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Abstract 
In this study, the dynamic instability of beams under tip follower 
forces are considered. The beam is modeled by using the geometri-
cally exact, fully intrinsic beam equations which is subjected to an 
inclined tip follower force. Generalized differential quadrature 
method is employed to solve the governing equations. The effect of 
different parameters such as follower force inclination and magni-
tude, rotating speed, the distance between the beam center of grav-
ity and elastic center, and cross-sectional properties on the instabil-
ity boundary of beams are examined. Numerical results reveal that 
the critical load of the system can be influenced or in some cases be 
reversed by the combination of these parameters instead of consid-
ering these parameters separately. Moreover, it is shown that not-
withstanding the simplicity of the equations and the method of 
solution, the results are very accurate and therefore the fully intrin-
sic equations and the method of solution is very useful for the dy-
namic solution of rotating and non-rotating beams. 
 
Keywords 
Inclined Follower Force, Fully Intrinsic Equations, Generalized 
Differential Quadrature Method, Dynamic Instability. 
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1 INTRODUCTION 

The instability of structures under non-conservative forces is among the most important problems 
that many researchers have focused on it. Systems under non-conservative forces may be exposed to 
dynamic or static instabilities, but a system subjected to conservative forces may experience only 
the static instability. Follower forces are examples of non-conservative forces that maintain their 
direction in a manner that always obey the deformation curve of the beam. There are a lot of actual 
systems that can be modeled by follower forces. Among them, the aircraft wing subjected to the 
engine thrust and the cantilever pipes conveying fluids are the most important instances of systems 
that may be simulated by follower forces. One of the first studies that investigated the stability of 

Mohammadreza Amoozgar a 

Hossein Shahverdi a, * 

 
a Department of Aerospace Engineering 
and Center of Excellence in Compu-
tatinoal Aerospace Engineering, Amirka-
bir University of Technology, Tehran, 
Iran. Author email: 
m.r.amoozgar@aut.ac.ir 

 
* Corresponding author: 
h_shahverdi@aut.ac.ir 

 
http://dx.doi.org/10.1590/1679-78253010 
 
Received 19.04.2016 
Accepted 06.10.2016 
Available online 13.10.2016 



M. Amoozgar and H. Shahverdi / Dynamic Instability of Beams Under Tip Follower Forces Using Geometrically Exact, Fully Intrinsic Equations     3023 

