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Abstract 
A new 3-node triangular hybrid displacement function Mindlin-
Reissner plate element is developed. Firstly, the modified variational 
functional of complementary energy for Mindlin-Reissner plate, 
which is eventually expressed by a so-called displacement function 
F, is proposed. Secondly, the locking-free formulae of Timoshenko’s 
beam theory are chosen as the deflection, rotation, and shear strain 
along each element boundary. Thirdly, seven fundamental analytical 
solutions of the displacement function F are selected as the trial func-
tions for the assumed resultant fields, so that the assumed resultant 
fields satisfy all governing equations in advance. Finally, the element 
stiffness matrix of the new element, denoted by HDF-P3-7β, is de-
rived from the modified principle of complementary energy. Together 
with the diagonal inertia matrix of the 3-node triangular isoparamet-
ric element, the proposed element is also successfully generalized to 
the free vibration problems. Numerical results show that the pro-
posed element exhibits overall remarkable performance in all bench-
mark problems, especially in the free vibration analyses. 
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Finite element method, Mindlin-Reissner plate element, hybrid dis-
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1 INTRODUCTION 

The Mindlin-Reissner plate theory is widely used to describe the deformation and resultant fields of 
an elastic plate subjected to transverse loads. As the rotations ψx, ψy, and deflection w are inde-
pendently defined in this theory, only C0 continuity is required for the compatible displacement fields. 
But it is found that the conventional Mindlin-Reissner plate bending elements with exact integration 
for computing the stiffness matrix will give poor results when the plate is quite thin, which is called 
as ‘shear locking’. In order to overcome the shortcoming, many effective techniques have been pro-
posed. For example, Zienkiewicz et al. (1971) proposed the reduced integration technique, and Hughes 
et al. (1977) proposed the selective reduced integration technique. As a result of using inadequate 
Gauss points, these elements often present some spurious zero energy modes, and converge pretty 
slowly. To eliminate these spurious modes, some stabilization methods were introduced, such as the 
γ-methods proposed by Belytschko et al. (1986). Besides the methods mentioned above, other ap-
proaches that can improve the performance of Mindlin-Reissner plate elements include: the ‘Assumed 
Natural Strain’ (ANS) method proposed by Hughes et al. (1981), also called ‘Substituted Strains 
Methods’, in which the transversal shear strain fields are defined independently from the approxima-
tion of kinematic variables; the mixed interpolated tensorial components (MITC) family proposed by 
Bathe et al. (1985, 1989); the discrete Kirchhoff-Mindlin (DKM) element method proposed by Katili 
(1993); the discrete shear triangle (DST) method proposed by Batoz et al. (1989, 1992); the mixed 
shear projected (MiSP) method proposed by Ayad et al. (1998, 2001); the linked interpolation method 
proposed by Taylor et al. (1993); the improved shear strain interpolation schemes derived from the 
formulae of the locking-free Timoshenko’s beam element proposed by Soh et al. (1999); the refined 
Mindlin plate elements by Chen et al. (2001); the discrete shear gap (DSG) method proposed by 
Bletzinger et al. (2000); the smoothed finite element method proposed by Nguyen-Xuan et al. (2008); 
and so on (Cen and Shang, 2015). 

Recently, based on a displacement function of Mindlin-Reissner plate introduced by Hu (1984) 
and the principle of minimum complementary energy, Cen et al. (2014) proposed a new finite element 
method called hybrid displacement function (HDF) element method. In their paper, a quadrilateral 
hybrid displacement function Mindlin-Reissner plate element HDF-P4-11β is formulated. Numerical 
examples show that this HDF element is free of shear locking, presents highly accurate results for 
both displacement and resultants with just several elements used. And what is more interesting is 
that this HDF element is insensitive to severe mesh distortion.  

In this paper, based on the aforementioned HDF element method, a 3-node, 9-DOF triangular 
Mindlin-Reissner plate element is formulated. Compared to Reference (Cen et al., 2014), a more 
rigorous but complicated description of the hybrid displacement function element method from the 
viewpoint of the principles in mechanics is given. Firstly, the modified variational functional of com-
plementary energy for Mindlin-Reissner plate is discussed, and it can be eventually expressed by the 
displacement function F. Secondly, the locking-free formulae of Timoshenko’s beam element are cho-
sen as the deflection, rotation, and shear strain along each element boundary. Thirdly, seven funda-
mental analytical solutions of the displacement function F are selected as the trial functions for the 
assumed resultant fields, so that the assumed resultant fields satisfy all governing equations in advance. 
Finally, the element stiffness matrix of the new element and the related equivalent nodal load are 
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derived from the modified principle of complementary energy. The new element is denoted by HDF-
P3-7β.  

By employing similar but more complicated variational principles for free vibration problems, 
hybrid element method can be extended into the free vibration analyses of elastic structures (Tabarrok, 
1971). But it should be noted that, even following such a complicated scheme, we cannot obtain the 
formulae of inertia matrix, and, which is more unexpected, a nonlinear eigenvalue problem has to be 
solved to give the vibration modes and frequencies. In this paper, we find that the stiffness matrix of 
the 3-node, 9-DOF triangular HDF Mindlin plate element can be used analogously as the stiffness 
matrices of the displacement-based elements. That is to say, a proper inertia matrix is found (here 
the diagonal inertia matrix of the 3-node triangular isoparametric element is a proper choice), and 
only linear eigenvalue problem for vibration modes and frequencies is solved. Thus, the proposed 
element can be successfully applied in free vibration problems following the simplified procedure, 
though no rigorous mathematical proof has been given yet. 

Numerical results for the benchmark problems show that the presented element strictly passes 
the pure bending and twisting patch tests for both thin and thick plates, avoids shear locking and 
exhibits excellent performance for both displacement, resultants, and free vibration frequencies, and 
possesses better convergence than many other similar models. 
 
2 THEORETICAL BASIS 

2.1 The Mindlin-Reissner Plate Theory 
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Figure 1: Positive directions of displacement components and resultants. 

 
As shown in Figure 1, the positive directions of displacement components and resultants are defined. 
The xoy-plane represents the middle surface of Mindlin plate, and the z-axis represents the direction 
of thickness (the thickness is denoted by h).  

In the mid-surface of Mindlin plate, the transverse deflection along z-axis is denoted by w, and 
the rotations of normal vector in xoz-plane and yoz-plane are denoted by ψx and ψy, respectively. 
Obviously, the deflection w, the rotation ψx, and the rotation ψy are all functions of x and y. And the 
displacement components at arbitrary point in the plate are given by equation (1). 
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As the deflection and rotations are independently defined, the rotations ψx and ψy are no more 
equal to the rotations of mid-surface. The transverse shear strain vector is determined by the differ-
ence of the two aforementioned kinds of rotations. 
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From the displacements given in equation (1), the strains paralleled with the xoy-plane at arbi-
trary point in Mindlin plate can be obtained: 
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where κ  is the curvature vector. And from equations (2) and (3), the strain compatibility equations 
can be derived: 
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The bending moments, twisting moment, and shear forces are denoted by Mx, My, Mxy, Tx, and 
Ty, respectively, as shown in Figure 1. And the equilibrium equations for a plate under transverse 
distributed load q are: 
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As shown in Figure 2, Mn, Ms, and Tn denote the bending moment, twisting moment, and shear 
force along boundary, respectively; ψn, ψs, and w denote the boundary rotations and deflection, re-
spectively.  
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Figure 2: Positive directions of boundary resultants and displacement components. 

 
The relations between the domain and the boundary resultants, as well as the relations between 

the domain and the boundary displacement components, are given by 
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where l and m are the direction cosines of the boundary’s outer normal.  
The constitutive equations for isotropic and linearly elastic Mindlin-Reissner plates with uniform 

thickness are: 
 

κ γ,b s= =M D T D  (8) 
 

where M, T, Db, and Ds are the bending moment vector, shear force vector, bending elasticity matrix, 
and shear elasticity matrix, respectively; 
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( )3 2/ 12 1 , 5 / 6D Eh C Ghmé ù= - =ê úë û  for rectangular sections (11)
 

in which E, G, and μ are the Young’s modulus, shear modulus, and Poisson’s ratio, respectively; and 
h is the thickness of the plate.  

Generally, the boundary conditions (BCs) are classified into four categories: 1) Fixed boundary 
(S1) condition: deflection and rotations of the boundary are given; 2) ‘Soft’ simply supported (SS1) 
condition: deflection, bending moment and twisting moment of the boundary are given; 3) ‘Hard’ 
simply supported (SS2) condition: deflection, bending moment and rotation ψs of the boundary are 
given; and 4) Free boundary (S3) condition: all the boundary resultants are given. 
 
