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Abstract 
The classical problem of the response characteristics of uniform 
structural member resting on elastic subgrade and subjected to 
uniform partially distributed load is studied in this work. The 
closed form solutions of the governing fourth order partial differen-
tial equations with variable coefficients are presented using an 
elegant analytical technique for the moving force and mass models. 
Various results and analyses are carried out on each of the perti-
nent boundary conditions and phenomenon of resonance is studied 
for the dynamical system.  It was found that in all illustrative 
examples considered, for the same natural frequency, the critical 
speed for moving distributed mass problem is smaller than that of 
the moving distributed force problem. Hence, resonance is reached 
earlier in moving mass beam-load interaction problem.  Finally, 
this work has suggested valuable methods of analytical solution for 
this category of problems for all boundary conditions of practical 
interest. 
 
Keywords 
Dynamic characteristics, Resonance, Subgrade, Distributed Loads, 
Dynamical system. 
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1 INTRODUCTION 

Analyses of the dynamic characteristics of elastic structural members resting on elastic subgrade, 
such as railway, tracks, highway pavements, navigation locks and structural foundations constitute 
an important part of the civil Engineering, Mathematical Physics and other related fields. These 
elastic structures are very useful in many fields of research, thus their dynamic behaviours when 
under the action of travelling loads of different forms have received extensive attention in the open 
literature [ Oni and Omolofe (2005a), Hassan et al (2016), Omolofe (2013), Ismail (2015)].  When 
these important engineering structures are resting on an elastic foundation, the structure-foundation 
interaction effects play significant roles in their response behaviour and alter the dynamic states of 
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the structures from those vibrating in the absence of foundation [Ugurlu et al (2008)].  Hence, the 
dynamic behaviour of structures on elastic foundation is of great importance in structural, aero-
space, civil, mechanical and marine engineering applications. 

Consequently, it is important to clarify the influence of the foundation on the behaviour of elas-
tic structures in engineering designs.  Furthermore, to accurately assess the dynamic response of any 
structural member on elastic foundations, a mechanical model is required to predict the interaction 
effects between such structures and foundations.  Beams on elastic foundation and under the actions 
of the moving loads have received a considerable attention in literature; see for example references 
[Clastornik et al (1986), Thambiratnam and Zhuge (1996), Sun and Luo (2008), Ying et al (2008)] 
However, most of these works employed the simplest mechanical model which was developed by 
Winkler and generally referred to as a one-parameter model.  The deficiency of this model is that it 
assumes no interaction between the springs, so it does not accurately represent the characteristics of 
many practical foundations [Eisenberger and Clastornik (1987)]. Thus to overcome the deficiencies 
inherent in Winkler formulation, a two-parameter foundation models which takes into account the 
effect of shear interactions between springs has been suggested. 

In general, such analyses are mathematically complex due to the difficulty often encounter in 
modeling the mechanical response of the subgrade which is governed by many factors.  When these 
structures are acted upon by moving loads, the dynamic analyses of the system become much more 
complicated. 

It is known from earlier studies that, the problem of assessing transverse vibrations of elastic 
solid structures subjected to moving loads has been commonly considered for a point-like type of 
moving load, see for examples [Gbadeyan and Oni (1992), Sadiku and Leipholz (1989), Lee (1994), 
Oni and Omolofe (2005b), Oni and Awodola (2005)]. While studies concerning a dynamical system 
involving moving distributed loads are not so common. However, in engineering practice moving 
loads are most often in the form of distributed mass rather than that of moving lumped mass. 
When the moving load is distributed, the problem of investigating the load-structure interactions 
becomes much more complicated.  Thus, to study the dynamic characteristics of such dynamical 
systems to the degree of aceptable accuracy required and also for practical purposes, it is useful to 
consider elastic structural members subjected to moving distributed loads.  