Latin American Journal of Solids and Structures 13 (2016) 3022-3038 

structures exposed to follower forces, as mentioned by Bolotin (1963), was the work done by Niko-
lai, and after that many papers and also some books are concentrated on this topic (Bolotin (1963, 
1964), Leipholz (1978), Simitses and Hodges (2006)). In the spite of all the published works, there 
seems that very little attention has been put on the lateral-torsional stability of rotating cantilever 
beams under inclined transverse follower forces. In 1952, Beck (1952) determined the dynamic in-
stability of a cantilever column exposed to a tangential follower force. In this study, the follower 
force was a concentrated force that exactly applied at the tip of the column. Leipholz (1962) consid-
ered the stability of a cantilever column under uniformly distrusted tangential follower force approx-
imately. Como (1971) studied the stability of a cantilever beam subjected to a lateral tip follower 
force without considering the mass and inertia distribution of the beam. In this study, a concentrat-
ed mass and inertia located at the tip of the beam were included. This work has been reconsidered 
by Wohlhart (1971) by considering the mass and inertia distribution of the beam, and the effect of 
different parameters on the stability of the beam was presented. Zuo and Schreyer (1996) studied 
the dynamic and static instability of cantilevered beams as well as simply supported plates subject-
ed to non-conservative forces. The lateral stability of a beam subjected to follower forces has been 
investigated by Detinko (2002)). In this paper, it was shown that by neglecting the slight internal 
and realistic external damping, the critical load of the system will be determined inaccurately. Feldt 
and Hermann (1974) considered the bending torsional instability of cantilever beams under tip 
transverse follower forces. They presented a comprehensive study on different parameters on the 
instability boundary of the system but the obtained results were not in agree with previously pub-
lished works. The effect of shear deformation and rotary inertia on the stability of slender Euler-
Bernoulli cantilever columns subjected to follower forces has been considered by Nair et al. (2002). 
Stability determination of a rotating cantilever subjected to dissipative, aerodynamic, and trans-
verse follower forces has been investigated by Anderson (1975). In this study, the variation of criti-
cal flutter load with respect to the hub radius, the rotational speed, aerodynamic load parameters 
and the warping rigidity has been examined, but the effect of follower force inclination angle and 
the mass centroid offset from the reference line has been not determined. Hodges (2001) investigated 
the lateral-torsional flutter of a deep cantilever beam subjected to a tip lateral follower force. In this 
paper, the effect of different parameters on the critical follower force has been studied. This work 
has been continued by adding the aerodynamic loading on the beam (Hodges and Patil (2002)). 
More recently, Fazelzadeh and Kazemi-Lari (2014) and Kazemi-Lari and Fazelzadeh (2015) consid-
ered the stability analysis of a deep cantilever beam with transverse uniformly and partially distrib-
uted follower forces. They observed that the position and magnitude of the distributed load can 
influence the stability boundary of the beam. The effect of engine thrust that may be modeled by a 
transverse follower force on the aeroelastic instability of wings has been considered by Hodges and 
Patil (2002), Amoozgar et al. (2013), Fazelzadeh et al. (2009), Mardanpour et al. (2013) and 
Mardanpour et al. (2014). In all these studies, it was shown that the magnitude and position of the 
follower force influence the stability boundary of the wing. 

In all the studies mentioned above, the beam has been modeled by displacement-based beam 
theories and to the best knowledge of the authors, no one used the stress based geometrically exact 
beam theories to study the stability boundary of rotating beams under follower forces which is very 
accurate. On the contrary of the displacement-based theories, some theories are developed in which 
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neither displacement nor rotation variables appear in the related partial differential equations which 
are stress (or strain) based formulation. These theories are called fully intrinsic theories based on 
the terminology of Green and Laws (1966) and Reissner (1973) and originally developed by Heg-
emier and Nair (1977) and more recently reconsidered by Hodges (2003). In recent years, many 
researchers considered this type of beam equation to study the static and dynamic behavior of 
beams. Patil and Hodges (2006) studied the flight dynamic of a flexible flying wing configuration by 
using the fully intrinsic geometrically exact beam equations. Mardanpour and Hodges (2013) exam-
ined the effect of engine on trim and aeroelastic stability of flying wing vehicles. They showed that 
considering the gravity can influence the stability envelope of the wing. This work has been contin-
ued by considering multiple engines and time-dependent thrust effects on the aeroelastic behavior of 
flying wings. To the best of the author’s knowledge, the dynamic stability of rotating cantilever 
wings subjected to inclined follower forces by using the geometrically exact fully intrinsic beam 
equations have never been considered and the objective of the present paper is to consider this topic 
and further investigation of different parameters on the stability boundary of these beams. 