2.2 The Modified Principle of Complementary Energy for Mindlin-Reissner Plate 

The standard complementary energy functional for Mindlin-Reissner plate is given below (Hu, 1984): 
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in which ny , sy , and w  denote the given boundary displacement components on the displacement 

boundary Su; Ω denotes the whole mid-surface region of the plate; C and R denote the elasticity 
matrix of compliances and the resultant vector, respectively; 
 

2 2

2 2
1

1
0 0 0

(1 ) (1 )
1

0 0 0
(1 ) (1 )

2
0 0 0 0

(1 )
1

0 0 0 0

1
0 0 0 0

b

s

D D

D D

D

C

C

m

m m
m

m m

m

-

é ù-ê ú
ê ú- -ê ú
ê ú-ê ú
ê ú- -ê úé ù ê úê ú = ê úê ú ê úê ú -ë û ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

D 0
C =

0 D
 (13)

 

T

x y xy x yM M M T Té ù= ê úë ûR  (14)
 

Assume that the region Ω is divided into several subregions (triangles) Te (e=1~N). And the given 
trial functions of resultants satisfy the equilibrium equations in each subregion Te. In order to make 
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use of the principle of minimum complementary energy, extra constrains should be imposed. Accord-
ing to the generalized variational principle, such extra constrains can be imposed by the so-called 
Lagrange multiplier method.  

Extra constrains include the equilibrium conditions on the common boundaries of subregions and 
the force boundary conditions on the boundary of Ω, which are expressed by: 
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where ΣSe denotes the common boundaries of subregions; the indexes 1 and 2 denote the two subre-
gions that share a common boundary; 
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where Sσ denotes the force boundary; nM , sM , and nT  represent the given boundary resultants. 
By multiplying the two constrains by corresponding Lagrange multipliers and adding them into 

the standard complementary energy functional (equation (12)), the modified functional can be ob-
tained: 
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where λ1 and λ2 are Lagrange multipliers. 
Let the variation of equation (17) be zero: 
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Here the relations (6) between domain and boundary resultants have been already considered. 
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Considering the following constitutive equation: 
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where F is an operator matrix, the area integral in equation (18) can be simplified. Integrate by parts 
for the area integral, we obtain 
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in which F is the adjoint operator of F; n is the corresponding direction matrix; and eT¶  denotes 

the boundary of the e-th subregion;  
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where l and m are still the direction cosines of boundary’s outer normal.  
Because the trial functions of resultants satisfy the equilibrium equations in each subregion, var-

iation of equations (5) yields following result: 
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Thus, equation (18) can be simplified as 
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In above equation, only curvilinear integral exists. From equation (7), and using the relation 
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equation (23) can be further simplified to be 
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Due to the arbitrariness of variation about resultants δR, it can be easily concluded that the 
Lagrange multipliers are just (boundary) displacement components on corresponding boundaries. Fi-
nally, the modified functional of complementary energy can be fully determined: 
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2.3 The Displacement Function of Mindlin-Reissner Plate 

Hu (1984) proposed the so-called displacement functions F and f for Mindlin-Reissner plates, from 
which the displacement components can be derived theoretically. 

For a plate loaded by distributed transverse force q, the displacement components are given as 
 

2, ,x y
F f F f D

w F F
x y y x C

y y
¶ ¶ ¶ ¶

= + = - = - 
¶ ¶ ¶ ¶

 (26) 

 

where D and C are bending stiffness and shear stiffness mentioned in equation (11), respectively. The 
functions F and f satisfy the following differential equations. 
 

2 2D F q  =  (27)
 

( ) 21
1 0

2
D f Cfm-  - =  (28)

 

It should be noted that equation (27) is quite similar to the governing equation of the deflection 
for thin plates under Kirchhoff’s assumption. In fact, Hu pointed out that function F even satisfies 
the same boundary conditions as the deflection of thin plates if the plate is thin enough. Function f 
represents the influence of shear deformation, and describes the phenomenon of edge effect for Mindlin 
plates. In some cases, the function f vanishes, such as simply supported polygonal plates, circular 
plates of axial symmetry and other cases in which the shear forces are statically determinate (Hu, 
1984). In this paper, only F is considered, because the influence region of f is near the boundary, and 
the contribution of f to the total energy and the displacement solutions is insignificant. Actually, in 
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higher-order elements, the influence of displacement function f must be taken into account, otherwise 
the elements may present poor results for stress and strain, even for nodes away from the boundary 
(Bao et al., 2017).  

Substitution of equation (26) into equations (2) and (3) yields 
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 (29)

 

Then, substitution of equation (29) into the constitutive equations (8) yields 
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It is emphasized that the curvatures, shear strains, and resultants derived from displacement 
function F satisfy all governing equations of Mindlin-Reissner plates. Thus, it’s quite reasonable to 
gain proper trial functions by means of displacement functions. 

Assumed that the distributed transverse force q is constant, then, the displacement function F 
can be solved. 
 

0 *F F F= +  (31)
 

in which F is expressed as the sum of the general and the particular solutions. 
Considering the symmetry between x and y axes, the particular solution can be chosen as (other 

choices such as * 2 2

8

q
F x y

D
=  have been also tested, but the following one is better.) 

 

( )* 4 4

48

q
F x y

D
= +  (32)

 

And the general solutions of F satisfy the following governing equation, 
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2 2 0 0D F  =  (33)
 

which can be easily solved in polynomial form. The first seven general solutions and corresponding 
resultants are listed in Table 1. The first order completeness of bending moments and zero order 
completeness of shear forces are guaranteed. More analytical solutions can be found in reference (Cen 
et al., 2014).  
 

i 1 2 3 4 5 6 7 
0
iDF-  x2 xy y2 x3 x2y xy2 y3 

0
xiM
 

iR  

2 0 2μ 6x 2y 2μx 6μy 
0
yiM
 2μ 0 2 6μx 2μy 2x 6y 

0
xyiM  0 1−μ 0 0 2(1−μ)x 2(1−μ)y 0 
0
xiT
 0 0 0 6 0 2 0 

0
yiT
 0 0 0 0 2 0 6 

Table 1: The first seven general solutions of F and corresponding resultants. 

 
2.4 The Locking-free Formulae of Timoshenko’s Beam 

wj

i j

ψi ψj

lij

l r=l/lij
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Figure 3: Positive directions of displacement components for Timoshenko’s beam. 

 
As shown in Figure 3, in locking-free formulae of Timoshenko’s beam (Hu, 1984), the deflection w, 
rotation ψ, and shear strain γ are assumed to be cubic, quadratic, and constant, respectively, and are 
given by 
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in which 
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Here D and C represent the beam’s bending stiffness and shear stiffness, respectively, and will be 
replaced by corresponding stiffness of Mindlin plates in the following section. 

As discussed in Section 1, the interpolation technique based on the formulae of Timoshenko’s 
beam has been successfully applied in many effective elements (Soh et al., 1999). 
 
3 FORMULAE OF THE NEW ELEMENT HDF-P3-7β 

Figure 4 shows a 9-DOF triangular plate bending element, and assume that the whole plate Ω is 
meshed into several triangles Te (e=1~N). 
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Figure 4: Nodal DOFs of the 3-node triangular hybrid displacement function element. 

 
Firstly, the assumed resultant fields can be derived from the aforementioned solutions of displace-

ment function F: 
 

* 0= +R R R  (36)
 

in which R0 denotes the general solution part, and is taken as a linear combination of the first seven 
general solutions of F listed in Table 1: 
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 (37)

 

where βi (i=1~7) are unknown resultant parameters, and Ri (i=1~7) are the resultant vectors derived 
from the first seven general solutions of F by employing equation (30), which have been given by 
Table 1; R* denotes the particular solution part, and can be derived directly from the particular 
solution of F and equation (30): 
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Thus, the assumed resultants satisfy the equilibrium equations in each subregion Te. So, the 
modified functional of complementary energy given in Section 2 can be employed. 

Secondly, the displacement components along each element boundary are chosen as the locking-
free formulae of Timoshenko’s beam theory.  

Substitution of the relations  
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into equation (34) yields 
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Then, the rotation along normal direction is assumed to be linear function. 
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These three complicated equations can be rewritten in the form of matrix: 
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where qe is the nodal displacement vector of the e-th element, and N  is the boundary displacement 
interpolation function matrix or shape function matrix. 

It is easy to see that the matrices N  on different edges are different: 
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All the non-zero components can be detailed directly from equations (40) and (41). 
Thirdly, as the assumed resultants and boundary displacement components are all given, the 

modified functional of complementary energy can be fully determined. 
Let 
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then, the modified functional of complementary energy can be simplified as: 
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in which βe denotes the resultant parameter vector of the e-th element. It should be emphasized that 
the resultant parameter vectors of different elements are independently defined, so that they can vary 
independently. 

Using the modified principle of complementary energy, the variation of modified functional (45) 
is taken to be zero:  
 

β
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in which q is the global nodal displacement vector of the plate. And above variational equations yield  
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β * ( 1 ~ )e e e N+ + = =M M Hq 0  (47)
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which gives the relation between βe and qe. It may be found that equation (48) is not so rigorous, 
and some assembling rules should be discussed. 

Equation (47) yields 
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Substitution of equation (49) into equation (48) yields 
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Above equation gives the discrete global equilibrium equation for this kind of element: 
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in which the summation notation means that some assembling rules of element equilibrium equations 
should be followed. In fact, the assembling rule is the same as what we use in traditional displacement-
based element cases, which can be easily found from equation (50). 