Among few authors in recent times who made effort to tackle the problem of elastic structures 
carrying distributed moving masses are [Esmailzadeh and Ghorashi (1995)] who carried out an 
analysis of the dynamic behaviour of Bernoulli-Euler beam carrying uniform partially distributed 
moving masses. They solved the problem by means of conventional analytical technique, which is 
only suitable for the simple horizontal beam and will suffer much difficult if the structures are com-
plicated. In this study, the convective terms which describe the dynamic effects of the moving mass 
were omitted. This approximation is not generally reasonable unless the mass moves at very low 
speed, and it may lead to significant errors in the evaluation of the system response.   Others in-
clude, [Dada (2002)] who worked on the vibration analysis of elastic plates under uniform partially 
distributed loads and [Adetunde (2003)] who studied the dynamical response of Rayleigh beam car-
rying added mass and traversed by uniform partially distributed moving loads. However, in these 
studies numerical simulations were employed. 
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More recently, [Andi (2013), Ogunyebi (2006), Andi and Oni (2014)] carried out dynamical 
analysis of structural members carrying uniform partially distributed masses with general boundary 
conditions under travelling distributed loads.  In these studies, versatile analytical techniques were 
used to obtain solutions valid for all variants of classical boundary conditions. Though these authors 
presented a very good analysis of the response of beams to distributed loads, but their studies failed 
to represent the physical reality of the problem formulation as they employed in their studies a 
simplified model of the distributed load in which the factor that measures the degree of the load 
distribution was omitted. 

Thus, this work therefore concerns the problem of the behavioral study of a slender member 
continuously supported by elastic subgrade and subjected to uniform partially distributed moving 
masses and sets at solving this class of dynamical problem for all pertinent boundary conditions 
often encountered by practicing engineers. 
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Figure 1: Schematic diagram of a beam under partially distributed load.(Esmailzadeh and Gorashi 1995). 

 
2 THEORY AND FORMULATION OF THE PROBLEM 

Consider the vibration of a structural member resting on elastic foundation and traversed by uni-
form partially distributed masses M. The mass M is assumed to strike the beam at the point x=0 
and time t=0 and travels across it with a constant velocity v. The equation of motion, assuming 
uniform cross section is given by the fourth order partial differential equation. 
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where, E is the modulus of elasticity, I is the second moment of the beam’s cross-section,   is the 

mass per unit length of the beam, N is the axial force, K  is the foundation constant, G is the shear 
rigidity,  txz ,  is the deflection of the beam, measured upward from its equilibrium position when 

unloaded and  txQ ,   is the travelling distributed load. 

It is remarked here that the beam under consideration is assumed to have simple ends at both 
ends x=0 and x=L . Thus the boundary conditions are  
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and the initial conditions of the motions of the slender member is given as 
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If the load inertia is taking into consideration,  txQ ,  can be expressed as 
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while the moving force  txQf ,  acting on this engineering structure is given as  
 

  













 






 

22
, 


xHxH

Mg
txQ f  (5)

 

where H is the Heaviside unit step function with the property, 
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For the limiting condition, as 0 one obtains 
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where  vx   is the Dirac delta function. 

Furthermore, the operator   used in (4) is defined as 
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Considering equation (5) and (8) would lead to the foundation for moving point mass.  Howev-
er, in this work   is not limited to be a small length. 

Substituting (4) into (1) and taking into account (5) and (9) after some rearrangements gives 
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which is the fourth order partial differential equation describing the flexural motions of our engi-
neering member when traversed by uniform partially distributed masses.  In what follows, an ana-
lytical technique that will be used to treat the problem above will be discussed. 
 
3 SOLUTION PROCEDURES 

To solve the problem above, a versatile method often used in problems involving mechanical vibra-
tions will be adopted.  This method will be employed to remove the   ties in the governing differen-
tial equation (10) and to reduce it to sequence of second order ordinary differential equation with 
variable coefficients.  This solution technique involves solving equation of the form. 
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A sequence of linearly independent functions  xUi  which are the normalized deflection curves 
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The functions  tYi  are the unknown functions of time to be determined.  Thus, the unknown 

functions  tYi  are obtained from the condition that the expression  xUi  should be orthogonal to 
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From which we obtain  tYi .  These set of coupled second order ordinary differential equations 

are called Galerkin’s equations. The set of coupled second order ordinary differential equations (14) 
are further treated using the modified asymptotic method of Struble. Furthermore, the following 
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will be useful and also the function  txQ ,, is assumed to be expressible as 
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where  ti are unknown functions of time. 

