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Abstract 
This paper presents a two-dimensional frame finite element 
methodology to deal with flexible multi-body dynamic systems 
and applies it to building progressive collapse analysis. The 
proposed methodology employs a frame element with Timoshenko 
kinematics and the dynamic governing equation is solved based on 
the stationary potential energy theorem written regarding nodal 
positions and generalized vectors components instead of displace-
ments and rotations. The bodies are discretized by lose finite 
elements, which are assembled by Lagrange multipliers in order to 
make possible dynamical detachment. Due to the absence of rota-
tion, the time integration is carried by classical Newmark algo-
rithm, which reveals to be stable to the position based formula-
tion. The accuracy of the proposed formulation is verified by sim-
ple examples and its capabilities regarding progressive collapse 
analysis is demonstrated in a more complete building analysis. 
 
Keywords 
Multibody dynamics, positional finite element method, geometric 
nonlinear analysis, Lagrange multipliers, progressive collapse. 
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1 INTRODUCTION 

One very impressive effect that structural engineers are frequently concerned about is the pro-
gressive collapse of structures. Progressive collapse is characterized by the failure of the total or 
great amount of the structure due to an initial localized problem, like the rupture or instability of 
one single or few structural members, which shoots the trigger for failure propagation. Many re-
searchers addressed this subject along the years, starting in the 1970s, as one can mention im-
portant works of Ellingwood and Leyendecker (1978) and Leyendecker and Ellingwood (1977) that 
contributed to starting a discussion on design against progressive collapse. However, the precise 
consideration of dynamic effects during load redistribution seems to be a more recent subject, ex-
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plored by authors like Kaewkulchai and Williamson (2004), Hakuno and Meguro (1993) and Botez 
et al. (2015). 

Several terrorist attacks in the end of 20th and start of 21st century attempted against public or 
business buildings, featuring the World Trade Center collapse in New York in 2001 as one of the 
most economically and emotionally affecting terrorist action. Nowadays buildings in populated areas 
are in general considered potential targets for terrorist attacks, demanded more interest in the de-
sign of buildings to resist to explosions avoiding progressive collapse. 

The problems considered here are initially a continuum media or composed by several continu-
ous parts linked in a statically stable way, however, due to rupture or to some applied action over 
the structure, the structural members are converted into a set of separated bodies. This situation 
requires a multibody simulation. 

Multibody dynamics studies are related to dynamic analysis of interacting bodies. Recent stud-
ies on multi-body dynamics are dedicated to several fields, from structural engineering to biome-
chanics, and include the search for real time simulation, study of contact and impact problems, 
extension to electronics and mechatronics, dynamic strength analysis, optimization of design and 
control devices (see e.g. Shiehlen et al. (2006) and Shabana (2013)). 

In this paper, we develop a finite element strategy based able to model flexible multi-body 
which can be applied to simulate progressive collapse problems. This strategy consists in assembling 
finite elements using Lagrange multipliers, so that the connections can be dynamically broken by 
enforcing the corresponding Lagrange multipliers to zero. 

One can consider this formulation, as described here, conservative, as structures are considered 
to fail in the elastic domain, with rupture criteria based on standard design equations leading to a 
fragile behavior of the analyzed structure. However, it is possible to extend the proposed formula-
tion to consider ductile or combined ruins introducing plastic joints, Coda and Paccola (2014) and 
Reis and Coda (2014). 

To perform this analysis we employ a frame finite element geometric nonlinear dynamics formu-
lation, which has the following characteristics: 

 (i) Absence of large rotation description naturally resulting in an energy conserving time inte-
gration algorithm; 

 (ii) Natural achievement of high-order curved elements; 
 (iii) Adequate kinematics for thin or thick frame elements developing large displacements. 
Such characteristics are achieved by using positions and generalized vectors as nodal parameters 

instead of displacements and rotations. This formulation, motivated by the work of Bonet et al. 
(2000), has being successfully applied in various applications as one can see, among others, in Coda 
and Greco (2004), Coda and Paccola (2011), Carrazedo and Coda (2010), Sanches and Coda (2013 
and 2014). 

