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Abstract 
In this paper, distribution of peeling stress in two types of adhe-
sively-bonded joints is investigated. The joints are a single strap 
and a stiffened joint. Theses joints are under uniform tensile load 
and materials are assumed orthotropic. Layers can be identical or 
different in mechanical or geometrical properties. A two-
dimensional elasticity theory that includes the complete stress-
strain and the complete strain-displacement relations for adhesive 
and adherends is used in this analysis. The displacement is as-
sumed to be linear in the adhesive layer. A set of differential equa-
tions was derived and solved by using appropriate boundary con-
ditions. Results revealed that the peak peeling stress developed 
within the adhesive layer is a function of geometrical and mechan-
ical properties. FEM solution is used as the second method to 
verify the analytical results. A good agreement is observed be-
tween analytical and FEM solutions. 
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1 INTRODUCTION 

Adhesively-bonded joints are widely used due to their several advantages over the other methods. 
Wider contact region in adhesively-bonded joints is the cause of more uniform stress distribution. In 
the same weight, bonded joints show more strength than the other common methods such as 
threaded connections, welding and riveting. Adhesively-bonded joints are stronger in fatigue, failure 
and they are corrosion resistant. Composite materials that are widely used these days are weak in 
local stresses so it is critical to use mechanical joints due to their stress concentration. Adhesively-
bonding acts over areas not a single point so they are the best choice in bonding different composite 
layers. There are several joint designs for bonding the layers such as single-lap, double-lap, single 
strap, stepped-lap, stiffened, scarf butt, etc. 
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A number of studies have been conducted to analyze the stress distribution theoretically and 
numerically within the overlap length of adhesive layer. Ojalvo and Edinoff (1987), investigated the 
effects of thickness of a single-lap joint under tension. They assumed peeling stress to be constant 
along the thickness. Their work showed that the peak shear stress occurs at the both ends of the 
overlap region. Hart-Smith (1973), derived the iterative closed-form analytical solutions for single-
lap adhesive joint which accounted for adhesive plasticity and adherend stiffness imbalance. Three 
distinct effects, bending due to eccentric loads, shear and peeling stress were covered in his analysis. 
He also studied a double-lap joint and showed that the effects of peeling stress are more pronounces 
in single-lap joints due to eccentric load path. Chuan her (1999), presented simplified one-
dimensional models for single and double lap joints based on classical elasticity theory. He assumed 
shear deformation constant across the adhesive thickness. Shahin and Taheri (2009), presented ana-
lytical treatment of the deformations in adhesively-bonded joints on elastic foundation with special 
attention to the specific case of adhesive joint between the face sheets of sandwich beams. They 
studied single-lap, stiffened and single strap joints using strain energy method. They applied cylin-
drical bending theory to determine some coefficients to calculate moments on edges. Lou and Tong 
(2008), presented a novel formulation and analytical solutions for adhesively-bonded composite sin-
gle-lap joint by taking into account the transvers shear deformation and large deflection in ad-
herends. On the basis of geometrically nonlinear analysis for infinitesimal elements of adherends and 
adhesive, the equilibrium equations of adherends are formulated. They used Timoshenko beam the-
ory to express the governing differential equations in terms of the adherend displacements. Their 
obtained solutions are applied to single-lap joints, whose adherends can be isotropic or composite 
laminates with symmetrically ups. They determined a new formula for adhesive peeling stress. Li et. 
Al. (1999), performed a nonlinear two-dimensional finite element analysis to determine the stress 
and strain distribution across the adhesive thickness of composite single lap joints. They showed 
that the tensile peeling and shear stresses at the bond free edges change significantly across the 
adhesive thickness. Vable et al. (2006), used boundary element method to study stress gradient in 
adhesively bonded joints. Their work included both single- and double-lap joints. Numerical results 
of single- and double-lap joints showed the potential of boundary element method in analysis of 
bonded joints. Zhao and Lu (2009), developed a general two-dimensional analytical approach capa-
ble of providing an explicit closed-form solution for the calculation of elastic stresses in single-lap 
joint, Assuming linear distribution of a longitudinal normal stress in the joint thickness direction. 
By treating the adhesive layer in the same way as the adherends, the two-dimensional stress and 
strain distributions at any point, and the tensile force, shearing and bending moment at any cross 
section can be predicted accurately, in both the adhesive and adherends. Their analysis was based 
on a two-dimensional elasticity theory that both includes the complete stress-strain and the com-
plete strain-displacement relationships for the adhesive and adherends. Their method was capable of 
satisfying all the boundary stress conditions of the joint, including the stress-free surface condition 
at the ends of the bondline. Sawa et. al. (2000), analyzed single-lap adhesive joints of dissimilar 
adherends subjected to tensile loads as a three body contact problem using two dimensional theory 
of elasticity. They examined the effects of Young’s modulus ratio between different adherends 
thickness, the ratio of the adherends length and the adhesive thickness on contact stress distribu-
tions at the interfaces. Temiz et. al. (2015), used FEM to analyze behavior of bi-adhesive used in 
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repairing of damaged parts. In a double-strap joint with an embedded patch, patch was embedded 
into the adherents for structural requirements. In addition, to increase the strength of the joint, two 
adhesives were used to bond the adherends. They used nonlinear finite element method to predict 
the failure loads to assist with the geometric design and to identify effective ratios of sizes to max-
imize joint strength. Shishesaz and Bavi (2012) had an investigation on void and debond effects in a 
double lap joint. For symmetric debonds and voids with relative lengths of 0.8, the same effects 
were observed. In a comparison for defects between single-lap and double-lap joints they reported 
that the increase in stress is higher in single-lap joint than in double lap joints. Karachalios et al. 
(2013), studied the effect of defects on the strength of a single-lap joint with various adherend and 
adhesive materials. Two different types of adhesive were studied with different degrees of ductility 
since the stress distribution along the overlap depends on the adhesive’s capacity to deform plas-
tically. Steel adherends were used from low strength and high ductility to high strength. Rectangu-
lar and circular defects located in the middle of the overlap were studied. The artificial defect con-
sists of a thin film of Teflon placed in the middle of the overlap, thus creating a disbond of the re-
quired size. When a toughened structural adhesive is used with a high-strength steel, there is an 
almost linear decrease in joint strength as the defect area increases. In the case of the brittle adhe-
sive, the reduction in strength, as the defect size increases, is not proportional for small defect sizes, 
indicating that the end of the joint becomes more important due to local strains exceeding limiting 
values. Ghoddous and shishehsaz (2016), investigated an adhesively-bonded stepped-lap joint suffer-
ing from a void within its adhesive layer. They used classical elasticity theory to determine shear 
stress field in the separated sections of the adhesive layer along the overlap length. They declared 
that the stepped-lap joint performed better in stress distribution with void rather than single-lap 
and double-lap joint. 