 
3.1 Operational Simplification 

It is evident that an exact closed form solution of the partial differential equation (10) is impossible.  
Thus, substituting the expressions (13) and (15) and (16) into (10) after some rigorous mathemati-
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In order to determine an expression for  tYi , it is required that the expression on the left hand 

side of equation (17) be orthogonal to the function  xU j . To this effect, multiplying equation 

(17) by  xU j , integrating from end x = 0 to end x=L  and after some simplifications and rear-
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Equation (18) is the transformed equation governing the problem of the uniform Euller-
Bernoulli beam resting on the elastic sub-grade and subjected to uniform partially distributed pa-
rameter system. Now, considering the ith particle of the dynamical system, leads to 
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(20)

 

where 
 

L

M


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Equation (20) is the transformed equation governing the motion of a uniform simply supported 
beam resting on bi-parametric elastic foundation and subjected to travelling masses.  In what fol-
lows, a closed form solution of equation (20) is sought, to this end, we shall consider two special 
cases of equation (20) namely the moving force and moving mass problems. 
 
3.2 The Moving Force Beam-Load Interaction Problem 

The second order ordinary differential equation describing the behaviour of a thin beam resting on 
elastic sub-grade and under the actions of a uniform partially distributed moving force may be ob-
tained from equation (20) by setting   0   . In this case, one obtains  
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In view of (7) equation (22) can further be written as,  
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Equation (23) is a classical case of a moving force problem associated with the system. Equation 
(23) after some simplifications yields 
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To obtain an expression for )(tYi , equation (24) is subjected to a Laplace transformation de-

fined as 
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where s is the Laplace parameter. Applying the initial conditions (3), one obtains the following 
algebraic equation 
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Equation (27)  after some simplifications leads to  
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Thus, this problem reduces to that of  finding the Laplace inversion of the equation (29) bove. 

To this effect, the following representations are  adopted. 
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so that the Laplace inversion of equation (29) is the convolution of iF  and iG ’s defined as  
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Thus, the Laplace inversion of equation (29) is given as 
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Where 
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Evaluating integrals (33) and (34) one obtains  
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Substituting (35) and (36) into equation (32), gives the expression for )(tYi  as 
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Thus, in view of (13), taking into account (12) and (37) gives 
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which represents the transverse response of Euler-Bernoulli beam resting on elastic sub-grade and 
subject to uniform partially distributed moving forces when the inertial effect of the system is ne-
glected. 
 
3.3 The Moving Mass Beam-Load Interaction Problem 

Since the mass of the moving load is commensurable with that of the structure, the inertia ef-
fect of the moving mass is not negligible.  Thus, 00  and one is required to solve the entire 

equation (20) when no term of the coupled differential equation is neglected.  This is termed the 
moving mass problem.  Unlike in the case of the moving force, an exact analytical solution to this 
equation is not possible. Thus, one resorts to an approximate analytical technique due to Struble 
discussed in [Gbadeyan and Oni (1992), Oni and Omolofe (2005b)].  By this technique, we seek the 
modified frequency corresponding to the frequency of the free system due to the presence of the 
effect of the mass of the load. To this end, equation (20) is rearranged to take the form. 
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Evidently, unlike the moving force problem, an exact analytical solution to equation   (39) does 

not exist. Thus, a modification of the asymptotic method due to struble often used in treating 
weakly homogenous and non-homogenous non-linear oscillatory system is resorted to. By this tech-
nique, one seeks the modified frequency corresponding to the frequency of the free system due to 
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the presence of the effect of the moving mass. Following the procedures extensively discussed in 
[Oni and Omolofe (2005b)], the homogeneous part of equation (39) is simplified to take the form  
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is called the modified natural frequency representing the frequency of the free system due to the 
presence of the moving mass. Thus, the entire equation (39) reduces to 
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which when solved in conjunction with the initial conditions yields an expression for  iY t as 
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Thus, in view of (13), taking into account (12) and (44) gives 
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Equation (46) represents the transverse response of  a simply supported Euler-Bernoulli beam 

resting on an elastic sub-grade and subject to uniform partially distributed moving mass. 
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4 COMMENTS ON THE CLOSED FORM SOLUTIONS 

In an important study such as this, investigating the phenomenon of resonance is very crucial be-
cause the transverse displacement of an elastic beam may increase without limit. It is seen from 
equation (38) that the simply supported beams on elastic subgrade and under the actions of travel-
ling distributed forces reaches a state of resonance whenever 
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while equation (46) clearly shows that the same beam under the actions of moving distributed 
masses will experience resonance effects whenever 
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but, from equation (42) 
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which implies 
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It is therefore clear that, for the same natural frequency, the critical speed for the system con-

sisting of a simply supported Bernoulli-Euler beam resting on elastic foundation and under the ac-
tions of travelling distributed force is greater than that of moving distributed mass problem. Thus, 
for the same natural frequency, resonance is reached earlier in the moving distributed mass than in 
the moving distributed force system. 
 