Energy-conserving is one of the most controversial subjects related to bars and shells nonlinear 
dynamic analysis. This controversy occurs because the most employed formulation (co-rotational 
description) uses finite rotations as degrees of freedom. Finite rotations are objective only when 
small increments are adopted. Moreover, co-rotational formulations result in a non-constant mass 
matrix, which forbids the use of well-established time integration procedures for linear analysis. In 
this sense, special time integrators for co-rotational formulations were developed, as it can be seen 
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in Ibrahimbegović and Mamouri (2000 and 2002), Ibrahimbegović et al. (2003), Romero (2008), 
Ghosh and Roy (2009), Betsch and Steinmann (2003), Jelenić and Crisfield (2001) and Romero and 
Armero (2002). Most of those studies state that the Newmark time integration procedure cannot be 
used in nonlinear dynamics as a whole, however, finite rotation based methods are not the unique 
strategy to solve nonlinear dynamics. 

The total Lagrangian frame formulation based on positions and unconstrained vectors employed 
in this work, avoiding the use of large rotation schemes, enables the use of Newmark time integra-
tion procedure in nonlinear dynamic multibody problems with large displacements and rigid body 
rotations. In this case the formulation with constant mass matrix is equivalent to the one studied 
by Hughes (1976), where one can find a good description of stability and energy conserving proper-
ties for the average acceleration time integration (equivalent to the Newmark version employed 
here). In Sanches and Coda (2013) the authors give a proof of the linear and angular momentum 
conserving property and perform stability and energy conservation tests for the Newmark   inte-

gration procedure including large rotations but keeping small strains for the position based formula-
tion. 

In section 2 we describe the employed frame finite element as well as the nonlinear dynamics so-
lution procedure, in section 3 we develop the procedure for dynamical splitting of structural mem-
bers with Lagrange multipliers and discuss the system solving procedure. In section 4 we test this 
methodology with a simple cantilever example and then we apply it to multi-storey building pro-
gressive collapse problem. 
 

2 FRAME FINITE ELEMENT FOR NONLINEAR DYNAMICS 

The unconstrained vector frame element employed here is designed to model large rotation prob-
lems without lack of objectivity and conserving energy in general nonlinear dynamic applications 
with small strains. 

The employed methodology is based on the stationary potential energy theorem written regard-
ing nodal positions and generalized unconstrained vectors instead of displacements and rotations, 
inspired by Bonet et al. (2000). As mentioned before, this characteristic avoids the use of finite ro-
tation approximations, what makes it very simple especially for 3D cases. The frame formulation is 
total Lagrangian, and due to its unconstrained vector mapping, it presents constant mass matrix 
and therefore, it is possible to apply the Newmak   integrator as a momentum conserving algo-

rithm, like in a geometric linear problems with physical non-linearity (see Sanches and Coda (2013) 
for more details on the position based formulation and Newmark   integrator). 

Frame structures consist of solids with one dimension much larger than the other two. There-
fore, the frame kinematics can be written considering the middle surface mapping as a reference, as 
depicted in Fig. 1, and then employ kinematics hypothesis to map the whole element. 
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Figure 1: Frame element mapping. 

 
The mappings m0f  and m1f , from the auxiliary non-dimensional configuration (I) respectively to 

the initial (II) and final configurations (III), have its components written as follows: 
 

0
1 1= ( , ) = ( )m m m

i i ji j jif X X N X   (1) 
 

and 
 

1
1 1= ( , ) = ( ) ,m m m

i i ji j jif x x N x   (2) 
 

Where m
jiX  and m

jix  are the j -th nodal value of middle surface position in i  direction respectively 

for initial and current configuration. 
In order to map completely the solid domain, the Timoshenko-Reissner kinematics is adopted. 

We consider a generalized vector which, in the initial configuration ( 0g ) is normal to the neutral 

surface, and is not necessarily normal to the current neutral surface ( 1g ), allowing distortion due to 

shear stresses. The generalized vector is unconstrained, and so, allows deformation in the height 
direction (see Fig. 2). 
 