In this paper, peeling and shear stress distribution in the middle of the adhesive layer and peel-
ing stress field between adhesive and adherends in a single strap joint and a stiffened joint are stud-
ied. The adherends are orthotropic and it is assumed that the adherends have bending deformation 
beside longitudinal displacement. The adhesive layer shows shear defamation. Longitudinal and 
transversal displacement equations are considered as a linear function in the thickness direction. 
Shear stress is assumed to be constant across the adhesive layer and the layers can be either similar 
or dissimilar in geometry or mechanical properties. The analytical solution can satisfy the boundary 
conditions completely. Theoretical results are verified by FEM results which obtained from ANSYS 
software. 
 
2 ANALYTICAL SOLUTION 

2.1 Stiffened Joint 

In a stiffened joint, an extra layer as a doubler is bonded to the primary layers and improves the 
strength of the joint. The layer causes moment in the joint and shear and normal stresses in the 
adhesive and adherends layer. The external tensile load is inline and there is no eccentric load. The 
joint is consisted of two composite layers with orthotropic structures. Mechanical and geometrical 
properties of theses layers such as thickness, Young’s modulus and Poisson’s ratio can be different. 
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The model of the joint can be reduced to a two-dimensional model because the load is uniform 
and shear and normal stresses are not varied in the z direction. Figure 1 shows a model of the joint. 
 

 

Figure 1: stiffened lap joint configuration. 