Up to now, there are a number of solution methods that are used for solving the fully intrinsic 
beam equation. They are limited to simple discretization of the equations (Sotoudeh et al. (2010) 
and Mardanpour et al. (2014)), variable order finite element method (Patil and Hodges (2011)), 
Galerkin method (Patil and Althoff (2011)), and Chebyshev collocation method (Khaneh Masjedi 
and Ovesy (2014, 2015)). All these methods are successfully applied to the fully intrinsic beam 
equations for different problems. In this paper, an alternative method of solution called Generalized 
Differential Quadrature (GDQ) method will be used to solve the fully intrinsic beam equations. This 
method is among the easiest and efficient solution methods which can be applied directly to the 
partial differential equations. The differential quadrature method was first introduced by Bellman 
and Casti (1971). In this method, the derivative of a function at a specific point is approximated as 
a weighted linear summation of the values of the function at all other sampling points along the 
domain. Shu and Richards (1992) proposed a method to overcome the DQ drawbacks by introduc-
ing the GDQ method based on the analysis of a polynomial vector space. By using the GDQ meth-
od, the first order derivatives are computed by a simple algebraic formulation without any limita-
tion on choosing the grid points. Until now, many researchers used this method for solving various 
problems containing partial differential equations in fluid flow (Shu and Richards (1992), Shu et al. 
(1995) and Shu et al. (1996)) or in structures (Bert and Malik (1996), Du et al. (1995), Du et al. 
(1996), Laura and Gutierrez (1993, 1994) and Lin et al. (1994)) and the literature is overwhelmingly 
rich, and here only a few examples are presented. Lin et al. (1994) used the GDQ method to study 
the plate deflection with nonlinear boundary supports. Marzani et al. (2008) solved the non-
conservative stability problems via GDQ method. Lal and Saini (2015) determined the vibration 
behavior of non-homogeneous orthotropic rectangular plates of bilinearly varying thickness by GDQ 
method. Also, a review on differential quadrature method and its applications in computational 
mechanics was implemented by Bert and Malik (1996). Amoozgar and Shahverdi (2016) used the 
generalized differential quadrature method for solving the geometrically exact fully intrinsic beam 
equations and showed that this numerical method is an efficient method for these type of equations. 

In this paper, the instability of beams under tip follower forces modeled by geometrically exact 
fully intrinsic beam equations is investigated by using the generalized differential quadrature meth-
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od. First, the governing equations of the system with tip follower force have been demonstrated. 
Then by introducing the method of solution to the governing equations, the beam bending and tor-
sional modes are obtained. The effect of rotating speed, the inclination angle of the follower force, 
the offset of the mass centroid from the elastic axis, the ratio of the bending and torsional frequen-
cies and some other parameters on the stability boundary of the wing are examined. It is found that 
the combination of these parameters can change the instability region of the system dramatically.  
 
2 GOVERNING EQUATIONS 

Figure 1 shows a beam with its reference coordinates in deformed and undeformed configurations 
which are denoted by b(x1), and B(x1,t), respectively. 
 

 

Figure 1: Schematic of the beam kinematics Amoozgar and Shahverdi (2016). 

 

0R  and r  are the reference line position vectors in the deformed and undeformed states, re-

spectively and u is the displacement vector.  
The nonlinear geometrically exact, fully intrinsic governing equations for the dynamics of an ini-

tially curved and twisted beam undergoing large deformations in the deformed coordinate can be 
expressed as(Hodges (2003)): 
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    
  

 (1)

 

where ( )  is the partial derivative with respect to x1, ( )  shows the partial derivative with respect 

to time. M  and F  are the internal moment and force vectors which are expressed in the matrix 
form. H  and P  are the generalized angular momentum and linear momentum vectors, Ω  and V  
are the generalized linear and angular velocity f  and m  denote the generalized strains and curva-
ture, κ  and γ  are the external moment vectors and force applied on the beam, respectively. It is 

noted that all above variables are in the matrix form and expressed in the deformed state except 
the initial curvature k wich is expressed in the undeformed configuration e1 is a vector wich its ar-
rays are as bellow: 
 

 1 1 0 0 T
e   (2)

 
The generalized strains of an isotropic beam are related to the generalized force and moment via 

the following constitutive equations as follows (Simitses and Hodges (2006)): 
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On the other hand, the generalized linear and angular velocities are related to the generalized 

linear and angular momentum through the cross-sectional inertia matrix as: 
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where ,I    and   are the cross-sectional inertia matrix, the mass per unit length, and the mass 

center offset from the beam reference axis, respectively. The cross-sectional inertia matrix and the 
mass center offset vector components are: 
 