 

Figure 2: Deformation kinematics. 
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In this sense, the Cartesian components of the mapping of any point in the whole element from 
non-dimensional to initial and to current configurations are given respectively by: 
 

0 0= ,m
i i if X g  (3)

 

and 
 

1 1= .m
i i if x g  (4)

 

The changes in the cross section height direction can be better represented by introducing a 
nodal enrichment to consider linear strain rate in this direction, so that the vectors 0g  and 1g  

components can be written as: 
 

0 00
3 1 2= ( , )

2i j ij

h
g N e    (5)

 

and 
 

1 2 10
3 1 2 1 23

= ( , ) ( , )
2i j j j ij

h
g a N N e         (6)

 

where 0
ije  are the j -th nodal values for the i  component of the unity vector normal to the initial 

configuration middle surface, 1
ije  are the j -th nodal values for the i  component of the generalized 

vector (not necessarily normal or unity) at current configuration, 0h  is the initial cross section 

height and ja  is the j-th nodal value of strain rate along thickness (see Fig. 2). 

Considering two-dimensional frame elements, at any point of coordinate   the vectors 0e  and 
1e  can be written as:  

 

0

0
0 ( ( ))( ) = ,

( ( ))
sin

cos

 


 
 
 
 

e  (7)

 

and 
 

11
1

1
0

( ( ))
( ) = .

( ( ))
sinh

h cos

 


 
 
 
 

e  (8)

 

where 0  and 1  are the tangent angles to the neutral surface respectively at initial and current 
configuration. 

Finally, the mapping from initial to current configurations is represented by: 
 

      11 0= = .


f f X f f  (9)
 

where X  is the vector of nodal values at initial configuration. 
Considering the gradient matrixes 0A  and 1A  of initial and current mappings (3) and (4), with 

it components given by: 
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0 0
,=ij i jA f  (10)

 

and 
 

1 1
,= ,ij i jA f  (11)

 

where the index “ , j ” indicates derivatives regarding 1  if 1j  , or 2  if 2j  . The deformation 

gradient matrix A  is expressed as: 
 

   11 0= = ,


A f A A  (12)
 

After evaluating the gradient A , the Green strain tensor is given by: 
 

1 1= = ,
2 2ij ki kj ij ij ijE A A C         (13)

 

where the variables ijC  and ij  are the right Cauchy-Green stretch tensor and the Kronecker delta, 

respectively. The following quadratic strain energy per unit of initial volume is obtained considering 
Saint-Venant Kirchhoff constitutive law:  
 

1= .
2e ij ijkl klu E D E (14)

 

Such constitutive law relates second Piola-Kirchhoff stress tensor and Green strain tensor ac-
cording to: 
 

= = .e
ij ijkl kl

ij

u
S D E

E


 (15)

 

where the elastic tensor D is given by: 
 

2= ( ),
1 2ijkl ij kl ik jl il jk

G
D G

      


 


 (16)

 

with G  and   being respectively the transverse modulus of elasticity and the Poisson ratio. 
The true stress tensor (Cauchy stress) is achieved directly from the Second Piolla-Kirchhoff 

stress following (see Ogden (1984) for details): 
 

t ASA  (17)
 

The finite element adopted is an isoparametric curved line with arbitrary number of nodes. The 
shape functions are Lagrange polynomials of degree 1n   where n  is the number of nodes of the 
considered element. Each node has 5 nodal parameters: 2 middle surface position vector components 

ix  with = 1i  or 2 , the current angle to obtain the non-normal generalized position vector compo-

nent 1e , the current thickness 1h  and the linear strain rate along thickness a . In several problems 

with small strains and or small Poisson ration, the user may chose to use only 3 nodal parameters 
(current nodal positions and tangent angle) saving computational effort. 
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2.1 Time Integration 

As mentioned before in section 1, we use the Newmark   algorithm for numerical time integration. 
The time marching process is summarized as: 
 