 

ixE  and iyE  are the elastic modulus of the layers in x and y directions . ixz  and izx  are Pois-

son’s ratio. 1f  and 2f  are internal forces in the unit of width in the layers 1 and 2 respectively. F is 

the external tensile force applied uniformly to the joint in x direction. The following assumptions are 
assumed in this analysis.  The mode of this analysis is plain stress. It means that the stresses in z 
direction are constant. Shear stress is assumed to be constant through the adhesive layer. Differen-
tial equation of transversal and longitudinal displacements in the adhesive is assumed to be a linear 
function. Axial force is ignored in the adhesive layer due to the small Young’s modulus of adhesive 
rather than the Young’s modulus of adherends. Cylindrical bending theory is used to calculate de-
formations in the adhesive and adherends. Free body diagrams for an infinitesimal element in the 

overlap region are shown in Figure 2. 1 2,   are shear stresses and 1 2,y y   are peel stresses in 

layer 1 and 2. 
From the equilibrium in x and y direction: 

 

1
3 0df

dx
   (1-a)

 

2
3 0df

dx
   (1-b)

 

1
3 0u
y

dQ

dx
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y

dQ

dx
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3
3 3 3( ) 0u l

y y

d
t

dx

      (4)

 

 

Figure 2: Free-body stress equilibrium diagram. 

 
From the moment equilibrium in layer 1 and 2: 

 

1 1
1 3 0

2
dM t

Q
dx

    (5-a)

 

2 2
2 3 0

2
dM t

Q
dx

    (5-b)

 

3 3( ) mx     is the shear stress in adhesive. 3
u
y , 3

l
y  are peel stress between adhesive and 

layer 1 and 2 respectively. The relationship between force and moment in the layers with axial 
stress in x direction is: 
 

26 (2 1)ix i i i i if t M t     (6)
 

0 , ( 1,2)i i i i iy t y t i     (7)
 

From the elasticity theory and equilibrium: 
 

0 ( 1, 2,3)ix i

i

i
x y

  
  

 
 (8-a)

 

0 ( 1,2,3)iy i

i

i
y x

  
  

 
 (8-b)
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The subscripts 1, 2 and 3 denote the upper adherend, lower adherend and adhesive, respective-
ly. Substituting Equations 8-a, 8-b into 6 and using the Equations 1-a, 1-b, 2, 3 and 4: 
 

2 2
1 3 1 1 1 1 1 1(3 2 ) 6 ( )Q t          (9-a)

 

2 2
2 3 2 2 2 2 2 2(3 4 1) 6 ( )Q t           (9-b)

 

Where, 
 

1 10 0     (10-a)
 

2 21 0     (10-b)
 

Substituting Equations 9-a, 9-b into 8-a, 8-b: 
 

3 2 3 23
1 1 1 1 3 1 1( ) ( 2 3 )u
y y

d
t

dx

            (11-a) 

 

3 2 3 23
2 2 2 2 2 3 2 2( 2 ) (2 3 1)l
y y

d
t

dx

              (11-b)

 

3
3 3 3 3( 0.5)u
y y

d
t

dx

      (11-c)

 

Where, 
 

3 3 30.5 ( ) 0.5y t     (12)
 

Constants of integrations for the Equations 11-a and 11-b are determined by Equation 10 and 
for the Equation 11-c, Equation 13 is used. 
 

3 3 30.5 u
y y       (13)

 

picking 3 0  , and using the Equation 11-c lead to calculate peeling stress in the middle of adhesive 

layer m  . using Equation 11-c and picking 3 0.5   and 3 0.5  : 
 

3
3 2
u m
y m

td

dx

    (14-a)

 

3
3 2
l m
y m

td

dx

    (14-b)

 

Relationship between shear stress and shear modulus is shown in Equation 15. 
 

( 1, 2,3)i
ixy

i

i
G

    (15)
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Stress-strain relationship for orthotropic materials is depicted by Equation 16. 
 

0

0 ( 1, 2)

0 0

ixz iyix

i i
ixix

ixz iy iy
iyiy

i i
ixyi

i

EE

D D

E E
i

D D

G




 



 
 
    
         
        
 
  

 (16)

 

1i ixz izxD     (17)
 

Peeling stress and strain is derived from Equation 16 as follow: 
 

( 1,2)iy ixz iyi
iy ix

i i i

E Ev
i

D y D


 

  


 (18)

 

 i
iy i ixz iy ix ix iy

i

v
A E E

y
   

  


 (19)

 

Where, 
 

2 2 ( 1, 2)i
i

ix iy ixz iy

D
A i

E E E
 


 (20)

 