It should be noted that: 

1) The element stiffness matrix is just T 1-H M H ; 
 

T 1e -K = H M H (52)
 

Now it can be explained that why only the first seven general solutions of resultants are employed. 
To avoid spurious zero energy modes, the rank of single element stiffness matrix should be at least 
9−3=6, which means that at least six general solutions should be included. Completeness requirement 
tells us that seven solutions or eleven solutions are reasonable choices, but numerical results show 
that seven solutions are enough and always achieve higher accuracy. 

2) The element equivalent nodal force vector is also given in equation (51); 
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In above equation, ( T T *1--V H M M ) denotes the equivalent nodal forces of body forces, and 
the last part denotes the equivalent forces of boundary forces. 

Then, the element equilibrium equation can be written as e e e- =P K q 0 , and equation (51) is 

the assembled global equilibrium equation. It is surprising but reasonable that the equivalent forces 
of boundary forces possess the same form as displacement-based elements. 

3) The assembling rules of hybrid displacement function elements are consistent with traditional 
displacement-based elements. So it can be easily integrated into the standard framework of finite 
element programs.  
 

Boundary 
Conditions 

Pure Twisting Pure Bending 

Nodal No. Mx My Mxy Mx My Mxy 
h=0.04 

1 1.9664E-08 2.3121E-08 1.0000E+00 1.0000E+00 1.0000E+00 1.3626E-08 
2 4.9135E-07 -1.1536E-07 1.0000E+00 1.0000E+00 1.0000E+00 -3.5914E-08 
3 -9.6798E-08 2.0712E-08 1.0000E+00 1.0000E+00 1.0000E+00 4.2495E-09 
4 -4.5968E-08 -1.5839E-08 1.0000E+00 1.0000E+00 1.0000E+00 -7.9921E-08 
5 -2.5876E-07 5.5718E-08 1.0000E+00 1.0000E+00 1.0000E+00 3.6780E-08 

h=0.4 
1 -1.9714E-08 2.3066E-08 1.0000E+00 1.0000E+00 1.0000E+00 1.3630E-08 
2 4.9080E-07 -1.1592E-07 1.0000E+00 1.0000E+00 1.0000E+00 -3.5973E-08 
3 -9.6580E-08 2.0811E-08 1.0000E+00 1.0000E+00 1.0000E+00 4.2770E-09 
4 -4.5956E-08 -1.5694E-08 1.0000E+00 1.0000E+00 1.0000E+00 -7.9809E-08 
5 -2.5854E-07 5.6058E-08 1.0000E+00 1.0000E+00 1.0000E+00 3.6731E-08 

h=4 
1 -2.3707E-08 1.9313E-08 1.0000E+00 1.0000E+00 1.0000E+00 1.4086E-08 
2 4.4927E-07 -1.5838E-07 1.0000E+00 1.0000E+00 1.0000E+00 -3.8779E-08 
3 -8.0601E-08 2.8371E-08 1.0000E+00 1.0000E+00 1.0000E+00 6.2446E-09 
4 -4.4667E-08 -4.3771E-09 1.0000E+00 1.0000E+00 1.0000E+00 -7.2774E-08 
5 -2.4020E-07 8.1505E-08 1.0000E+00 1.0000E+00 1.0000E+00 3.2917E-08 

Table 2: Results for patch tests. 

 
The integrals in equation (44) are all calculated by numerical integration methods. One dimen-

sional Gauss integration and Hammer integration schemes are employed. As the integrands are pol-
ynomials, all the integrals can be calculated exactly. In this paper, four integration points are em-
ployed for both line integrals and area integrals in equation (44), and it can be sure that the results 
are all accurate. 

Following the aforementioned steps, the global nodal displacement components can be solved. 
Then, substitute the known element displacement vector qe into 
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the resultants at arbitrary point of the element can be obtained. Furthermore, the resultants at any 
nodes can be taken as the average value of different elements. 
 

BCs Thickness 2×2 4×4 8×8 16×16 Reference 

SS2 

Deflection 
h=0.001 0.9876 0.9974 0.9994 0.9999 

1.0000 
h=0.1 0.9914 0.9971 0.9991 0.9998 

Bending Moment 
h=0.001 0.9569 0.9815 0.9931 0.9975 

1.0000 
h=0.1 0.9568 0.9867 0.9962 0.9988 

S1 

Deflection 
h=0.001 0.9681 0.9915 0.9987 1.0000 

1.0000 
h=0.1 0.9970 1.0019 1.0017 1.0031 

Bending Moment 
h=0.001 1.0768 0.9937 0.9959 0.9982 

1.0000 
h=0.1 1.0191 1.0070 1.0046 1.0043 

Table 3: Normalized central deflection and bending moment results of the proposed element. 

 
Once the stiffness matrix for static analysis is derived, what we need to extend the proposed 

element into free vibration analysis of Mindlin plate is the formulae of inertia matrix. Considering 
the corresponding variational principles for free vibration problems, hybrid element method can be 
extended into the analysis of free vibration problems theoretically. But as we mentioned in Section 1, 
such scheme does not give the formulae of inertia matrix and a nonlinear eigenvalue problem has to 
be solved. 

Actually, some inertia matrices of displacement-based elements can cooperate well with the stiff-
ness matrix of the proposed element in analyzing the free vibration of plate structures. And the 
diagonal inertia matrix of the 3-node triangular isoparametric element is almost the best choice, for 
both convergence property and computational cost. Thus, though no rigorous mathematical proof has 
been given yet, the generalized eigenvalue equation is still given by 
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where ρ is the density of the plate, A is the area of the e-th element and ω is the natural frequency. 
Since the stiffness matrix and inertia matrix are symmetric, this eigenvalue problem can be solved by 
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the subspace iteration method (Bathe and Wilson, 1973), and the frontal method is also employed in 
computer coding for saving computer memory (Liu, 1989). 
 
4 NUMERICAL EXAMPLES 

Several standard numerical examples are employed in this section to test the performance of the 
proposed element HDF-P3-7. And results obtained by following models are also given for comparison. 

DKT: Triangular discrete Kirchhoff element proposed by Batoz et al. (1980). 
DKTM, RDKTM: Refined triangular Mindlin plate elements proposed by Chen et al. (2001). 
DST-BL: A compatible triangular Mindlin plate element based on the discrete shear triangle 

technique proposed by Batoz et al. (1989). 
DST-BK: An incompatible triangular Mindlin plate element based on the discrete shear triangle 

technique proposed by Batoz et al. (1992). 
 

 Mesh 2×2 4×4 8×8 16×16 Reference 

wC/wref 

HDF-P3-7β 0.9050 0.9736 0.9899 0.9941 

1.0000 

DKT 0.8045 0.9474 0.9845 0.9947 
ARS-T9 0.7964 0.9488 0.9838 0.9926 
MiSP3 0.7218 0.9314 0.9824 0.9936 

MiSP3+ 0.7823 0.9578 0.9893 0.9942 
MITC4 0.4853 0.8419 0.9515 0.9814 
DKTM - 0.9474 0.9919 - 

RDKTM - 0.9474 0.9919 - 
THS 0.9093 0.9692 0.9878 - 

My/Mref 

HDF-P3-7β 0.9305 0.9913 0.9999 1.0008 
DKT 0.9336 1.0000 1.0007 1.0009 

ARS-T9 0.9537 0.9969 1.0012 1.0012 
MiSP3 0.6954 0.9313 0.9974 0.9981 

MiSP3+ 0.7057 0.9490 0.9908 0.9992 
MITC4 0.3940 0.8036 0.9459 0.9878 

Table 4: 60° skew plate: Normalized deflection and bending moment at point C. 

 
MITC4: A quadrilateral Mindlin-Reissner plate element based on a mixed interpolation scheme 

proposed by Bathe et al. (1985). 
THS: A triangular hybrid stress element based on analytical solutions of thin plate equations 

proposed by Rezaiee-Pajand et al. (2014). 
ARS-T9: A triangular Mindlin plate element based on the improved shear strain interpolation 

derived from the locking-free Timoshenko’s beam element proposed by Soh et al. (1999). 
T3BL, T3BL(R): Triangular Mindlin plate elements based on the linked interpolation method 

proposed by Taylor and Auricchio (1993). 
MiSP3: Hybrid-mixed Mindlin plate elements based on the mixed shear projected method pro-

posed by Ayad et al. (1998). 
MiSP3+: An improved triangular hybrid-mixed Mindlin plate element proposed by Ayad et al. 

(2001). 
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NS+ES-FEM: A ‘hybrid’ smoothed element proposed by Wu et al. (2014). 
MIN3: A 3-node Mindlin plate element with improved transverse shear proposed by Tessler et al. 

(1985). 
DSG3: Mindlin plate element based on the discrete shear gap method proposed by Bletzinger et 

al. (2000). 
NS-DSG3, ES-DSG3: Two smoothed Mindlin plate elements of the smoothed FEM family pro-

posed by Liu et al. (2009a, 2009b). 
S4R, S3R: The quadrilateral and triangular shell elements assembled in the renowned commercial 

FEM software Abaqus (2009). 
 
4.1 Numerical Examples: Static Analyses 

4.1.1 Patch Tests 

As shown in Figure 5, a patch is divided by four elements. Three kinds of thickness are considered. 
Proper constrains are imposed to eliminate rigid body motions. The size and constants are also given 
in the figure. Both pure bending boundary forces and pure twisting boundary forces are tested, and 
these two cases are shown in Figure 6. 
 