2
1 1

1=
2S S S S St t   

         
  

x x x x x    (18)

 

and 
 

 1 1= 1 .S S S St t      x x x x     (19)
 

where sx  is the unknown nodal values vector at instant t  s and the over dots represent time de-

rivatives. 
Sanches and Coda (2013) proved that for the positional total Lagrangian description, the New-

mark   with = 1/2  and = 1/4  presents momentum and energy conservative properties, and so 

we use these constants values, making the algorithm equivalent to the trapezoidal rule, for which 
stability and energy conserving properties for constant mass matrix nonlinear problems are studied 
by Hughes (1976). 
 

2.2 Nonlinear System Solution 

From preceding developments, one may write the equilibrium equation at the instant 1St   using the 

stationary potential energy principle as:  
 

1 1 1
1 1

= = 0.e
S S S

S S

U
  

 


  

 
F Mx Cx

x x
   (20)

 

where   is the total potential energy functional, eU  is the total strain energy, obtained by inte-

grating (14) over the domain, F  is the external forces vector, C  is the viscous damping matrix and 
M  is the mass matrix. Neumann boundary conditions are taken into account when computing F  at 
each instant S+1, as well as the Dirichlet boundary conditions are imposed in the approximated 
solution as standard for finite elements so that:. 
 

1

11

1

( )      on 

     on S

SS N

S D





  

 

x n t

x x


 (21)

 

where 1Sx  are the nodal values for the prescribed positions at S+1 and 1St  are the prescribed val-

ues for traction. 
From Newmark   method, (18) and (19), equation (20) becomes: 

 

1 1 121
1 1

= = 0,S S S S S SS
S S

t
tt

 
  

 


       

  
eU M C

F x MQ CR x CQ
x x

  (22)
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where the vectors sQ  and sR  represent the dynamic contribution from the past and are expressed 

by: 
 

2

1= 1
2

S S
S Stt  

 
     

x x
Q x

   (23)

 

and 
 

 = 1 .S S St  R x x   (24)
 

The components of the gradient matrix of (22) ( ), are second derivatives of the energy 
functional regarding the unknowns, expressed by: 
 

22

1 2

1 1

.ij ije
ij S

i j i jS S

M CU

x x x x tt




 

 
    

  
 �  (25)

 

From (25), one can use the Newton-Raphson iterative process so solve (22), with 0
1s s x x  as 

the first guess for the current 1sx , leading to the iterative process: 
 

1 1
=l l

S S 
  x   (26)

 

and 
 

1
1 1= ,l l

S S

   x x x  (27)

 

where l  is the iteration number. The iterative process is interrupted when reached the admissible 
user prescribed error. 
 

3 UNDAMAGED STRUCTURE ASSEMBLING WITH LAGRANGE MULTIPLIERS 

In spite of the fact that the introduction of Lagrange multipliers increases the number of degrees of 
freedom to the problem of the continuous structure, it makes the system solver easy to be parallel-
ized with iterative methods such as the Usawa method. 

The problem is discretized with all elements unconnected, i.e., the elements do not share the 
same node at intersections, instead there are multiple nodes in the same position. Continuity across 
elements is enforced by adding subsidiary conditions with Lagrange multipliers according to: 
 

( ) = 0k i jx x   (28)
 

where i  is the i -th Lagrange multiplier employed to make the j -th degree of freedom equal to 

the k -th degree of freedom ( =i jx x ).One can observe that equation (28) represents the potential 

energy introduced to the system by the Lagrange multipliers. Adding (28) to the total potential 
energy, we have a new energy functional, written in the index notation as: 
 

1 11
( )k i jS SS
x x

 
      (29)
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It is important to notice that subsidiary conditions can be used to make position or generalized 
vector components (for so, tangent angle and thickness strain rate) equal for coincident nodes. The 
subsidiary condition can be canceled based on a given rupture criteria by simply enforcing the asso-
ciated Lagrange Multipliers to zero. The Lagrange multipliers in this case are the vertical and hori-
zontal internal forces components when respectively used to link horizontal positions and to link 
vertical positions and bending moment when used to link tangent angle, as one can see from the 
first example. 