For transversal displacement of the layer 1, by substituting Equations 6 and 11-a into Equation 
19 and then integrating by 1 : 
 

 1

1 1 1 1 1 1 1 1 1 10

4 3 4
33 1 1 1

1 1 1 1 1 3 1

21
1 1 1 1 1 1 1

1

4 3 2

6 ( )

u xz y x x y

u
u x y

xz x

v v A t E E d

d
v A t E t

dx

M
A E f

t


   

    

   

   

    
          

    
 

  
 



 (21)

 

1uv  is the transversal displacement for top surface of the layer 1. Transversal displacement between 

adhesive and layer 1 is derived by continuity of displacement and using Equation 21 as follow: 
 

33 1
1 1 1 1 1 1 1 1 1 1 1( 1)

12 2

u
y

l u x xz y

d t
v v v A t E A E f

dx

 
 

       
 

 (22)

 

By substituting Equation 22 into Equation 23: 
 



B Ghoddous / Theoretical Analysis of Stress Distribution in Bonded Single Strap and Stiffened Joints     263 

Latin American Journal of Solids and Structures 14 (2017) 256-276 

4 3 4
33 1 1 1

1 1 1 1 1 1 3 1

21
1 1 1 1 1 1 1

1

1 1
4 3 12 2 2

6( 1) ( )

u
l x y

xz y

d
v v A t E t

dx

M
A E f

t

    

   

    
             

    
 

   
 

 (23)

 
Similarly for the layer 2: 

 
4 3 2 4

33 2 2 2 1
2 2 2 2 2 2 3 2 2

22
2 2 2 2 2 2 2

2

2
4 3 2 2

6 ( )

l
u x y

xz y

d
v v A t E t

dx

M
A E f

t

      

   

    
            

    
 

  
 

 (24) 

 
From continuity of displacements: 

 

3 1 3 1

3 2 3 2

,
,

u l u l

l u l u

v v u u

v v u u

 

 
 (25)

 
For longitudinal displacements: 

 

( 1,2,3)i i
i

i

u v
i

y x
  

  
 

 (26)

 

By substituting Equation 23 into Equation 26, using Equation 15 and integrating by 1 : 

 

1 1 11 lu u     (27)

 

 

3 21
1 1 1 1 1 1 1 1 1 1 1

1

2 5 4 5 4
32 3 1 1 1 1 1 1

1 1 1 12

3 2
3 1 1 1 1 1 1 1 1 1 1

1

1( ) ( 1) (2 3 1)

1 7
20 12 12 20 10 4 2 20

1 ( 1)

l
l xz y

u
y

x

xz y xz y

dv
u u t Q A E

dx G

dd
A t E t

dx dx

t A E A E
G

    

      

     

 
        

 
    

             
     

  
     

  

 (28)

 
For the layer 2 similarly: 
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 

2 2
2 2 2 2 2 2 20

3 2 2
2 2 2 2 2 2 2 2 2

2

2 5 4 3 5 4 2
32 3 2 2 2 2 2 2

2 2 2 22

3 2
3 2 2 2 2 2 2 2 2

2

( ) ( ( ) )

1 (2 3 )

20 6 6 10 4 2

1 2

u

u
u xz y

l
y

x

xz y xz

v
u u t d

x

dv
u Q A E t

G dx

dd
A t E t

dx dx

t A E A
G


   

   

      

     


   


 

     
 
    

          
     

 
    

 



2 2 2yE 
 
 
 

 (29)

 

2uu  is the displacement of top surface of layer 2 (bonded surface). 
 

1 2

0
( 0.5)i ix i i iM t d     (30)

 

1

0i ix i if t d    (31)

 

Using Equations 11 and 16: 
 

3 2 3 23 1
1 1 1 1 1 3 1 1

1 1

1( ) ( 2 3 )u
x xz y

y

d u
t

dx A E x

                      
 (32-a)

 

3 2 3 23 2
2 2 2 2 2 2 3 2 2

2 2

1( 2 ) (2 3 1)l
x xz y

y

d u
t

dx A E x

                        
 (32-b)

 

By substituting Equations 32 into Equations 30 and 31 and using Equations 1 to 4: 
 