E=1000.0
μ=0.3
h=0.4, 0.04, 4

1 2

3
4 5

40

20

30

15

 

Figure 5: Patch tests: Geometry and mesh type. 

 

Mx=My=0
Mxy=1 Ms=1

Ms=1

Ms=1

Ms=1 Mx=My=1
Mxy=0 Mn=1

Mn=1

Mn=1

Mn=1

 

Figure 6: Pure twisting and pure bending boundary conditions. 

Numerical results in Table 2 show that the patch tests are perfectly passed for both thin and 
moderately thick plates, so that the convergence should be guaranteed. In fact, as these two constant 
moment cases are all included in the first seven general solutions of resultants, which are the trial 
functions for the resultant fields, it is reasonable that exact solutions can be obtained. 
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 Mesh 2×2 4×4 8×8 16×16 Reference 

wO/(qL4/1000D) 

HDF-P3-7β 1.4473 1.1103 1.0348 1.0225 

1.0000 

NS+ES-FEM - 1.2049 1.0907 1.0554 
ARS-T9 1.5338 1.1096 1.0397 1.0277 
MIN3 - 0.6681 0.7600 0.8493 
DSG3 - 0.6400 0.6507 0.7718 
T3BL 1.3164 1.0316 1.0179 1.0137 

T3BL(R) 1.7939 1.1978 1.0752 1.0449 
DKT - 1.1103 1.0392 1.0270 

DKTM - 0.8750 0.8309 0.8652 
RDKTM - 1.1103 1.0392 1.0270 

THS - 1.0368 1.0000 1.0000 

Mmax/(qL2/100) 

HDF-P3-7β 1.0914 1.0727 0.9971 1.0113 
NS+ES-FEM - 1.0397 1.0397 1.0185 

ARS-T9 1.4763 1.1605 1.0382 1.0215 
MIN3 - 0.6542 0.7970 0.8855 
DSG3 - 0.6499 0.6840 0.7949 
T3BL 0.7540 0.9019 0.9910 1.0012 

T3BL(R) 0.7579 0.9528 1.0012 1.0171 

Mmin/(qL2/100) 

HDF-P3-7β 0.5742 1.0953 0.9328 1.0213 
ARS-T9 1.7886 1.3234 1.0331 1.0407 
T3BL 0.6937 0.8846 1.0097 1.0188 

T3BL(R) 0.7589 0.8931 1.0177 1.0415 

Table 5: 30° skew plate: Normalized deflection and principal bending moments at point O. 

 
4.1.2 Square Plate Loaded by Uniform Distributed Transverse Load 

x

y

o ψy=0

ψx=0

 

Figure 7: Typical mesh employed for a quarter of plate. 

 
As shown in Figure 7, due to the symmetry, only a quarter of plate is calculated. Clamped boundary 
condition and hard simply supported boundary condition are considered. The span, distributed trans-
verse force, bending stiffness, Poisson’s ratio, and thickness of the plate are denoted by L, q, D, μ, 
and h, respectively, and are given by 
 

L=1, q=1, D=1, μ=0.3, h=0.001, 0.1. 
 

The deflection and bending moment at the plate center 
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calculated by the proposed element, which are compared with the reference solutions (Taylor and 
Auricchio, 1993), are listed in Table 3. Comparisons with results obtained by other elements are 
plotted in Figure 8 and Figure 9. From these results, it can be concluded that the proposed HDF-P3-
7β element shows better convergence in most of square plate cases. 
 

 Number of Elements (N) 6 24 96 384 Reference 

wc/wref 

h=0.1 

HDF-P3-7β 1.0282 1.0074 1.0019 1.0005

1.0000 

ARS-T9 0.9502 0.9894 0.9991 0.9993
T3BL(R) 1.0599 1.0158 1.0028 0.9993

T3BL 0.9900 0.9931 0.9988 0.9997
DST-BK 0.9387 0.9850 0.9962 -
DST-BL 0.9502 0.9891 0.9974 -

DKT 0.9498 0.9886 0.9971 -
DKTM 0.7877 0.9611 0.9935 -

RDKTM 0.9502 0.9890 0.9975 -

h=1 

HDF-P3-7β 1.0233 1.0058 1.0014 1.0003
ARS-T9 0.9486 0.9879 0.9991 0.9992
T3BL(R) 1.0554 1.0150 1.0038 1.0010

T3BL 0.9895 0.9959 0.9989 0.9998
DST-BK 0.9348 0.9838 0.9965 -
DST-BL 0.9900 0.9985 1.0025 -
DKTM 0.9219 0.9827 0.9961 -

RDKTM 0.9486 0.9877 0.9970 -

Mc/Mref 

Number of Elements (N) 6 24 96 384

h=0.1 

HDF-P3-7β 1.0294 1.0086 1.0029 1.0008
ARS-T9 1.0205 1.0199 1.0077 1.0021
T3BL(R) 0.9209 0.9771 0.9933 0.9976

T3BL 0.9131 0.9757 0.9938 0.9985
DST-BK 1.0531 1.0240 1.0085 -
DST-BL 1.0201 1.0143 1.0046 -

DKT 1.0199 1.0091 1.0050 -
DKTM 0.7455 0.9831 1.0025 -

RDKTM 1.0199 1.0093 1.0052 -

h=1 

HDF-P3-7β 1.0203 1.0070 1.0030 1.0010
ARS-T9 1.0343 1.0221 1.0103 1.0032
T3BL(R) 0.9204 0.9763 0.9938 0.9985

T3BL 0.9161 0.9754 0.9937 0.9985
DST-BK 1.0221 1.0124 1.0046 -
DST-BL 1.0279 1.0182 1.0124 -
DKTM 1.0465 1.0182 1.0093 -

RDKTM 1.0290 1.0160 1.0087 -

Table 6: Soft simply supported circular plate: Normalized central deflection and bending moment. 
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4.1.3 Skew Plates Loaded by Uniform Distributed Transverse Load 

Razzaque’s 60° plate 
As shown in Figure 10, a 60° skew plate with two free and two soft simply supported edges was firstly 
used by Razzaque (1973) to test the accuracy of thin plate elements, and it has been treated as a 
classical benchmark for both thin and thick plate elements. The edge length, transverse force, thick-
ness, Young’ modulus, and Poisson’s ratio are denoted by L, q, h, E, and μ, respectively, and are 
given by 
 

L=100, q=1, h=0.1, E=10.92, μ=0.3. 
 

For the central deflection wC and bending moment My at point C, Razzaque (1973) give out the 
finite difference solutions: 
 

9 3
ref ref,0.7945 10 0.9589 10w M= ´ = ´  (57)

 

 

 

Figure 8: Hard simply supported boundary case: the plate central deflection and bending moment results. 
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Figure 9: Clamped boundary case: the plate central deflection and bending moment results. 

 

x

y

A B

C

D E

 

Figure 10: A 60° skew plate: Geometry and mesh type. 

 
Results obtained by different elements are listed in Table 4 and plotted partly in Figure 11. It 

can be easily concluded that the proposed element gives almost the best solutions for both deflection 
and bending moment. 
 

 

Figure 11: Results of Razzaque’s 60° plate. 
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Morley’s 30° plate 
As shown in Figure 12, a 30° plate with four soft simply supported edges is considered. It’s a more 
singular problem than the previous one. The earliest solution is calculated based on Kirchhoff theory 
by Morley (1963). 

The edge length, thickness, Young’s modulus, and Poisson’s ratio are denoted by L, h, E, and μ, 
respectively, and are given by 
 

L=100, h=0.1, E=10.92, μ=0.3. 
 
Then, the central deflection, maximum, and minimum bending moments at point O are evaluated. 
Morley’s results are employed as the reference solutions. 
 

( )
( )
( )

4
O

2
max

2
min

/ / 1000 0.408

/ / 100 1.910

/ / 100 1.080

w qL D

M qL

M qL

=

=

=

 (58)

 
Results of central deflection and two principal bending moments are listed in Table 5, and plotted 

in Figure 13. 
It can be seen that good convergence is achieved nearly by all the elements, but the proposed 

element provides higher accuracy for bending moments. 
 

x

y

A B

C D

O

 

Figure 12: A 30° plate: Geometry and mesh type. 

 
4.1.4 Circular Plate Under Uniform Distributed Transverse Load 

Similar to the square plate problem, a quarter of circular plate is investigated and symmetric bound-
ary conditions are imposed on corresponding edges, as shown in Figure 14.  

Soft simply supported (SS1) boundary condition is applied to the plates. For this axial symmetric 
problem, analytical solutions can be derived from the Mindlin-Reissner plate theory (Batoz and Dhatt, 
1990). The radius, uniform distributed transverse load, thickness, Young’s modulus, and Poisson’s 
ratio are denoted by R, q, h, E, and μ, respectively. 
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Figure 13: 30° skew plate: Deflection and principal bending moments at point O. 
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Figure 14: Circular plate: Geometry and mesh type. 
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The central deflection and bending moment of soft simply supported circular plates are given as 
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4 2
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(59)

 

Related parameters are set to be 
 

R=5, h=0.1, 1, E=10.92, μ=0.3. 
 