2 3

2 23

23 3

0 0
0
0

i i

I i i

i i

 
   
  

 (5) 

 

 2 30 T
x x   (6) 

 

where i2 and i3 are the cross-sectional mass moments of inertia and i23 denotes the cross-sectional 
product of mass moment of inertia, and 2x  and 3x  are offsets from the reference line along the 

cross-section coordinates. 
By inserting Eqs. 3 and 4 in the fully intrinsic equations of motion (Eq. 1), the resultant equa-

tions can be rearranged in a manner that the primary unknown variables will be the generalize 
force, moment, linear velocity and angular velocity. There will be 12 unknown variables and there-
fore 12 boundary conditions are needed for solving the fully intrinsic equations of motion. In this 
paper, a cantilever beam with length L  is considered and the 12 boundary conditions will be: 
 

0 0 0 0( , ) , ( , ) , (0, ) , (0, ) .F L t F M L t M V t V t       (7) 
 

It is of note that, the displacements and rotations variables of the beam can be determined by 
the following relation in post-processing phase (Sotoudeh et al. (2010)): 
 

,1 ( ) ,C k C     (8) 
 

1( ) ( ).Tr u C e    (9) 
 

where u  is the displacement vector of the beam. 
 
3 NUMERICAL SOLUTION PROCEDURE  

The generalized differential quadrature method is used to solve the fully intrinsic equations. The 
main idea of this method is to evaluate the derivative of a function at a specific point as a weighted 
linear summation of all the functional values at all other points along the domain (Shu and Rich-
ards (1992)). In this method, the n-th order partial derivative of a function like f(x) with respect to 
the space variable ݔ	 can be written as: 
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where N is the number of sampling points considered in the domain and ( )n
ikW  is the weighting coef-

ficients which can be written as follows (Shu and Richards (1992)): 
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Moreover, the weighting coefficients of the second and higher order derivatives will be: 
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It is noted that the above weighting coefficients depend on the derivative order and the number 
and distribution of sampling points. In this study, the Chebyshev-Gauss-Lobatto point distribution 
as shown in Figure 2 is used (Shu (2000)): 
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where ܮ is the length of the domain (beam). 
 
 
 
 
 

 
 
 

Figure 2: Chebyshev-Gauss-Lobatto point distribution. 

 
By using the GDQ method, the primary variables of the equations of motion can be discretized 

as: 
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By substituting Eq. 16 into the equations of motion (Eq. 1), the discretized form of the differen-
tial equations will be: 
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Furthermore, the discretized form of the boundary conditions for the clamped beam is: 
 

0 0 1 0 1 0( , ) , ( , ) , ( , ) , ( , ) .N NF x t F M x t M V x t V x t       (18)
 

By rearranging the equations of motion, the resultant equations in the matrix form can be writ-
ten as: 
 

0ji i ji i jik i k j A q +B q +C q q D  (19)

 
Where, A and B are the matrixes of linear coefficients, C  is the matrix of nonlinear coefficients, D  
is the vector of external forces and moments, and q  is the vector of unknown parameters. It is of 

note that the total system of equations consists of 12N equations and unknowns.  
The Eq. 19 is a set of nonlinear equations and the solution of the system consists of two steps. 

First, the nonlinear steady-state solution of the equations must be determined, and in the second 
step, the equations must be linearized about this nonlinear steady-state solution. By dropping the 
time derivatives terms of the system the nonlinear steady-state solution of the system can be ob-
tained by using the Newton-Raphson iterations. The resulting equations can be written as: 
 

0ji i jik i k j B q +C q q D  (20)

 

where q  is the steady-state solution because of the steady-state forcing determined in D . By using 

this steady-state solution, the linearized equations of the system can be obtained which can be used 
to determine the eigenvalues of the system.  The linearized equations may be written as: 
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ˆ ˆˆ ˆ 0ji i ji i A q +B q  (21)

 
To form the above set of equations into a generalized eigenvalue problem, it is assumed that: 

 
ˆ exp( )q q t   (22)

 
where  is the eigenvalues of the system. 