5 ANALYSIS OF RESULT AND DISCUSSION 

In this section, the analysis proposed in the previous sections are illustrated by considering a ho-
mogenous beam of modulus of elasticity 29 /109012.2 mNE  , the moment of inertial 

231087698.2 kgmI  , the beam span mL 192.12  and the mass per unit length of the 
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beam mkg /291.2758 . The load is also assumed to travel with constant velocity smV /128.8 . The 

values of foundation moduli are varied between  3/0 mN and 340000 /N m , the values of axial force N  

varied between  N0  and N8100.2  . 
Figure 2 displays the transverse displacement response of a simply supported uniform beam un-

der the action of uniform partially distributed forces travelling at constant velocity for the various 
values of axial force N and for fixed values of subgrade moduli K=40000 and shear modulus 
G=30000. The figures show that as N increases, the response amplitude of the uniform beam de-
creases. Similar results are obtained when the simply supported beam is subjected to partially dis-
tributed mass travelling at constant velocity as shown in figure 8.  For various travelling time t, the 
displacement response of the beam for various values of subgrade moduli K and for fixed values of 
axial forcé N=20000 and shear modulus G=30000 are shown in figure 3. It is observed that higher 
values of subgrade moduli K reduce the deflection of the vibrating beam. The same behavior char-
acterizes the response of the simply supported beam under the actions of uniform partially distrib-
uted masses moving at constant velocity for various values of subgrade moduli K as shown in figure 
9. Also, figures 4 and 10 display the deflection profile of the simply supported uniform beam respec-
tively to partially distributed forces and masses travelling at constant velocity for various values of 
shear modulus and fixed values of axial forcé N=20000 and subgrade moduli K=40000. These fig-
ures clearly show that as the value of the shear moduli increases, the deflection of the simply sup-
ported uniform beam under the action of both moving forces and masses travelling at constant ve-
locity decreases. 
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Figure 2: Transverse displacement response of a simply supported structural members resting  

on elastic foundation and under the actions of uniform partially distributed forces for  

various values of axial force N and for fixed values of K = 40000, G = 30000. 
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Figure 3: Displacement response of a simply supported structural members resting on elastic  

foundation and under the actions of uniform partially distributed forces for various values  

of foundation modulus K and for fixed values of N = 20000, G = 30000. 
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Figure 4: Deflection Profile of a simply supported structural members resting on elastic  

foundation and under the actions of uniform partially distributed forces for various  

values of shear modulus G and for fixed values of K=40000 and N = 20000. 
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Figure 5: Response Amplitude of a simply supported structural members resting on elastic  

foundation and under the actions of uniform partially distributed forces for various values  

of the load width and for fixed values of G = 30000, K=40000 and N = 20000. 
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Figure 6: Response of a simply supported structural members resting on elastic  

foundation to uniform partially distributed forces for various values of the load  

position x and for fixed values of G = 30000, K=40000 and N = 20000. 
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Figure 7: Response characteristics of a simply supported structural members resting on elastic  

foundation to uniform partially distributed forces for various values of the travelling  

load velocities and for fixed values of G = 30000, K=40000 and N = 20000. 

 
 

Figure 5 displays the response amplitude of a simply supported uniform beam under the action 
of uniform partially distributed forces travelling at constant velocity for various values of load 
width  and for fixed values of subgrade moduli K=40000, axial force N=20000 and shear modulus 

G=30000. The figure show that as the width increases, the effects of the width on the response am-
plitude of the uniform beam increases as the load progresses on the structure. Similar results are 
obtained when the simply supported beam is subjected to partially distributed masses travelling at 
constant velocity as shown in figure 11.  For various travelling time t, the response of the beam for 
various values of travelling load positions x and for fixed values of axial forcé N=20000, subgrade 
modulus K=40000 and shear modulus G=30000 are shown in figure 6. It is observed that the im-
pact of the travelling load is greatest at the middle of this vibrating solid structure. The same be-
havior characterizes the response of the simply supported beam under the actions of uniform par-
tially distributed masses moving at constant velocity for different travelling load positions as shown 
in figure 12. 
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Figure 8: Transverse displacement response of a simply supported structural members resting on elastic  

foundation and under the actions of uniform partially distributed masses for various values  

of axial force N and for fixed values of K = 40000, G = 30000. 
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Figure 9: Displacement response of a simply supported structural members resting on elastic  

foundation and under the actions of uniform partially distributed masses for various values  

of foundation modulus K and for fixed values of N = 20000, G = 30000. 
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Figure 10: Deflection Profile of a simply supported structural members resting on elastic foundation  

and under the actions of uniform partially distributed masses for various values  

of shear modulus G and for fixed values of K=40000 and N = 20000. 