32 2
3 31 1 1 1

1 1 12 3
1

2
3 1 1 11 1 1

1 1 1 32 3
1 1 1

11 6 1
210 5 10

1213 12 1
35 5 2

l x
xz y

u
y yux

xz y y

d dd v A E t
A E

dx dx G dx

d M A EA E t
A E

dx t G t

 


 

  
     
   

       
   

 (33-a)

 

2 32
2 3 32 2 2

2 2 22 3
2

2
3 2 2 22 2 2

2 2 2 32 3
2 2 2

11 6 1
210 5 10

1213 12 1
35 5 2

u x
xz y

l
y ylx

xz y y

d v d dA E t
A E

dx dx G dx

d M A EA E t
A E

dx t G t

 


 

  
     
   

       
   

 (33-b)

 

Similarly to Equations 33-a and 33-b: 
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33
1 1 1 1 1 1 13 31 1 1 1 1

3
1 1

22
3 1 1 1 1 1 11 1 1

32 2
1 1

4 2
105 15 15

6 611 1
210 5 10

xz y yl x

u
y xz y yux

y

t A E f A Ed ddu t A E t

dx dx G dx t

d A E M A Et A E

dx G t

 

 


 
      

 
 

   
 

 (34-a)

 

33
2 2 2 2 2 2 22 3 32 2 2 2
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 (34-b) 

 

Differential equations of transversal and longitudinal displacement are assumed to be linear in 

the 3  direction. 
 

3 2 1 3 2 10.5( ) ( )u l u lu u u u u     (35-a)
 

3 2 1 3 2 10.5( ) ( )u l u lv v v v v     (35-b)
 

Where  3v  is transversal displacement and 3u  is longitudinal displacement in adhesive. Shear 

stress in the middle line of adhesive thickness m  is obtained by substituting Equations 35 in Equa-

tion 26 and derivation: 
 

2 1 2 1
3 3 3

3

( ) 1( 0)
2

u l u l
m

u u dv dv
G

t dx dx
  

         
  

 (36)

 

Neglecting axial load in adhesive layer ( 3x ), peeling stress in the middle layer of adhesive m  

is derived in Equation 37. 
 

3 3
3 3 3 2 1

3 3

( 0) ( )m y u l

v E
E v v

y t
   

    


 (37) 

 

Derivation of Equations 36 and 37, substituting Equations 33 and 34 and using 14-a and 14-b 
lead to elimination of 3

u
y  and 3

l
y . 
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 (38-a)
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1 1 1 2 2 23 2
7 8 4 5 3 3

1 2

12 12
( ) ( ) y y

m m

M A E M A E
D D D

t t
           (38-b)

 

Where D=d/dx and ( 1, 2,...,11)i i   is a simplifier coefficient and is related to geometrical 

and mechanical configurations of the adhesive and adherends. 
Derivation of Equations 38-a and 38-b and substitution of derivation moment iM  and force if  

by using Equations 1 and 5 create nonhomogeneous differential Equations 39-a and 39-b 
 

 

 

1 3 1 1 14 2 3
1 2 10 7 8 3

1

2 3 2 2 2
3
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     
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 (39-a)

 

1 1 1 2 2 23 3
7 8 11 4 5 3 3

1 2

12 12
( ) ( ) y y

m m

Q A E Q A E
D D D D

t t
             (39-b)

 

Derivation of Equations 39-a and 39-b and using Equations 2, 3 and 14 to eliminate derivation 

of shear force idQ
dx  create two fifth order linear homogeneous differential Equations. 

 

5 3 4 2
1 2 3 7 8 9( ) ( ) 0m mD D D D D              (40-a)

 

5 3 4 2
7 8 9 4 5 6( ) ( ) 0m mD D D D D              (40-b)

 

Shear stress distribution and peel stress distribution can be found by solution of Equations 40-a 
and 40-b. 

In this type of joint layer 2 is under tensile load and layer 1 isn’t subjected. Thus, 
 

0
l

ml
dx


  (41)

 

For the free surfaces of adhesive in its ends: 
 

0m x l   (42)
 

Figure 3 shows edge loads in adhesive region. 
For the boundary conditions of loads shown in figure 3: 

 

1 1 1 3 2 1 2 1 20, , ,x l M Q f M M Q Q f F             (43-a)
 

2 2 2 2 2 1 1 1 3, , , 0x l M M Q Q f F M Q f             (43-b)
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Figure 3: A section of adhesive and its edge loads in the stiffened joint. 