The normalized results of the deflection and the bending moment at plate center are given in 
Table 6. And corresponding data are also plotted in Figure 15. 

Furthermore, the shear force and bending moments along the radius of both thin (R/h=50) and 
thick (R/h=5) clamped plate are also compared with the analytical solutions (Batoz and Dhatt, 1990). 
These numerical results are calculated by 96 proposed elements. And all data are listed in Table 7 
and plotted in Figure 16. The analytical solutions are given as 
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From the resultant force solutions for clamped circular plate, the following deflection equation can be 
obtained: 
 

( )( ) ( )
2 2

2 2 2 21
64 64

qR qr
w R r R r

D D
f= + - - -  (61)

 

Then, the strain energy of a quarter of plate can be calculated by employing the virtual work principle, 
that is to say, the strain energy is equal to a half of the work of the distributed load. 
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In present model, the strain energy (the same as complementary energy for linear elastic material) is 
evaluated via the resultant force results given by equation (54): 
 

T1

2
h h hU d

W

= Wò R CR  (63)

 

where the index h denotes numerical solutions. 
Thus, the energy error will be calculated by (U−Uh)/U, and the energy norm error is the square 

root of (U−Uh)/U. Following these notations, the energy norm error results can be obtained and are 
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listed in Table 8. It can be simply concluded that the convergence rate is about 1 for both thin and 
moderately thick plates. 

High accuracy is achieved by the proposed element HDF-P3-7β for both central deflection and 
bending moment of the circular plate. And it is of particular interest that the resultants along the 
radius coincide perfectly with the analytical solutions. 
 

Mr 

 r 0 0.625 1.25 1.875 2.5 3.125 3.75 4.375 5 

R/h=50 Result 2.0265 1.9389 1.6944 1.2932 0.7199 −0.0066 −0.8991 −1.9727 −3.1388 

R/h=5 Result 2.0266 1.9363 1.6935 1.2951 0.7237 −0.0028 −0.8908 −1.9499 −3.1398 

 Exact 2.0313 1.9507 1.7090 1.3062 0.7422 0.0171 −0.8691 −1.9165 −3.125 

Mθ 

 r 0 0.625 1.25 1.875 2.5 3.125 3.75 4.375 5 

R/h=50 Result 2.0265 1.9806 1.8438 1.6143 1.2906 0.8760 0.3635 −0.2636 −0.9611 

R/h=5 Result 2.0266 1.9818 1.8436 1.6098 1.2854 0.8731 0.3613 −0.2476 −0.8619 

 Exact 2.0313 1.9849 1.8457 1.6138 1.2891 0.8716 0.3613 −0.2417 −0.9375 

Tr 

 r 0 0.625 1.25 1.875 2.5 3.125 3.75 4.375 5 

R/h=50 Result −0.0105 −0.3180 −0.6202 −0.9235 −1.2091 −1.5137 −1.8237 −2.1107 −2.5265 

R/h=5 Result −0.0123 −0.3104 −0.6110 −0.9096 −1.2131 −1.5172 −1.8242 −2.1357 −2.4301 

 Exact 0 −0.3125 −0.625 −0.9375 −1.25 −1.5625 −1.875 −2.1875 −2.5 

Table 7: Resultants along the radius of clamped circular plate obtained by the proposed element. 

 

 

 

Figure 15: Normalized central deflection and bending moment of the circular plate. 
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4.1.5 Rotational Frame Dependence Test 

In order to show that there is no rotational frame dependence, 30° and 60° skew plates are tested with 
the global frame rotated. Central deflection of the plate is calculated using 2×8×8 elements with the 
frame rotated counterclockwise in steps of 15°. Parameters of these plates are almost the same as the 
aforementioned ones. Taking the distributed load to be 1, deflection results are listed in Table 9.  

With the numerical error considered, it can be concluded from the above table that the solutions 
calculated by HDF-P3-7β are independent of the global frame rotation, which is because that corre-
sponding completeness of resultants is guaranteed. 
 

Number of 
Elements 

6 24 96 384 
Analytical  
Solution 

h=0.1 

Strain Energy 23113.9 29560.3 31402.9 31882.3 32046.0 
Energy norm 

error 
0.5279 0.2785 0.1417 0.0715 0.0000 

h=1 

Strain Energy 30.0292 37.5967 39.8493 40.4912 40.7235 
Energy norm 

error 
0.5125 0.2771 0.1465 0.0755 0.0000 

Table 8: The results of energy norm error for clamped circular plates. 

 
4.2 Numerical Examples: Free Vibration Analyses 

4.2.1 Free Vibration of Square Plates 

As shown in Figure 17, two plates with four hard simply supported (SSSS) edges and four fixed 
(CCCC) edges are calculated to evaluate the performance of the proposed element. The span, thick-
ness, density, Young’s modulus, and Poisson’s ratio of the plate are denoted by L, h, ρ, E, and μ, 
respectively, and are given by 
 

L=10, h=0.05, 1, ρ=8000, E=2×1011, μ=0.3. 
 

Both thin (h=0.05) and moderately thick (h=1) plates are studied and the non-dimensional fre-
quencies are calculated by  
 

1
2 4 4

=
L h

D

w r
v

æ ö÷ç ÷ç ÷ç ÷÷çè ø
 (64)

 
where D is the aforementioned bending stiffness of Mindlin plate given in equation (11).  
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60° skew plate 

h/L=0.001 
Angle/° 0 15 30 45 60 75 90 
wc/109 0.786461 0.786461 0.786461 0.786461 0.786462 0.786462 0.786461 

30° skew plate

h/L=0.001 
Angle/° 0 15 30 45 60 75 90 
wc/108 0.422175 0.422176 0.422175 0.422174 0.422173 0.422174 0.422175 

h/L=0.01 
Angle/° 0 15 30 45 60 75 90 
wc/105 0.423212 0.423212 0.423212 0.423211 0.423210 0.423211 0.423212 

Table 9: Central deflection of skew plates with frame rotated. 

 

 
1) Mr 

 
2) Mθ 

 
3) Tr 

Figure 16: Resultants along the radius of clamped circular plate obtained by the proposed element. 
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For the SSSS thin square plate, the free vibration frequencies can be derived theoretically and 
given by the following equation (Leissa, 1969). 
 

( )
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2 2
2
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D
m n

h L

p
w

r

é ù
ê ú+ê ú
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 (65)

 

where m and n are natural numbers. 
The reference solutions for CCCC thin plates are proposed by Young (1950). And in other cases, 

the reference solutions can be found in the book of Abassian et al. (1987). 
 

x

y

o      

y

o x
 

SSSS                               CCCC 

Figure 17: SSSS square plate and CCCC square plate. 

 
Normalization of the five lowest non-dimensional frequencies are listed in Table 10, Table 11, 

Table 12 and Table 13, where those results of some other elements are also given for comparison. The 
results of various elements using a mesh of 8×8×2 elements are plotted in Figure 18 and Figure 19. 

Thin square plates (h=0.05) with various boundary conditions (as shown in Figure 20) are also 
analyzed by the proposed element using a 16×16 mesh. These problems are more challenging and two 
sets of reference solutions are considered, first of which is calculated by 500×500 S4R elements in the 
commercial FEM software Abaqus (2009), while the second is suggested by Leissa (1969). The non-
dimensional frequencies are given by 
 

1

22=
h

L
D

r
v w

æ ö÷ç ÷ç ÷ç ÷è ø
 (66)

 

 

Figure 18: Non-dimensional frequency parameters of SSSS square plates. 
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Figure 19: Non-dimensional frequency parameters of CCCC square plates. 

 
Mesh Mode 1 2 3 4 5 

4×4 

HDF-P3-7β 1.0030 1.0091 1.0240 1.0147 1.0398 

NS+ES-FEM 1.0310 0.9996 1.0287 0.9327 0.8426 

S4R 1.0265 1.1323 1.1323 1.1066 1.4858 

S3R 1.5936 1.2401 2.5619 2.3850 2.7674 

MIN3 1.1346 1.2358 1.4331 1.4608 1.7325 

DSG3 1.2520 1.2548 1.6837 1.5094 1.8314 

8×8 

HDF-P3-7β 1.0006 1.0016 1.0049 1.0026 1.0099 

NS+ES-FEM 1.0105 1.0049 1.0121 1.0172 1.0013 

S4R 1.0065 1.0289 1.0289 1.0263 1.0809 

S3R 1.1121 1.0721 1.2797 1.1649 1.1865 

MIN3 1.0309 1.0541 1.0888 1.1148 1.1351 

DSG3 1.0652 1.0666 1.1706 1.1564 1.1773 

16×16 

HDF-P3-7β 1.0001 1.0002 1.0010 1.0004 1.0019 

NS+ES-FEM 1.0045 1.0023 1.0039 1.0063 1.0010 

S4R 1.0016 1.0069 1.0069 1.0064 1.0185 

S3R 1.0093 1.0147 1.0240 1.0400 1.0313 

MIN3 1.0074 1.0132 1.0207 1.0292 1.0314 

DSG3 1.0158 1.0178 1.0416 1.0537 1.0445 

32×32 

HDF-P3-7β 1.0000 0.9999 1.0001 0.9999 1.0002 

S4R 1.0003 1.0016 1.0016 1.0014 1.0043 

S3R 1.0014 1.0027 1.0038 1.0058 1.0058 

Exact Frequencies 4.4430 7.0250 7.0250 8.8860 9.9350 

Table 10: Normalized non-dimensional frequency parameters for square plates with SSSS BCs (L/h=200). 

