

L-R L=2R L=3R
5136.93 (3,5)" 5028.76 (5,6) 4985.18 (7,6)
0.1 4661.03 (3,6) 4559.36 (5,6) 4528.13 (7,6)
0.5 3439.56 (3,6) 3398.72 (5,6) 3383.70 (8,6)
1 2704.84 (3,6) 2687.63 (5,6) 2673.62 (8,6)
2 2092.12 (3,6) 2081.58 (5,6) 2070.66 (8,6)
5 1619.87 (3,6) 1597.58 (5,6) 1592.96 (8.6)
® 970.82 (3,5) 959.03 (5,6) 952.56 (8,6)

* the numbers in the parentheses denote the buckling mode (m,n)

Table 7: Effects of k, k2 = ks = 1/k on static critical loads R = 1 m, hs = hr = h = R/50,
bs = b = h/2, K1 = 2.5x10" N/m®, K2 = 2.5x10° N/m, n = ns = 20.

6000

= 1: Rth=50

= 2: R/h=100
= 3: Rth=150
= 4: R/h=200 |

5000

4000

[MPa]

3000

cr

=]

2000

1000

Figure 2: Effects of R/h on critical axial loads.

8.6 Effects of Elastic Foundation Parameters on Critical Loads

Table 7 illustrate effects of elastic foundation on critical axial loads of shell with £k = 1, R = 1m, h
=hs = h = R/50, bs = br = h/2, m = ns = 20.

It is found that the presence of elastic foundations increases the load carrying capacity of shells.
In addition, the critical load corresponding to the contribution of the both two foundation parame-

ters is biggest.
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Elastic foundation parameters L=R L=2R L=3R
K =0K, =0 2673.20 (3,6) 2647.57 (5,6) 2636.90 (8,6)
K, =25x10"; K, =0 2687.27 (3,6) 2667.83 (5,6) 2654.71 (8,6)
K, =0, K, =25x10° 2690.76 (3,6) 2667.36 (5,6) 2655.81 (8,6)
K, =25x107; K, = 2.5 x10° 2704.84 (3,6) 2687.63 (5,6) 2673.62 (8,6)

* the numbers in the parentheses denote the buckling mode (m,n)

Table 8: Effects of K1 and K> on static critical loads.

8.7 Effects of the Initial Imperfection on Postbuckling P x Wimax/ h Curves

Fig. 3 shows effects of initial imperfection on Px Wmax /h postbuckling curves by using Eq. (40).
The input parameters are taken as FE, = 380GPa, E, =70GPa,v =03,k=4k =k =1,
K, =25x100N/m® , K, =1.5x10°N/m, AT =0 K, R=1m, h = R/50, hs = h, h: = h, bs —

h/2, bv = h/2, ns = m = 20. The imperfection parameter varies from 0 to 0.5.
It is observed that the postbuckling load carrying capacity is reduced with the increase of im-
/ h <2), but an inverse

/h<2).

perfection size when the deflection is still small (In this present case W,

trend occurs when the deflection is sufficiently large (In this present case W,

8000
7000
R=1m,L=R h=R/A0,

5000 - h=h =hb=b =h2 |

5000 R
w
a8
= 4000 g
e

3000

2000

1000

0 Il 1 Il Il Il
0 05 1 1.5 2 25 3

Winaxfh

Figure 3: Effects of the initial imperfection on P x W.

e /T curves.

8.8 Thermal Buckling

Consider the ES-FGM shell with input parameters as follow E, = 380GPa, £, = 70 GPa,v = 0.3
=k, =k =1, K, =25x10"N/m®, K, = 1.5x10°N/m, R = 1 m, h = R/50, hs = h, hx = h,
bs - h/27 br = h/2, ns = nr = 20.
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Using Eq. (41) and the temperature T' = 300 + AT, effects of the initial imperfection, stiffener

number, ratio R/h and volume fraction indexes on T'x W,/ h temperature-deflection curves.

As can be seen that these parameters affect strongly on temperature-deflection curves.

3500

R=1m,L=R h=R/50, k=1
3000 h=h=hb=b_=h2 1
r S r S
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Figure 4: Effects of the initial imperfection on T x W,/ h curves.
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Figure 5: Effects of stiffener number on T x W,/ h curves.
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9 CONCLUSIONS

This paper presents an analytical method for investigating the buckling and post-buckling of imper-
fect FGM cylindrical shells reinforced by FGM stiffeners filled inside by elastic foundations and
subjected to mechanical loads or thermal loads. The material properties of shells and stiffeners are
graded in the thickness direction according to a volume fraction power-law distribution. Using the
Reddy TSDT with the von Karman kinematic nonlinearity and Lekhnitskii smeared stiffener tech-
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nique; the nonlinear stability equations for ES-FGM cylindrical shells are derived. Egs. (12-16) and
(27-30) are the most important results found in this study in which the contribution of stiffeners

and thermal elements in equations OfNi,j’Mij’IJij’Qi’Ri’ are taken into account. The closed-form

expressions for determining the buckling load and analyzing post-buckling load-deflection curves are
obtained by Galerkin method. The comparisons results which are in good agreement with the previ-
ous known-well results, affirmed the reliability and accuracy of the proposed method. Some remarks
are deduced from present results as:

For thin shells, the difference between the upper critical loads found from CST and TSDT is
quite small, so the classical shell theory can be used to study the stability of thin shells. However,
for the thicker shells, the difference is quite big and the use of TSDT to analyze the nonlinear sta-
bility of circular cylindrical shells is necessary and more suitable.

The presence of stiffeners enhances the stability of FGM shells.

The thermal element, stiffener, foundation parameters and volume index affect strongly buck-
ling and post-buckling behavior of shells.
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APPENDIX A

In Egs. (12, 13, 14, 15) and (16)
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APPENDIX B

In Egs. (17, 18, 19, 20) and (21)
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APPENDIX C
In Egs. (35, 36) and (37)
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