 
Substituting Equations 43-a and 43-b into Equations 38-a, 38-b, 39-a and 39-b determines the 

other essential boundary conditions to solve Equations 40-a and 40-b. the edges load can be deter-
mined by calculating deformations in different parts of the joint. As the joint is symmetric, a half of 
it is shown in figure 4. 
 

 

Figure 4: Deflections in different section of stiffened joint. 

 

1 1 1 1 2 1 1cosh sinhw C x C x    (44-a)
 

2 3 2 2 4 2 2cosh sinhw C x C x      (44-b)
 

To determine the set of C coefficients four boundary conditions is needed. 
 

1 10 : 0x w  (45-a)
 

1 1 2 1 2, 0 :x L x w w    (45-b)
 

1 2
1 1 2

1 2

, 0 : dw dw
x L x

dx dx
    (45-c)

 

2
2

2

: 0dw
x l

dx
   (45-d)
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As the joint symmetric: 
 

1

2
* * 1
1 2 2 2

1
u x L

d w
M M D

dx     (46)

 
2.2 Single Strap Joint 

Single strap joint is consisted of three composite layer with orthotropic properties. It can be either 
symmetric or asymmetric in geometry and property. Figure 5 shows a two-dimensional model of a 
single strap joint. 
 

 

Figure 5: Single strap joint configuration. 

 
Analytical solution of the joint is similar with the solution of previous joint and derived differ-

ential Equations expressed in Equations 40-a and 40-b are valid here. Figure 6 shows edge loads in 
three different sections. Set of Equations 47 expressed deflection function of adhesive and adherends. 
 

 

Figure 6: deflections in different section of single strap joint. 
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3 3 2
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3 3 3 2u u

d w M tF
w

dx D D
         
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General solution of Equations 47-a to 47-c is derived in set of Equation 48. 
 

1 1 1 1 2 1 1cosh sinhw C x C x    (48-a)
 

2 3 2 2 4 2 2 1 2cosh sinh ( ) 2w C x C x t t      (48-b) 
 

3 5 3 3 6 3 3cosh sinhw C x C x      (48-c)
 

To determine the set of C coefficients six boundary conditions is needed. 
 

1 10 : 0x w   (49-a)
 

1 1 3 1 3, 0 :x L x w w    (49-b)
 

31
1 1 3

1 3

, 0 : dwdw
x L x

dx dx
    (49-c)

 

32
2 3

2 3

0, 2 : dwdw
x x l

dx dx
    (49-d)

 

2 3 2 30, 2 :x x l w w    (49-e)
 

2
2 2

2

: 0dw
x L

dx
   (49-f)

 

Finally, determination of edge loads is done by using Equations 50-a to 50-d 
 

1 1

2
* 1
1 1 2

1
u x L

d w
M D

dx    (50-a)
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2
* 2
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2
u x
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M D
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1 1
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* 1
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1
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d w
Q D
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2

3
* 2
2 2 03

2
u x

d w
Q D

dx   (50-d)

 
3  FINITE ELEMENT MODEL 

The finite element method was used as the second method to verify analytical solution. A two-
dimensional model was created by ANSYS. Element PLANE 183 was chosen to mesh the geometry 
model. This high order eight-node element has two degrees of freedom at each node, (translation in 
the nodal x and y directions). External tensile load (0.6kN/mm) was applied to the right edge of 
Layer 2 and the left edge of this layer was constrained both in x and y directions. The adhesive 
layer is Epoxy and adherends are made of aluminum with their nominal mechanical properties ex-
pressed by table 1. The geometry of joint is reported by table 2. Figure 7 shows the meshed FEM 
model. 
 

 E(GPa) ν 

Adherends 69 0.3 

Adhesive 3 0.35 

Table 1: Mechanical properties of the adherend and adhesive. 

 

 

Figure 7: FEM model of a stiffened joint. 

 
t3 0.2 

t1 2 

t2 2 

l 10 

Table 2: Geometry details of the model (mm). 
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4  RESULTS AND DISCUSSION 

Derived analytical equations showed that geometry, material properties and load condition affect 
shear and peel stress distribution along the joint length. These effects are studied in this part beside 
comparisons of solution methods employed in the article. 
 