 
Normalized results of the lowest four non-dimensional frequencies (normalized by the first set of 

reference frequencies) are listed in Table 14 and compared with the results obtained by some other 
elements. 
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Figure 20: Square plates with various boundary conditions. 

 
Mesh Mode 1 2 3 4 5 

4×4 

HDF-P3-7β 1.0012 0.9991 1.0132 1.0003 0.9890 
NS+ES-FEM 1.0143 0.9670 0.9714 0.8750 0.8055 

S4R 1.0242 1.1148 1.1148 1.0838 1.3126 
S3R 1.0972 1.1669 1.2767 1.2845 1.3543 

MIN3 1.1242 1.2467 1.3931 1.4544 1.6928 
DSG3 1.1435 1.2091 1.3993 1.3598 1.5324 

8×8 

HDF-P3-7β 0.9999 1.0012 1.0040 1.0009 1.0019 
NS+ES-FEM 1.0024 0.9947 0.9953 0.9883 0.9718 

S4R 1.0054 1.0264 1.0264 1.0223 1.0655 
S3R 1.0202 1.0393 1.0564 1.0728 1.0802 

MIN3 1.0324 1.0707 1.0914 1.1248 1.1560 
DSG3 1.0273 1.0489 1.0761 1.0930 1.1084 

16×16 

HDF-P3-7β 0.9994 1.0010 1.0016 1.0009 1.0010 
NS+ES-FEM 0.9994 0.9981 0.9987 0.9965 0.9930 

S4R 1.0007 1.0069 1.0069 1.0060 1.0157 
S3R 1.0043 1.0101 1.0142 1.0189 1.0195 

MIN3 1.0137 1.0328 1.0370 1.0529 1.0637 
DSG3 1.0056 1.0123 1.0176 1.0233 1.0256 

32×32 
HDF-P3-7β 0.9992 1.0007 1.0009 1.0006 1.0004 

S4R 0.9995 1.0022 1.0022 1.0019 1.0040 
S3R 1.0005 1.0030 1.0040 1.0052 1.0050 

Reference Frequencies 4.3700 6.7400 6.7400 8.3500 9.2200 

Table 11: Normalized non-dimensional frequency parameters for square plates with SSSS BCs (L/h=10). 

 
As shown in above numerical examples, the free frequencies of square plates obtained by the 

proposed element exhibit higher precision over other elements. And ideal solutions can be obtained 
by element HDF-P3-7 for relatively higher order frequencies with only coarse meshes. 
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4.2.2 Free Vibration of Parallelogram Plates 

As shown in Figure 21, a cantilevered 60° parallelogram plate with a fixed edge and three free edges 
is investigated. The density, Young’s modulus, and Poisson’s ratio are the same as those in previous 
square plate example, and two kinds of thickness-span ratio, thin and moderately thick cases, are 
considered: 
 

L=100, h=0.1, 20. 
 

The non-dimensional frequencies are calculated by the following equation:  
 

1
2 2
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L h
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 (67)

 

Compared with the reference solutions given by Karunasena et al. (1996) using pb-2 Ritz method, 
as presented in Table 15 and Table 16, better performance can be produced by the proposed element 
than other elements like S4R, DSG3 and MIN3. And the proposed element HDF-P3-7β possesses 
nearly the same (even better) accuracy as NS+ES-FEM. A direct comparison is plotted in Figure 22. 
 

Mesh Mode 1 2 3 4 5 

4×4 

HDF-P3-7β 1.0291 1.0545 1.0625 1.0565 1.0346 

NS+ES-FEM 1.0292 0.9473 0.9710 0.8244 0.7602 

S4R 1.0759 1.3165 1.3165 1.2463 5.0766 

S3R 3.2192 3.2547 4.6649 4.4407 4.8971 

MIN3 1.2351 1.3729 1.5641 1.5718 1.8285 

DSG3 1.4035 1.4907 1.7466 1.6586 1.8642 

8×8 

HDF-P3-7β 1.0063 1.0122 1.0129 1.0132 1.0243 

NS+ES-FEM 1.0080 1.0032 1.0114 1.0137 0.9970 

S4R 1.0167 1.0519 1.0519 1.0446 1.1268 

S3R 1.3460 1.3442 1.6246 1.4788 1.6046 

MIN3 1.0578 1.0892 1.1309 1.1635 1.1881 

DSG3 1.1195 1.1422 1.2333 1.2492 1.2665 

16×16 

HDF-P3-7β 1.0013 1.0024 1.0026 1.0025 1.0046 

NS+ES-FEM 1.0023 1.0007 1.0029 1.0042 1.0001 

S4R 1.0039 1.0118 1.0118 1.0102 1.0270 

S3R 1.0286 1.0394 1.0534 1.0875 1.0644 

MIN3 1.0138 1.0213 1.0306 1.0421 1.0431 

DSG3 1.0299 1.0359 1.0584 1.0807 1.0649 

32×32 

HDF-P3-7β 1.0001 1.0003 1.0003 1.0001 1.0006 

S4R 1.0008 1.0026 1.0026 1.0021 1.0060 

S3R 1.0032 1.0049 1.0067 1.0098 1.0093 

Reference Frequencies 5.9992 8.5680 8.5680 10.4053 11.4734 

Table 12: Normalized non-dimensional frequency parameters for square plates with CCCC BCs (L/h=200). 
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Figure 21: Cantilevered parallelogram plate and the typical mesh. 

 

 

Figure 22: Non-dimensional frequency parameters of cantilevered parallelogram plates. 

 
Mesh Mode 1 2 3 4 5 

4×4 

HDF-P3-7β 1.0195 1.0193 1.0254 1.0164 0.9736 
NS+ES-FEM 0.9932 0.9130 0.9322 0.8066 0.7540 

S4R 1.0627 1.1951 1.1951 1.1460 1.3704 
S3R 1.1812 1.2414 1.3680 1.3245 1.3783 

MIN3 1.2246 1.3692 1.5329 1.5583 1.7870 
DSG3 1.2040 1.2556 1.4067 1.3543 1.4909 

8×8 

HDF-P3-7β 1.0040 1.0061 1.0071 1.0050 1.0043 
NS+ES-FEM 0.9968 0.9857 0.9872 0.9748 0.9597 

S4R 1.0133 1.0389 1.0389 1.0310 1.0803 
S3R 1.0364 1.0534 1.0784 1.0877 1.0976 

MIN3 1.0708 1.1180 1.1479 1.1802 1.2196 
DSG3 1.0429 1.0611 1.0951 1.1039 1.1196 

16×16 

HDF-P3-7β 1.0004 1.0017 1.0019 1.0013 1.0012 
NS+ES-FEM 0.9977 0.9954 0.9961 0.9929 0.9899 

S4R 1.0023 1.0089 1.0089 1.0072 1.0181 
S3R 1.0080 1.0128 1.0187 1.0224 1.0235 

MIN3 1.0382 1.0632 1.0696 1.0870 1.1007 
DSG3 1.0090 1.0144 1.0219 1.0265 1.0281 

32×32 
HDF-P3-7β 0.9992 1.0002 1.0002 1.0000 0.9997 

S4R 0.9997 1.0019 1.0019 1.0014 1.0038 
S3R 1.0011 1.0029 1.0043 1.0053 1.0052 

Reference Frequencies 5.7100 7.8800 7.8800 9.3300 10.1300 

Table 13: Normalized non-dimensional frequency parameters for square plates with CCCC BCs (L/h=10). 
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BCs Mode 1 2 3 4 

SSSF 

HDF-P3-7β 1.0004 0.9971 1.0021 0.9994 
S4R 1.0039 1.0044 1.0181 1.0119 
S3R 1.0063 1.0204 1.0199 1.0421 

DSG3 1.0079 1.0232 1.0190 1.0422 
ES-DSG3 1.0003 1.0038 1.0061 1.0111 
NS-DSG3 0.9973 1.0006 0.9964 1.0011 
Reference 11.6801 27.7330 41.1799 59.0191 
Reference 11.68 27.76 41.20 59.07 

SFSF 

HDF-P3-7β 1.0007 0.9987 0.9914 1.0025 
S4R 1.0050 1.0032 1.0052 1.0198 
S3R 1.0042 1.0071 1.0212 1.0171 

DSG3 1.0039 1.0146 1.0274 1.0147 
ES-DSG3 1.0013 1.0004 1.0063 1.0073 
NS-DSG3 0.9992 0.9967 1.0036 0.9995 
Reference 9.6297 16.1169 36.6738 38.9315 
Reference 9.631 16.13 36.72 38.94 

CCCF 

HDF-P3-7β 1.0031 0.9994 1.0066 0.9957 
S4R 1.0104 1.0069 1.0318 1.0202 
S3R 1.0240 1.0644 1.0432 1.0831 

DSG3 1.0158 1.0454 1.0290 1.0563 
ES-DSG3 0.9995 1.0061 1.0054 1.0162 
NS-DSG3 0.9873 0.9987 0.9791 1.0065 
Reference 23.9064 39.9572 63.1736 76.6350 

CFCF 

HDF-P3-7β 1.0034 1.0022 0.9951 1.0069 
S4R 1.0125 1.0082 1.0053 1.0340 
S3R 1.0125 1.0383 1.0659 1.0314 

DSG3 1.0084 1.0304 1.0541 1.0227 
ES-DSG3 1.0006 1.0018 1.0092 1.0296 
NS-DSG3 0.9873 0.9908 1.0027 1.0290 
Reference 22.1576 26.3782 43.5274 61.1340 
Reference 22.17 26.40 43.6 61.2 

Table 14: Normalized non-dimensional frequency parameters for square plates with various BCs (L/h=200). 