Appling the same procedure described in section 2.2 to the new functional, including the La-
grange multipliers parameters, the resulting linear system to be solved at each Newton method iter-
ation is given by:  
 

1 1

=
l l

t

S S 

     
    

     

H L x

L 0 0


 (30)

 

where H  is the hessian matrix for the structure without the Langrange multiplier enforced con-
straints, given by: 
 

2

2

1

ij ije
ij

i j S

M CU
H

x x tt







  
 

 (31)

 

and the matrix L  has its terms given by: 
 

1    and    =-1      if 
0    and    =0      otherwise

ik jk i j

ik jk

L L x x

L L

 
 

 (32)

 

As all the elements are connected by Lagrange multipliers, matrix H  has the form: 
 

1

2 ,

n

 
 
 
 
 
 

H 0 0

0 H 0
H

0 0 H




   
  

(33)

 

Where 1H , 1H , ..., nH  are the n  local Hessian matrixes of the n  finite elements. 

Special care is need when choosing the solver for equation (30), as it is a not definite system, 
containing zeros over the diagonal. Nowadays there are several efficient libraries for solving kind of 
linear systems available in any programming language. 

On the other hand, one can notice that for a dynamic problem H  is never singular due to the 
presence of the mass matrix terms. As the local matrixes are small, it is easy to evaluate its inverse. 
It makes easy to parallelize the code by solving the system (notice that we ommited the time step 
and Newton-Raphson iteration indexes from equations (34)-(37) for clarity): 
 

= ,H x   (34)
 

combined to an iterative procedure to enforce the subsidiary condition. 
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The system (34) is composed by n  independent small systems, and so can be easily distributed 
over different CPU's. One iterative procedure for the enforcement of the subsidiary condition is 
given by the Uzawa method, introduced by Uzawa (1958), following the equations bellow: 
 

( 1) ( ) ( )=m m m  r   (35)
 

with 
 

=m t mr L x (36)
 

and 
 

( 1) 1 ( 1)= ( )m m   x H L  (37)
 

where m  is the Uzawa iteration number and   is a scaling factor which can be used for conver-

gence acceleration. 
 

4 NUMERICAL EXAMPLES 

In this section, we firstly use a simple cantilever beam to validate the proposed methodology and 
then apply it to the study of building progressive collapse under two circumstances: 1) considering 
the subtle failure of a column, what may happen due to car accidents or due to explosions and 2) 
considering a dynamic horizontal base movement, like during earthquakes. 
 

4.1 Cantilever Beam 

We chose this example to verify the proposed method because dynamic linear analytic solution and 
static geometric nonlinear Bernoulli-Euler analytic solution are available to be used as a reference. 

The beam is considered to be formed by 8 elements with 4 nodes each (cubic Lagrange polyno-
mial shape functions), connected by Lagrange multipliers, according to figure 3. The beam has 
Young modulus = 210 GPaE , density 3= 7860 kg/cm , cross section area 2= 23.91 cmA , cross sec-

tion moment of inertia 4= 47.619 cmI  and length. 10 mL   
 

 

Figure 3: Cantilever beam. 

 
In order to check Lagrange multipliers values for small displacements, we apply a load 5F   N. 

The Lagrange multipliers for the tangent angle are compared to the bending moment absolute value 
(in order to take into account signal convention) and the Lagrange multipliers for vertical positions 
are compared to the shear force absolute value in Fig. 4, revealing to be coincident as expected. 



62     R.A.K. Sanches and H.B. Coda/ Flexible Multibody Dynamics Finite Element Formulation Applied to Structural Progressive Collapse Analysis 

Latin American Journal of Solids and Structures 14 (2017) 52-71 

 

(a) Bending Moment (b) Shear force 

Figure 4: Internal forces vs. Lagrange multipliers. 