4.1 Stiffened Joint 

Peeling and shear stress in a stiffened joint are shown in Figure 8 and Figure 9. Results of numeri-
cal and analytical method for stress distribution can be compared in the Figures. 
 

 

Figure 8: Peeling stress 
0

m

p


 distribution in overlap region of the stiffened joint. 

 

 

Figure 9: Shear stress 
0

m


 distribution in overlap region of the stiffened joint. 
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Figure 8 indicates that peak peeling stress 
0

m

p


 is at both ends of overlap length. This type of 

stress is in its minimum value at the middle point of the joint where 0x   .Peak shear stress 
0

m


 

occurs at a point near two ends of overlap length as Figure 9 shows. Figures 10 and 11 depict peel-
ing stress distribution between the adhesive and layer 1, 3

u
y  and the adhesive and layer 2, 3

l
y , 

respectively. Comparing Figure 10 and 11 reveals that peak peeling stress between layer 2 and ad-
hesive is much more than peak peeling stress between the adhesive layer and layer 1. Values of 3

u
y  

and 3
l
y  are zero except their severe gradient at 12% of both overlap length ends. Except for the 

end regions of overlap length, FEM results shows good agreement with analytical results. Simplifi-
cations due to the applied assumptions may have a role in the incompatibility of results in the end 
regions. 
 
 

 

Figure 10: peeling stress distribution between the adhesive and layer 1 in the stiffened joint. 

 
4.2 Single Strap Joint 

Figure 12 shows peeling stress distribution in the middle of adhesive layer of the single strap joint. 
Pay attention to the coordinate axis, where 0x  . Figure 12 shows that the stress is near zero 
along the vast length of joint in the middle of adhesive and its peak is at the end of lower adherend 
by the centerline of joint. 
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Shear stress distribution in the adhesive layer (in its middle of thickness) along the overlap is 
depicted in Figure 13. 

 

Figure 11: peeling stress distribution between the adhesive and layer 2 in the stiffened joint. 

 

 

Figure 12: peeling stress distribution in the middle of adhesive layer in stiffened join. 
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Figure 13: shear stress distribution in the middle of adhesive layer in stiffened join. 

 
Shear stress distribution in Figure 13 declares peak of shear stress is near the internal edge of 

layer 2. Its value is about zero in along the 75% of overlap length. Shear stress at the left edge of 
adhesive is about 12% of the peak. Results show that two methods of solution are in good agree-
ment but FEM is more conservative in estimating of maximum stress. Figures 14 and 15 depict 
peeling stress distribution between the adhesive and layer 1, 3

u
y  and the adhesive and layer 2, 

3
l
y , respectively. 

 

 

Figure 14: peeling stress distribution between upper adherend and adhesive. 
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It is observed that peeling stress that is tolerated by the joint between the upper adherend and 
adhesive is about zero along the overlap except the middle region of joint at the internal edges. In 
this region the peak stress is occurred. The stress field shown in Figure 15 has a similar shape to 
depicted field of Figure 14 but it is clear that the peak peeling stress between the upper adherend 
and adhesive is greater. Peak peeling stress between the lower adherend and adhesive is about 56% 
of its corresponding value for peeling stress between the upper adherend and adhesive. FEM meth-
od agreed analytical solution. In edges some incompatibility are observed and they are considered to 
be the result of stress concentration.  
 

 

Figure 15: peeling stress distribution between lower adherend and adhesive. 

 
5 CONCLUSION 

A stiffened and a single strap joint were studied. The joints were under uniform tensile load and the 
layers behaved as linear elastic. The analysis were two-dimensional and elasticity theory was used 
to establish stress-strain and strain-displacement relations. Derived differential equations were 
solved using appropriate boundary conditions for each joint design. In a stiffened joint peeling stress 
between adhesive and the lower adherend was much more than its value between the stiffener and 
adhesive so the critical component in this joint design was lower adherend that tolerated the exter-
nal load. Peak of shear stress and peeling stress in adhesive occurred at about the middle of the 
single strap joint near its centerline. Values were negligible in the other points along the length. 
Peeling stress between adhesive and adherends were greater than its value in the adhesive layer in 
both of the joints. FEM predicted a more conservative answer for shear and peeling in the single 
strap joint and was in a good agreement with analytical solutions for both of the joints. Finally 
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external edges in the stiffened joint and internal edges in the single strap joint were observed as 
critical locations in designs. 
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