 
4.2.3 Free Vibration of Circular Plates 

 

 

Figure 23: Clamped circular plate and the mesh. 
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Mesh Mode 1 2 3 4 5 

4×4 

HDF-P3-7β 0.9942 0.9590 0.8982 0.9485 0.8633 
NS+ES-FEM 1.0105 1.0599 0.8825 0.9405 0.8898 

S4R 1.0013 1.0144 1.1157 1.1181 1.1607 
S3R 1.0697 1.1515 1.1704 1.3600 1.3789 

MIN3 1.0449 1.1970 1.2493 1.5553 1.3544 
DSG3 1.0699 1.2987 1.1442 1.6714 1.2836 

8×8 

HDF-P3-7β 0.9980 0.9916 0.9756 0.9876 0.9623 
NS+ES-FEM 1.0008 1.0194 0.9666 0.9825 0.9449 

S4R 0.9987 1.0036 1.0338 1.0253 1.0410 
S3R 1.0188 1.0676 1.0676 1.1053 1.1200 

MIN3 1.0158 1.0682 1.0816 1.1528 1.1102 
DSG3 1.0361 1.1572 1.0851 1.3968 1.1608 

16×16 

HDF-P3-7β 0.9980 0.9983 0.9948 0.9965 0.9904 
NS+ES-FEM 0.9965 1.0028 0.9936 0.9907 0.9736 

S4R 0.9977 1.0004 1.0080 1.0061 1.0099 
S3R 1.0028 1.0106 1.0170 1.0162 1.0159 

MIN3 1.0033 1.0210 1.0252 1.0417 1.0312 
DSG3 1.0133 1.0670 1.0427 1.1457 1.0635 

32×32 
HDF-P3-7β 0.9977 0.9994 0.9985 0.9989 0.9973 

S4R 0.9975 0.9997 1.0014 1.0013 1.0020 
S3R 0.9987 1.0013 1.0028 1.0022 1.0021 

Reference 0.399 0.954 2.564 2.628 4.190 

Table 15: Normalized non-dimensional frequency parameters for cantilevered parallelogram plates (L/h=1000). 

 
The lowest eight frequencies of clamped circular plates with the mesh shown in Figure 23 are inves-
tigated. 393 proposed elements and 221 nodes are used to discretize the whole plate, while the com-
pared solutions given by other elements employ even finer meshes. The frequencies given by S3R use 
the same mesh as the proposed element, but the solutions of MIN3 and NS+ES-FEM employ a mesh 
of 394 elements and 222 nodes, and the solutions of DSG3, NS-DSG3 and ES-DSG3 employ a much 
finer mesh of 848 elements and 460 nodes. 

The material property parameters are remained unchanged, and the radius and thickness of the 
circular plates are: 
 

R=5, h=0.1, 1. 
 

Non-dimensional parameters of the frequencies are computed by the following equation:  
 

1

22=
h
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v w
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 (68)

 

Reference solutions of this benchmark are suggested by Leissa (1969) (for the thin plate) and Irie 
et al. (1980) (for the thick case). 

It is noticeable that the proposed element produces the most accurate solutions while employing 
the coarsest mesh, which owes to the analytical trial function method used to formulate the element. 
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And the solutions given by different elements are listed in Table 17 and Table 18 and plotted in 
Figure 24, from which a visualized comparison may be obtained.  
 

 

Figure 24: Non-dimensional frequency parameters of clamped circular plates. 

 
Mesh Mode 1 2 3 4 5 

4×4 

HDF-P3-7β 1.0016 0.9946 0.9496 0.9467 0.9148 
NS+ES-FEM 0.9992 0.9868 0.8976 0.8383 0.8217 

S4R 1.0050 1.0200 1.1055 1.0798 1.1200 
S3R 1.0379 1.0364 1.1012 1.0882 1.0734 

MIN3 1.0735 1.2464 1.3598 1.5329 1.4603 
DSG3 1.0178 1.0950 1.0678 1.3536 1.1525 

8×8 

HDF-P3-7β 1.0037 1.0045 0.9920 0.9889 0.9821 
NS+ES-FEM 1.0000 0.9863 0.9690 0.9359 0.9458 

S4R 1.0019 1.0056 1.0273 1.0212 1.0314 
S3R 1.0127 1.0129 1.0310 1.0226 1.0272 

MIN3 1.0459 1.1257 1.1894 1.1957 1.2242 
DSG3 1.0111 1.0315 1.0194 1.1054 1.0705 

16×16 

HDF-P3-7β 1.0019 1.0018 0.9988 0.9977 0.9960 
NS+ES-FEM 1.0008 0.9929 0.9899 0.9801 0.9816 

S4R 1.0003 1.0013 1.0068 1.0055 1.0079 
S3R 1.0042 1.0038 1.0086 1.0061 1.0080 

MIN3 1.0347 1.0862 1.1360 1.1095 1.1482 
DSG3 1.0053 1.0062 0.9989 1.0282 1.0209 

32×32 
HDF-P3-7β 1.0005 1.0005 0.9997 0.9996 0.9990 

S4R 0.9995 1.0002 1.0015 1.0015 1.0019 
S3R 1.0011 1.0010 1.0022 1.0017 1.0020 

Reference 0.377 0.817 1.981 2.165 3.103 

Table 16: Normalized non-dimensional frequency parameters for cantilevered parallelogram plates (L/h=5). 

 
5 CONCLUSION 

A new triangular hybrid displacement function element is formulated and evaluated in this paper. 
This element is based on the modified principle of complementary energy and the so-called displace-
ment function. With the locking-free formulae of Timoshenko’s beam employed and the assumed 
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resultants satisfying all governing equations, the proposed element HDF-P3-7β achieves high accuracy 
for both displacement components and resultants, and it is totally locking-free, which is because that 
it’s a stress-based element and the thin plate solutions are included in the selected resultant fields. 
Cooperating with the inertia matrix of 3-node triangular isoparametric element, the proposed element 
can be successfully applied in free vibration problems and give precise solutions for vibration frequency. 
This element can be also integrated into the standard framework of finite element program conven-
iently. 

This hybrid displacement function element method was firstly introduced by Cen et al. (2014). 
In this paper, a more rigorous but complicated description of the hybrid displacement function ele-
ment method from the viewpoint of the principles in mechanics is given, which gives the formulae of 
the equivalent nodal forces directly. 
 

Mode 1 2 3 4 5 6 7 8 
HDF-P3-7β 1.0023 1.0021 1.0031 1.0013 1.0031 1.0045 1.0017 1.0028

MIN3 1.0188 1.0451 1.0463 1.0822 1.0832 1.0821 1.1342 1.1380 
NS+ES-FEM 1.0053 0.9950 0.9954 0.9875 0.9879 0.9843 0.9734 0.9741 

S3R 0.9861 1.0167 1.0268 1.0513 1.0633 1.0421 1.0930 1.1009 
DSG3 1.0077 1.0184 1.0188 1.0318 1.0321 1.0356 1.0470 1.0485 

ES-DSG3 1.0024 1.0066 1.0070 1.0121 1.0128 1.0150 1.0191 1.0208 
NS-DSG3 1.0041 1.0095 1.0103 1.0167 1.0178 1.0208 1.0255 1.0275 
Reference 10.2158 21.2600 21.2600 34.8800 34.8800 39.7710 51.0400 51.0400 

Table 17: Normalized non-dimensional frequency parameters for circular plates with clamped BCs (2R/h=100). 

 
Mode 1 2 3 4 5 6 7 8 

HDF-P3-7β 1.0040 0.9996 1.0000 0.9934 0.9944 1.0023 0.9888 0.9896
MIN3 1.0788 1.1386 1.1397 1.2045 1.2049 1.2300 1.2812 1.2827 

NS+ES-FEM 1.0006 0.9893 0.9895 0.9763 0.9765 0.9852 0.9582 0.9593 
S3R 0.9847 1.0015 1.0090 1.0148 1.0236 1.0178 1.0326 1.0345 

DSG3 1.0066 1.0095 1.0099 1.0142 1.0145 1.0257 1.0226 1.0235 
ES-DSG3 1.0014 1.0002 1.0005 1.0007 1.0009 1.0101 1.0047 1.0055 
NS-DSG3 1.0042 1.0048 1.0058 1.0079 1.0088 1.0192 1.0152 1.0165 
Reference 9.2400 17.834 17.834 27.214 27.214 30.211 37.109 37.109 

Table 18: Normalized non-dimensional frequency parameters for circular plates with clamped BCs (2R/h=10). 