 
We firstly perform a static analysis of the entire beam in order to compare the proposed numer-

ical formulation to the analytic solution considering Bernoulli-Euler kinematics, which should be 
very close to the present numerical solution as it is a very slender beam. 

Non-dimensional vertical and horizontal displacements ( /v L  and /u L ) vs. non-dimensional 
force ( 2/( )PL EI ) are compared to the exact solution numerically obtained via elliptic integrals given 

by Mattiasson (1981) in Fig. 5. One may observe that the obtained results are coincident to the 
analytic solution, attesting that the proposed model is adequate for static analysis of unbroken 
structures. 
 

 

Figure 5: Displacements of the cantilever beam obtained with static analysis. 

 
Moving forward, we consider the dynamic behavior of the cantilever considering the force F as a 

50N  constant impact load applied at instant = 0t . At the segments CD  and BC  are released re-
spectively at instants = 5.4t  s and = 6.0t  s by enforcing the Lagrange multipliers related to its 
connections to zero, according to figure 6. 

Figure 7 shows the vertical displacement for points D , C  and B  vs. time and compares to the 
linear analytic solution for point D  vertical displacement for the unbroken beam, considering only 
the first vibration mode. 



R.A.K. Sanches and H.B. Coda/ Flexible Multibody Dynamics Finite Element Formulation Applied to Structural Progressive Collapse Analysis     63 

Latin American Journal of Solids and Structures 14 (2017) 52-71 

 

Figure 6: Cantilever segments detachment. 

 

 
Figure 7: Vertical displacement vs. time. 

 
From Fig. 7 one can observe, as expected, that the full beam vibrates initially predominantly 

according to its first mode free vibration natural frequency = 0.409Hzf  and after detaching the two 

segments, the remaining clamped part vibrates according to the first mode free vibration natural 
frequency for a 5m  long cantilever ( = 1.63Hzf ). In figure 8 we present snapshots at each 0.25 s, 

from = 0t  to = 8st . 
 

 

Figure 8: Snapshots at each 0.25 s for the cantilever dynamic problem. 
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4.1 Six Storey Building Progressive Collapse 

We consider a 6 pavement building structure, discretized by 84 elements with 4 nodes, according to 
figure 9. 
 

 

Figure 9: Geometry and discretization for the 6 pavement building. 

 
The entire structure is made of AISC W 410x60 (metric system) I-shaped steel bars with Young 

modulus = 205GPaE , density 3= 7860kg/m , yield stress = 250 MPafy .The geometric properties 

are moment of inertia 4 4= 2.17 10 mI  , cross section area 3 2= 7.62 10 mA  . 
The adopted resistance criteria for the structural elements are based on the limit state theory 

according to the Brazilian standard for steel structure ABNT NBR 8800:2008 (2008). During the 
analysis if one given element is considered unsafe according the mentioned criteria, then the closest 
extremity node to the rupture point is detached from the structure. 

The chosen cross section will present a design resisting bending moment = 103.18 kNmRdM , de-

sign resisting shear force = 374.85 kNRdV  and a design axial resisting force = 607.9 kNRdN . Consid-

ering the design soliciting bending moment SdM , design soliciting axial force SdN  and design solicit-

ing shear force SdV , we consider the structural element to fail if any of the conditions bellow occurs: 
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1) Bending rupture: 
 

>Sd RdM M (38)
 

2) Shearing rupture: 
 

>Sd RdV V (39)
 

3) Normal rupture: 
 

>Sd RdN N (40)
 

4) Combined bending/normal rupture: 
 

> 1 if < 0.2
2

8 > 1 otherwise
9

Sd Sd Sd

Rd Rd Rd

Sd Sd

Rd Rd

N M N

N M N

N M

N M

 


 


(41)

 
For the dynamic analysis we consider a distributed mass of 59.89 kg/m for the columns (only 

the structural mass considering steel density of 3= 7860kg/m ) and 1600 kg/m for the beams (con-

sidering structural and static loading masses), i.e., we consider the loading masses to be firmly at-
tached to the beams. The considered gravity acceleration is 2= 9.81 m/sg . 