By using the above equation, the resulting equation is in the form of a standard eigenvalue 
problem as: 
 

ˆ ˆ 0 A q+Bq   (23)

 
By using the Eq. 23, the eigenvalues of the linearized system can be determined. 

 
4 NUMERICAL RESULTS 

In order to check the validity of the developed code, the obtained results are compared with those 
reported in the literature. It is worth mentioning that the authors have been checked the efficiency 
of the proposed GDQ method of solution with respect to the conventional FEM method in their 
previous paper (Amoozgar and Shahverdi (2016)). For numerical usefulness, the following non-
dimensional parameters are introduced: 
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where   is the cross-sectional mass radius of gyration, S  is eigenvalues of the system, e  is the 
mass centroid offset from the reference line in the B2 direction, and 1  and 1  are same as those 

used in Hodges (2001). 
The variation of the imaginary parts of the eigenvalues of the system, versus K for e=0 and 

r=3.8 and r=2/3 are calculated and compared with those reported in literature in Figs. 3 and 4. It 
is of note that in these two plots due to the independence of the eigenvalues to σ for e=0 (Hodges 
(2001)), the value of σ is not mentioned. 

As it is clear from these figures, the obtained results are in good agreement with the results re-
ported by Hodges (2001). On the other hand the variation of the critical force for two different val-
ues of e and for 0.05   is illustrated in Figure 5. By taking a quick look, it is realized that the 
obtained results have a very good correlation with those presented in the literature. 

In the following, it is considered that the tip follower force as shown in Figure 6 has an inclina-
tion angle with respect to the deformed state of the beam denoted here as  . It is of note that 

0   and / 2   resemble pure transverse and pure tangential follower forces, respectively. 
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Figure 3: Variation of the imaginary parts of the eigenvalue versus K for r=3.8 and e=0. 

 

 

Figure 4: Variation of the imaginary parts of the eigenvalue versus K for r=2/3 and e=0. 
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Figure 5: Variation of critical load versus r for 0.05  . 

 
 

 

Figure 6: Schematic of the cantilever beam subjected to an inclined follower force. 

 
In Figure 7, the critical force of the beam under inclined follower force for three different values 

of e and for r=1.5 and 0.05  , versus the inclination angle is plotted. In this case, by increasing 
the inclination angle, the critical force of the beam increases. This trend is about the same for all 
values of e. Notice that by setting the inclination angle to / 2  , the critical force of the system 

reaches to the Beck’s column critical force (Beck (1952)) which for e=0 is obtained as Kcrit=406. 
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Figure 7: Variation of critical load versus inclination angle for r=1.5 and 0.05  . 

 
In a similar manner of Figure 7, the variation of the critical force versus inclination angle for 

three different values of r and for e=0.03 is depicted in Figure 8. It is observed that for all values of 
r, by increasing the inclination angle, the critical force increases and the manner of increase is the 
same for all values of r. 
 

 

Figure 8: Variation of critical load versus inclination angle for e=0.03 and 0.05  . 
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To examine the effect of rotating speed on the critical force of the system, the beam is consid-
ered to rotate about its third axis(B3) and simultaneously subjected to a tip follower force. Figure 9 
shows the variation of the critical force against the rotating speed of the beam for various values of 
r and for e=0.03 and 0.05  . As the rotating speed increases for r=1, the critical load of the 
beam decreases monotonically until reaching to zero, but the behavior of the system for other two 
values of r is a little different. One finds that for r=1.5 and r=2, by increasing the rotating speed, 
the critical load decreases, but the rate of reduction is variable. For example for r=2, first, the criti-
cal load reduces slowly until 3  , and from this point until 8  , the critical force decreases rap-
idly and after that again it decreases slowly.  
 

 

Figure 9: Variation of critical load versus nondimensional rotating speed for e=0.03 and 0.05  . 