 
 

 

Figure 11: Response Amplitude of a simply supported structural members resting on elastic  

foundation and under the actions of uniform partially distributed masses for various values  

of the load width and for fixed values of G = 30000, K=40000 and N = 20000. 
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Figure 12: Response of a simply supported structural members resting on elastic foundation  

to uniform partially distributed masses for various values of the load position  

x and for fixed values of G = 30000, K=40000 and N = 20000. 
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Figure 13: Response characteristics of a simply supported structural members resting on elastic  

foundation to uniform partially distributed masses for various values of the travelling  

load velocities and for fixed values of G = 30000, K=40000 and N = 20000. 
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Figure 14: Comparison of the dynamic characteristic of moving force and moving mass  

cases of a uniform simply supported beam for fixed values of G = 0, K=0 and N =0. 
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Figure 15: Comparison of the dynamic characteristic of moving force and moving mass cases  

of a uniform simply supported beam for fixed values of G = 30000, K=40000 and N = 20000. 
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Figure 16: Comparison of the deflection profiles of the simply supported moving force  

uniform beam for values K=G=N=0 versus G = 30000, K=40000 and N = 20000. 
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Figure 17: Comparison of the deflection profiles of the simply supported moving mass  

uniform beam for values K=G=N=0 versus G = 30000, K=40000 and N = 20000. 

 
Figure 7 displays the response characteristics of a simply supported uniform beam under the ac-

tion of uniform partially distributed forces for various values of load velocity V and for fixed values 
of subgrade moduli K=40000, axial force N = 20000 and shear modulus G = 30000. The figures 
show that the higher the velocity the larger the deflection of the vibrating structure. Similar results 
are obtained when the simply supported beam is subjected to partially distributed masses as dis-
played in figure 13. Figures 14 and 15 depict the comparison of the response characteristics of 
the moving force and moving mass cases of a simply supported uniform beam traversed by a mov-
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ing distributed load travelling at constant velocity for fixed values of N=0, K=0, G=0 and 
N=20000, K=40000 and G=30000.  From these figures, it is seen that the dynamic deflection of the 
beam under the actions of the moving load is greatly affected when the structural parameters N, K 
and G are incoporated into the governing equation of motion.  Figure 16 compares the deflection 
profiles of the moving force model of the beam for the two set of values K=0, N=0, G=0 and 
N=20000, K=40000 and G=30000.  It is deduced from this figure that the amplitude of deflection 
for the set of values N=0, K=0 and G=0 is much higher tan that of the set of values N=20000, 
K=40000 and G=30000.  Similar result is obtained for a moving mass model of this structural 
member as shown in figure 17. 
 
6 CONCLUDING REMARKS 

The classical problem of the response characteristics of uniform structural member resting on elastic 
subgrade and subject to uniform partially distributed load is studied in this work. The closed form 
solutions of the governing fourth order partial differential equations with variable coefficients are 
presented for the moving force and mass models. Various results and analyses are carried out and 
phenomenon of resonance is studied for the dynamical system.  The findings of this study exhibit 
among others the following useful and interesting features: 

i. This study has provided a useful information on the effect of axial force, foundation stiffness, 
load width, load velocity and shear modulus on uniform Bernoulli-Euler beam resting on 
Pasternak foundation and under the action of uniform partially distributed loads. 

ii. Results also show that higher values of the structural parameters K, N and G are required in 
the case of moving mass problem than that of the moving force beam problem. 

iii. It is found that the dynamic stability of the elastic beam subjected to moving load is greatly 
enhanced with the presence of the structural parameters N, K and G. 

iv. This study has also provided a very useful information on the conditions under which the vi-
brating system will experience the occurrence of undesirable phenomenon called resonance for 
both the moving distributed force and mass problems involving Bernoulli –Euler beams. 
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