We carried two analyses, in the first a column is considered to be suddenly broken and in the 
second the building is subjected to a dynamic harmonic base movement. For both cases, the initial 
condition is the one of static equilibrium for the weight and static loading. This condition is 
achieved by an initial static nonlinear analysis, resulting the internal forces of figure 10. 

For both cases, no contact is considered among elements after rupture, however we consider 
friction-less impact with the ground. In order avoid instabilities due to flat impact, the ground is 
considered to be a rigid parabolic line described by the equation: 
 

2= 1/36000 12/36000y x x  (42)
 

The impact is enforced by introducing new lagrange multipliers when a given node crosses the 
ground surface according to: 
 

( ) = 0k u n (43)
 
where u  is the vector that goes from the position of the impacting node to the crossing point at 
ground surface and n  is the ground surface normal vector. 
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(a) Bending moment (b) Normal force (c) Shear force 

Figure 10: Internal forces for static analysis. 

 

4.2.1 Column Rupture 

In this example we consider the second column from the left to the right to be cut in the middle in 
the initial instant ( = 0 st ). Considering only static effects, the loading finds alternative ways and 
the building remains stable, as one can see from the static analysis in Fig. 11. However, when con-
sidering dynamic effects, the effect of mass acceleration leads to a sequence of ruptures. 
 

 

a) Bending moment b) Normal force c) Shear force 

Figure 11: Static internal forces redistribution. 

 
Figure 12 shows the internal forces for the dynamic analysis at instant = 0.025 st  and figure 13 

shows snapshots of the progressive collapse. In Fig. 13 (c), considering the large displacement scale, 
one can observe that at t=0.095 s, most of the beam-column joints have already failed. Following 
the column on the left (Fig. 13 (d)) also fail and the others structural elements break when touch-
ing the ground. It is important to remember that we are considering frictionless impact with the 
ground, so that the elements are pushed up again. 

From these results, a first solution to be tested can be strengthening the beams from the first 
pavement, as ruptures start propagating from them before any column rupture. 
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(a) Bending moment (b) Normal force (c) Shear force 

Figure 12: Internal 0.025 s after column rupture. 

 

 

Figure 13: Progressive collapse snapshots for the column rupture problem. 
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4.2.2 Base Movement 

In order to show that this methodology can also be applied to earthquake induced structural col-
lapse, we consider a horizontal base movement imposed to building with initial condition of static 
equilibrium, according to the equation: 
 

( ) 0.001sin(30 )x t t  (39)
 

with time in seconds and displacement in meters. 
From Fig. 14, which shows the horizontal displacements for the center of the top along time in 

the first 1.2 s (before ruptures starting), one can observe that the vibration amplitude increases 
until the building collapses. 

Again we observe a sequence of ruptures represented by the snapshots in Fig. 15 and we can 
conclude the methodology is also robust and efficient to deal with such problems. The beam-column 
joint is the first place to present rupture again and following, with less lateral support, the second 
and the forth columns also present failure as well as most of the remaining beams. 
 

 

Figure 14: Horizontal displacement at the top of the building. 

 
5 CONCLUSION 

A 2D frame finite element methodology to deal with flexible multibody systems dynamics is pre-
sented and applied to building progressive collapse analysis. Initially we describe the large dis-
placement position based frame dynamics formulation, which is based on a total Lagrangian de-
scription, with no displacements or rotations degrees of freedom and is suitable for simulate short 
bars, considering searing deformations, being at same time stable and robust. Following we develop 
one strategy based on Lagrange multipliers to dynamically separate the elements, allowing to simu-
late dynamical rupture. Finally we test the proposed methodology by numerical examples and con-
firm its robustness and efficiency, including multi-storey building collapse. It is important to men-
tion that, in spite of introducing more degrees of freedom to the initial structure by the introduction 
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of Lagrange Multipliers, the technique can be combined with interactive methods and easily paral-
lelized. 
 

 

Figure 15: Progressive collapse snapshots for the base movement problem. 
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