 
The variation of the critical load by increasing the angular speed of the beam for two different 

values of e and for r=1.5 is calculated and plotted in Figure 10. It is concluded that the manner of 
variation of critical load versus rotating speed is surprisingly different for e=0 and e=0.03. In the 
other words, for e=0, by increasing the angular speed, the critical load increases while for e=0.03 
this trend is inverse. It is noted that the results for e<0 is not presented here because for larger 
values of rotating speed, the imaginary parts of the eigenvalues do not coalescence to each other 
and they simply veer each other as shown in Figure 11 for e=-0.03 and Ω=30.  

The effect of inclination angle on instability boundary of rotating beams for various values of 
rotating speed is demonstrated in Figure 12 for e=0, r=1.5 and 0.05  . It is found that for all 
values of rotating speed, by increasing the inclination angle, the critical load increases and this 
trend is almost the same for all values of rotating speed. 
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Figure 10: Variation of critical load versus nondimensional rotating speed for r=1.5 and 0.05  . 

 
 

 

Figure 11: Veering of the imaginary parts of the eigenvalues for e=-0.03, Ω=30 and 0.05  . 
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Figure 12: Variation of critical load versus inclination angle for r=1.5, e=0 and 0.05  . 

 
5 CONCLUSION 

In this paper, the instability of a rotating and non-rotating beam under an inclined tip follower 
force has been considered. The beam is modeled by using the geometrically exact fully intrinsic 
beam equations. The generalized differential quadrature method is used to convert the partial dif-
ferential equations to ordinary ones. The stability of the system is determined by investigation the 
eigenvalues of the linearized system about its equilibrium state. It was found that the proposed 
method of solution simulates the system accurately. Moreover, the variation of the critical load 
versus different parameters has been examined, and based on the numerical results, the critical load 
of the system can be influenced by changing the values of the follower force inclination and magni-
tude, rotating speed, distance between the beam center of gravity and elastic center, and cross-
sectional properties. Finally, it can be highlighted that the geometrically exact fully intrinsic beam 
equations are very useful for dynamic instability of rotating and non-rotating beams subjected to 
tip follower forces. 
 
References 

Amoozgar, M.R., Irani, S., Vio, G.A. (2013). Aeroelastic instability of a composite wing with a powered-engine. 
Journal of Fluids and Structures 36: 70-82.  

Amoozgar, M.R., Shahverdi, H. (2016). Analysis of nonlinear fully intrinsic equations of geometrically exact beams 
using generalized differential quadrature method. Acta Mechanica: 1-13.  

Anderson, G.L. (1975). Stability of a rotating cantilever subjected to dissipative, aerodynamic, and transverse follow-
er forces. Journal of Sound and Vibration 39: 55-76.  

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

80

90





Kcrit 

ψ(deg) 



M. Amoozgar and H. Shahverdi / Dynamic Instability of Beams Under Tip Follower Forces Using Geometrically Exact, Fully Intrinsic Equations     3037 

Latin American Journal of Solids and Structures 13 (2016) 3022-3038 

Beck, M. (1952). Die Knicklast des einseitig eingespannten, tangential gedrückten Stabes [The buckling load of the 
cantilevered, tangentially compressed rod]. Zeitschrift für angewandte Mathematik und Physik ZAMP 3: 225-228.  

Bellman, R., Casti, J. (1971). Differential quadrature and long-term integration. Journal of Mathematical Analysis 
and Applications 34: 235-238.  

Bert, C.W., Malik, M. (1996). Differential Quadrature Method in Computational Mechanics, A Review. Applied 
Mechanics Reviews 49: 1-28.  

Bolotin, V.V. (1963). Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press. 

Bolotin, V.V. (1964). The dynamic stability of elastic systems, Holden-Day.  

Como, M. (1966). Lateral buckling of a cantilever subjected to a transverse follower force. International Journal of 
Solids and Structures 2: 515-523.  

