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Abstract 
The main goal of this article is to study the oscillatory motion of a 
spherical gas bubble immersed in a Newtonian liquid subjected to 
a harmonic pressure excitation. We use the classical Rayleigh-
Plesset equation to study the radial motion of the bubble undergo-
ing a forcing acoustic pressure field. The second order nonlinear 
ordinary differential equation that governs the bubble motion is 
solved through a robust fifth order Runge-Kutta scheme with 
adaptive time-step. Several interesting patterns are identified. 
First we develop an asymptotic solution for low amplitudes of 
excitation pressure to validate our numerical code. Then we devel-
op a bifurcation diagram in order to show how the parameters of 
the flow modify the vibrational patterns of the bubble. We also 
train a neural network to identify the vibrational pattern through 
its FFT data. The combination of neural networks with a bifurca-
tion diagram could be useful for the identification of the flow 
physical parameters in practical applications. For each pattern we 
also provide an analysis of the motion of the bubble on the phase-
space and interpret physically the system behavior with its FFT. 
In addition, we analyze nonlinear patterns using standard tools of 
dynamical systems such as Poincaré sections and calculate the 
Lyapunov exponents of the system. Based on that, we have identi-
fied topological transitions in phase plane using for instance the 
analysis of Poincaré sections and the solution in the frequency 
spectrum. We have seen that the mechanisms that dominate the 
dynamics of the oscillating bubble is the competition of the acous-
tic field excitation with surface tension forces and momentum 
diffusion by the action of the surrounding fluid viscosity. 
 
Keywords 
Bubble dynamics, nonlinear dynamics, neural networks, acoustic 
forcing, phase space, motion transition, spherical bubble, radial 
motion. 
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1 INTRODUCTION 

The classical equation describing the oscillatory motion of a spherical bubble subjected to a har-
monic acoustic excitation field is known as Rayleigh-Plesset equation (Rayleight, 1917). This highly 
nonlinear ODE can be modified or extended to study several phenomena in the context of bubble 
dynamics. For decades, engineers and scientists have productively employed single-degree-of-
freedom models to understand and explore the behavior of violently collapsing bubbles (Leighton, 
1994; Young, 1989; Brenner et al., 2002). These studies have been applied in many areas such as: 
sonochemistry, bioengineering, cavitation erosion, underwater explosions and sonoluminescence 
(Geers et al., 2012). 

The shape of the bubble can vary from spherical to nearly polyhedral, forming a complex geo-
metrical structure insensitive to details of the liquid composition or the average bubble size (Gopal 
et al., 1995). However, when a small bubble is subjected to a small oscillating amplitude, we can 
assume that its shape remains spherical. This assumption is valid even in highly nonlinear situa-
tions. A bubble immersed in a non-Newtonian fluid, such as a viscoelastic polymeric solution 
(Street, 1968; Fogler, 1969; Albernaz and Cunha, 2011; Albernaz and Cunha, 2013) and even a 
magnetic fluid (Cunha et al. 2002; Malvar et al. 2016) may have several degrees of freedom, pre-
senting very nonlinear oscillations.  

This nonlinearity is related to a more complex control of the bubble’s oscillation. When used in 
biomedical applications, such as contrast in ultrasonography (Chang et al., 1999), it is necessary to 
understand how the bubble is oscillating. In this case microbubbles are injected into the body and 
take part in image contrast. The ultrasound pulses are applied with the bubbles' resonance frequen-
cy. The bubbles respond to pulses increasing and decreasing their radius, generating echoes in their 
neighborhoods. The difference between these echoes and those shown by tissues generates a con-
trast. Furthermore, bubbles may be used to transport drugs (Marmottant, 2004), another example 
in which the control of its degrees of freedom may be very important. 

Considering the relevance of understanding a bubble´s oscillating patterns and identifying them 
in order to control its motion, a nonlinear tool such as neural networks can be used. In practical 
applications, the identification of these parameters can become somewhat difficult due to the non-
linearity of the equation that controls the oscillatory regime of the bubble. However, it is a simple 
problem of pattern identification. Recent works (Sor, 2012; Schem, 2012, Behnia et al., 2013) have 
analyzed the nonlinear motion of a spherical bubble from a nonlinear dynamical system perspective, 
but none of them have used neural networks in order to identify some of its nonlinear patterns of 
motion.  

The physical and mathematical theory of neural networks have been developed rapidly during 
the past 25 years. It is a theory whose diversity and complexity reflects the multifaceted organiza-
tion of the brain in processes that it sets out to explain and identify (Grossberg, 1988). A multilayer 
neural network can be used in order to identify defects on metal beams and other dynamic systems 
(Genovese, 2001). The vibrational parameters of the beam and its response in the frequency domain 
are used to determine the involvement thereof.  