 
Numerical examples show that the proposed element performs well, especially for the resultants 

and free vibration frequencies. For the circular plate problem, resultants along the radius coincide 
perfectly with the corresponding analytical solutions, which is hardly satisfied by many classical dis-
placement-based Mindlin plate elements. Last but not least, this element is independent of the frame 
rotation, which is because that corresponding completeness of resultants is guaranteed.  

Although the patch tests are passed, the convergence may not be guaranteed using existed theory, 
because the proposed element is not displacement-based. A following work is the rigorous proof for 
the convergence of the hybrid displacement function element method, and is still being studied. Since 
the employment of the inertia matrices of displacement-based element has not been studied before, 
it’s also of remarkable importance.  



J-B. Huang et al. / A New Triangular Hybrid Displacement Function Element for Static and Free Vibration Analyses of Mindlin-Reissner Plate     803 

Latin American Journal of Solids and Structures 14 (2017) 765-804 

Acknowledgments 

The authors would like to acknowledge the financial supports of the National Natural Science Foun-
dation of China (Project No. 11272181), the Specialized Research Fund for the Doctoral Program of 
Higher Education of China (Project No. 20120002110080), and the Tsinghua University Initiative 
Scientific Research Program (Project No. 2014z09099). 
 
References 

Abassian, F., Hawswell, D.J., Knowles, N.C., (1987). Free vibration benchmarks, Glasgow: Department of Trade and 
Industry, National Engineering Laboratory. 

Ayad, R., Dhatt, G., Batoz, J.L., (1998). A new hybrid-mixed variational approach for Reissner-Mindlin plates. The 
MiSP model. International Journal for Numerical Methods in Engineering 42(7):1149–1179. 

Ayad, R., Rigolot, A., Talbi, N., (2001). An improved three-node hybrid-mixed element for Mindlin/Reissner plates. 
International Journal for Numerical Methods in Engineering 51(8):919–942. 

Bao, Y., Cen, S., Li, C.F., (2017). Distortion-resistant and locking-free eight-node elements effectively capturing the 
edge effects of Mindlin-Reissner plates. Engineering Computations 34(2): in press. 

Bathe, K.J. and Dvorkin, E.N., (1985). A four-node plate bending element based on Mindlin-Reissner plate theory and 
a mixed interpolation. International Journal for Numerical Methods in Engineering 21(2):367–383. 

Bathe, K.J. and Wilson, E.L., (1973). Solution methods for eigenvalues problems in Structural Mechanics. International 
Journal for Numerical Methods in Engineering 6(2):213–226. 

Bathe, K.J., Cho, S.W., Buchalem, M.L., Brezzi, F. On our MITC plate bending/shell elements, in: Analytical and 
Computational Models for shells, Noor A.K. et al., Eds., (1989) CED 3:261–278, ASME Special Publication. 

Batoz, J.L. and Dhatt, G., (1990). Modèlisation des Structures par Eléments Finis, Vol. 2: Poutres et Plaques, Editions 
Hermès, Paris. 

Batoz, J.L. and Kaliti, I., (1992). On a simple triangular Reissner/Mindlin plate element based on incompatible modes 
and discrete constrains. International Journal for Numerical Methods in Engineering 35(8):1603–1632. 

Batoz, J.L. and Lardeur, P., (1989). A disrete shear triangular nine dof element for the analysis of thick to very thin 
plates. International Journal for Numerical Methods in Engineering 28(3):533–560. 

Batoz, J.L., Bathe, K.J., Ho, L.W., (1980). A study of three-node triangular plate bending elements. International 
Journal for Numerical Methods in Engineering 15(12):1771–1812. 

Belytschko, T. and Bachrach, W.E., (1986). Efficient implementation of quadrilaterals with high coarse-mesh accuracy. 
Computer Methods in Applied Mechanics and Engineering 54(3):279–301. 

Bletzinger, K.U., Bischoff, M., Ramm, E., (2000). A unified approach for shear-locking-free triangular and rectangular 
shell finite elements. Computer & Structure 75(3):321–334. 

Cen, S. and Shang, Y., (2015). Developments of Mindlin-Reissner plate elements. Mathematical Problems in Engineer-
ing 2015:1–12. 

Cen, S., Shang, Y., Li, C.F., Li, H.G., (2014). Hybrid displacement function element method: a simple hybrid-Trefftz 
stress element method for analysis of Mindlin-Reissner plate. International Journal for Numerical Methods in engineer-
ing 98(3):203–234. 

Chen, W.J. and Cheung, Y.K., (2001). Refined 9-Dof triangular Mindlin plate elements. International Journal for 
Numerical Methods in Engineering 51(11):1259–1281. 

Dassault Systèmes Simulia Corp., (2009). Abaqus 6.9 HTML Documentation, Providence, RI. 

Hu, H.C. (1984). Variational Principle of Theory of Elasticity with Applications, Science press, Beijing. 



804     J-B. Huang et al. / A New Triangular Hybrid Displacement Function Element for Static and Free Vibration Analyses of Mindlin-Reissner Plate 

Latin American Journal of Solids and Structures 14 (2017) 765-804 

Hughes, T.J.R. and Tezduyar, T.E., (1981). Finite elements based upon Mindlin plate theory with particular reference 
to the four-node bilinear isoparametric element. Journal of Applied Mechanics 48(3):587–596. 

Hughes, T.J.R., Taylor, R.L., Kanoknukulchai, W., (1977). A simple and efficient finite element for plate bending. 
International Journal for Numerical Methods in Engineering 11(10):1529–1543. 

Irie, T., Yamada, G., Aomura, S., (1980). Natural frequencies of Mindlin circular plates. Journal of Applied Mechanics 
47(3):652–655. 

Karunasena, W., Liew, K.M., Al-Bermani, F.G.A., (1996). Natural frequencies of thick arbitrary quadrilateral plates 
using the pb-2 Ritz method. Journal of Sound and Vibration 196(4):371–385. 

Katili, I. (1993). A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed strain 
fields—Part I: an extended DKT element for thick-plate bending analysis. International Journal for Numerical Methods 
in Engineering 36(11):1859–1883. 

Leissa, A.W. (1969). Vibration of plates, OHIO STATE UNIV COLUMBUS. 

Liu, G., (1989). A method for large scale finite element dynamic analysis. Chinese Journal of Computational Mechanics 
6(1):247–251 (in Chinese). 

Liu, G.R., Nguyen-Thoi, T., Lam, K.Y., (2009b). An edge-based smoothed finite element method (ES-FEM) for static, 
free and forced vibration analyses of solids. Journal of Sound and Vibration 320(4–5):1100–1130. 

Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., Lam, K.Y., (2009a). A node-based smoothed finite element (NS-FEM) 
for upper bound solutions to solid mechanics problems. Computer & Structures 87(1–2):14–26. 

Morley, L.S.D. (1963). Skew Plates and Structures, Macmillan, New York. 

Nguyen-Xuan, H., Rabczuk, T., Bordas, S., Debongnie, J.F., (2008). A smoothed finite element method for plate 
analysis. Computer Methods in Applied Mechanics and Engineering 197(13–16):1184–1203. 

Razzaque, A. (1973). Program for triangular bending elements with derivative smoothing. International Journal for 
Numerical Methods in Engineering 6(3):333–343. 

Rezaiee-Pajand, M. and Karbon, M., (2014). Hybrid stress and analytical functions for analysis of thin plate bending. 
Latin American Journal of Solids and Structures 11(4):556–579. 

Soh, A.K., Long, Z.F., Cen, S., (1999). A new nine DOF triangular element for analysis of thick and thin plates. 
Computational Mechanics 24(5):408–417. 

Tabarrok, B. (1971). A variational principle for the dynamic analysis of continua by hybrid element method. Interna-
tional Journal of Solids and Structures 7(3):251–268. 

Taylor, R.L. and Auricchio, F., (1993). Linked interpolation for Reissner-Mindlin plate elements: Part II—a simple 
triangle. International Journal for Numerical Methods in Engineering 36(18):3057–3066. 

Tessler, A. and Hughes, T.J.R., (1985). A three-node Mindlin plate element with improved transverse shear. Computer 
Methods in Applied Mechanics and Engineering 50(1):71–101. 

Wu, F., Liu, G.R., Cheng, A.G., He, Z.C., (2014). A new hybrid smoothed FEM for static and free vibration analyses 
of Reissner-Mindlin plates. Computational Mechanics 54(3):865–890. 

Young, D. (1950). Vibration of rectangular plates by the Ritz method. Journal of Applied Mechanics-Transactions of 
the ASME 17(4):448–453. 

Zienkiewicz, O.C., Taylor, R.L., Too, J.M., (1971). Reduced integration technique in general analysis of plates and 
shells. International Journal for Numerical Methods in Engineering 3(2):275–290. 