Detinko, F.M. (2002). Some phenomena for lateral flutter of beams under follower load. International Journal of 
Solids and Structures 39: 341-350.  

Du, H., Liew, K.M., Lim, M.K. (1996). Generalized Differential Quadrature Method for Buckling Analysis. Journal 
of Engineering Mechanics 122: 95-100.  

Du, H., Lim, M.K., Lin, R.M. (1994). Application of generalized differential quadrature method to structural prob-
lems. International Journal for Numerical Methods in Engineering 37: 1881-1896.  

Du, H., Lim, M.K., Lin, R.M. (1995). Application of generalized differential quadrature to vibration analysis. Journal 
of Sound and Vibration 181: 279-293.  

Fazelzadeh, S.A., Kazemi-Lari, M.A. (2014). Stability Analysis of a Deep Cantilever Beam with Laterally Distribut-
ed Follower Force. Journal of Engineering Mechanics 140: 04014074.  

Fazelzadeh, S.A., Mazidi, A., Kalantari, H. (2009). Bending-torsional flutter of wings with an attached mass subject-
ed to a follower force. Journal of Sound and Vibration 323: 148-162.  

Feldt, W.T., Herrmann, G. (1974). Bending-torsional flutter of a cantilevered wing containing a tip mass and sub-
jected to a transverse follower force. Journal of the Franklin Institute 297: 467-478.  

Green, A.E., Laws, N. (1966). A General Theory of Rods. Mechanics of Generalized Continua: 49-56. 

Hegemier, G.A., Nair, S. (1977). A nonlinear dynamical theory for heterogeneous, anisotropic, elasticrods. AIAA 
Journal 15: 8-15.  

Hodges, D.H. (2001). Lateral-torsional flutter of a deep cantilever loaded by a lateral follower force at the tip. Jour-
nal of Sound and Vibration 247: 175-183.  

Hodges, D.H. (2003). Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic 
Beams. AIAA Journal 41: 1131-1137.  

Hodges, D.H., Patil, M.J. (2002). Effect of thrust on bending-torsional flutter of wings. Journal of Aircraft 39: 371-
376.  

Kazemi-Lari, M.A., Fazelzadeh, S.A. (2015). Flexural-torsional flutter analysis of a deep cantilever beam subjected to 
a partially distributed lateral force. Acta Mechanica 226: 1379-1393. 

Khaneh Masjedi, P., Ovesy, H. (2014). Large deflection analysis of geometrically exact spatial beams under conserva-
tive and nonconservative loads using intrinsic equations. Acta Mechanica 226: 1-18. 

Khaneh Masjedi, P., Ovesy, H.R. (2015). Chebyshev collocation method for static intrinsic equations of geometrically 
exact beams. International Journal of Solids and Structures 54: 183-191. 

Lal, R., Saini, R. (2015). On the use of GDQ for vibration characteristic of non-homogeneous orthotropic rectangular 
plates of bilinearly varying thickness. Acta Mechanica 226: 1605-1620. 

Laura, P.A.A., Gutierrez, R.H. (1993). Analysis of Vibrating Timoshenko Beams Using the Method of Differential 
Quadrature. Shock and Vibration 1: 89-93. 



3038     M. Amoozgar and H. Shahverdi / Dynamic Instability of Beams Under Tip Follower Forces Using Geometrically Exact, Fully Intrinsic Equations 

Latin American Journal of Solids and Structures 13 (2016) 3022-3038 

Laura, P.A.A., Gutierrez, R.H. (1994). Analysis of Vibrating Rectangular Plates With Non-Uniform Boundary Con-
ditions By Using the Differential Quadrature Method. Journal of Sound and Vibration 173: 702-706.  

Leipholz, H. (1962). Die Knicklast des einseitig eingespannten Stabes mit gleichmässig verteilter, tangentialer Längs-
belastung [The buckling load of the cantilvered rod with uniformly distributed, tangential longitudinal stress]. 
Zeitschrift für angewandte Mathematik und Physik ZAMP 13: 581-589.  

Leipholz, H.H.E. (1978). On variational principles for non-conservative mechanical systems with follower forces. (In 
Variational Methods in the Mechanics of Solids), Pregamon Press. 

Lin, R.M., Lim, M.K., Du, H. (1994). Deflection of plates with nonlinear boundary supports using generalized differ-
ential quadrature. Computers & Structures 53: 993-999.  

Lin, R.M., Lim, M.K., Du, H. (1994). Large deflection analysis of plates under thermal loading. Computer Methods 
in Applied Mechanics and Engineering 117: 381-390.  

Mardanpour, P., Hodges, D.H., Neuhart, R., Graybeal, N. (2013). Engine Placement Effect on Nonlinear Trim and 
Stability of Flying Wing Aircraft. Journal of Aircraft 50: 1716-1725.  

Mardanpour, P., Richards, P.W., Nabipour, O., Hodges, D.H. (2014). Effect of multiple engine placement on aeroe-
lastic trim and stability of flying wing aircraft. Journal of Fluids and Structures 44: 67-86.  

Marzani, A., Tornabene, F., Viola, E. (2008). Nonconservative stability problems via generalized differential quadra-
ture method. Journal of Sound and Vibration 315: 176-196.  

Nair, R.G., Rao, G.V., Singh, G. (2002). Stability of short uniform column subjected to an intermediate force. Jour-
nal of Sound and Vibration 253: 1125-1130.  

Patil, M.J., Althoff, M. (2011). Energy-consistent, Galerkin approach for the nonlinear dynamics of beams using 
intrinsic equations. Journal of Vibration and Control 17: 1748-1758.  

Patil, M.J., Hodges, D.H. (2006). Flight Dynamics of Highly Flexible Flying Wings. Journal of Aircraft 43: 1790-
1799.  

Patil, M.J., Hodges, D.H. (2011). Variable-order finite elements for nonlinear, fully intrinsic beam equations. Journal 
of Mechanics of Materials and Structures 6: 479-493.  

Reissner, E. (1973). On one-dimensional large-displacement finite-strain beam theory. Studies in Applied Mathemat-
ics 52: 87-95.  

Shu, C. (2000). Differential Quadrature and Its Application in Engineering. Springer. 

Shu, C., Chew, Y.T., Khoo, B.C., Yeo, K.S. (1996). Solutions of three‐dimensional boundary layer equations by 
global methods of generalized differential‐integral quadrature. International Journal of Numerical Methods for Heat 
& Fluid Flow 6: 61-75.  

Shu, C., Chew, Y.T., Richards, B.E. (1995). Generalized differential and integral quadrature and their application to 
solve boundary layer equations. International Journal for Numerical Methods in Fluids 21: 723-733.  

Shu, C., Richard, B.E. (1992). Parallel simulation of incompressible viscous flows by generalized differential quadra-
ture. Computing Systems in Engineering 3: 271-281. 

Shu, C., Richards, B.E. (1992). Application of generalized differential quadrature to solve two-dimensional incom-
pressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 15: 791-798.  

Simitses, G.J., Hodges, D.H. (2006). Fundamentals of Structural Stability. Butterworth-Heinemann.  

Sotoudeh, Z., Hodges, D.H., Chang, C.S. (2010). Validation Studies for Aeroelastic Trim and Stability of Highly 
Flexible Aircraft. Journal of Aircraft 47: 1240-1247.  

Wohlhart, K. (1971). Dynamische Kippstabilitat eines Platenstreifens unter Folgelast. Zeitschrift fuer Flugwissen-
schaften 19: 291-298.  

Zuo, Q.H., Schreyer, H.L. (1996). Flutter and divergence instability of non-conservative beams and plates. Interna-
tional Journal of Solids and Structures 33: 1355-1367.  