In the last 25 years, multilayer perceptrons (MLPs) have been massively used in the area of 
pattern recognition (Gori, 1998). The experimental results have been impressive in some applica-
tions where we know in advance that the patterns belong to a small number of classes. In those 
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cases, because of their strong discrimination capabilities, MLPs exhibit excellent performance (Wai-
bel, 1989; Lecun 1989). 

Considering the microbubble dynamic parameters, such as the system non-dimensional num-
bers, several vibrational patterns may be identified. Those patterns are classified and recognized by 
the neural network in order to predict the bubble's oscillatory motion considering its known param-
eters and vice versa.  

It is important to highlight that recent works have explored the unsteady motion of an oscillat-
ing bubble immersed in complex fluids. For instance, Cunha et al. (2002) explored the motion of a 
spherical bubble immersed in a magnetic fluid. They have used a constant applied magnetic field 
and found out that magnetic effects may lead to a stabilization of the bubble´s motion. In other 
recent works, Albernaz and Cunha (2013) and Cunha and Albernaz (2013) have explored the radial 
motion of an oscillating bubble in a viscoelastic fluid. They investigated the effects of the fluid’s 
elasticity on the radial motion of the bubble. In a recent work (submitted for publication) Malvar et 
al. (2016) have improved the model used by Cunha et al. (2002) in order to include spatial varia-
tions of the applied field in the framework of an oscillating bubble immersed in a magnetic fluid. It 
is important to highlight that in all of these works the physics was interpreted purely by phase 
space diagrams and time signal response analysis. In none of them the authors have used the set of 
tools proposed in the present work, to explore the complexity of the nonlinear time series that de-
scribes the radial motion of the bubble. In this sense, the present work may serve as an inspiration, 
in terms of a methodological approach, to future works exploring problems in the framework of 
bubble dynamics in complex fluids, since we use a larger set of tools to physically explain the behav-
ior of our complex system. 

In the present study, we use a sinusoidal excitation with variable amplitude and frequency as 
the pressure forcing field. The main goal is to identify the non-dimensional parameters and excita-
tions that generate different vibrational modes, characterizing the system. Those vibrational pat-
terns are used as a training input in a multilayer backpropagation neural network in order to identi-
fy them from the flow system non-dimensional physical parameters. This is a first step towards the 
understanding of the nonlinear response of the bubble from a dynamical system perspective. 

From our knowledge this work seems to be a first step towards understanding and controlling 
the nonlinear response of bubbles in oscillatory motions from a dynamical system point of view. We 
identify topological transitions in phase plane using for instance the analysis of Poincaré sections 
and the solution in the Fourier space. 

When identifying the history of bubble patterns and oscillations, the present analysis can be 
used to predict the collapse time and also to control the set of dynamic parameters that could avoid 
it. The presence of microbubbles enormously enhances delivery of genetic material, proteins and 
smaller chemical agents. Delivery of genetic material is greatly enhanced by ultrasound in the pres-
ence of microbubbles (Pitts, 2004). In this particular case, after characterizing the vibrational pat-
tern of the bubble nonlinear oscillations, new investigations and studies could be performed in order 
to extract the full details of the bubble dynamic´s response. Moreover, determining which vibra-
tional pattern one desires, the ultrasound may be adjusted likewise. In this context, using neural 
networks to identify cavitation vibrational modes seems to be a quite effective process. 
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2 MATHEMATICAL MODELLING 

2.1 Rayleigh-Plesset Equation 

The study of the dynamic oscillatory movement of a bubble presented in this work is based on the 
analysis of its radial motion when immersed in an incompressible fluid subjected to a harmonic exci-
tation pressure field. The main governing equations used in the mathematical modeling of the prob-
lem are based on the principles of mass conservation and linear momentum balance. An appropriate 
constitutive model to represent the traction jump (i.e. boundary condition for the stresses) on the 
bubble surface is also used. The velocities are continuous on the surface. 

Consider a spherical bubble immersed in a Newtonian incompressible fluid of viscosity μ, and 
density ρ. The inner side of the bubble is composed by a mixture of air and contaminant gases 
(which develop a polytrophic process) and steam. We assume that the bubble develops only radial 
motion due to its surface tension that resists to other non-radial deformational modes, simplifying 
our analysis to an unidimensional motion, maintaining its spherical shape. This assumption is valid 
for small excitation amplitudes or for small bubbles. Therefore, effects like pressure gradients in the 
liquid or surfactants in the fluid are neglected. Changes in the vapor temperature may modify its 
density modifying the bubble dynamics (Sog, 1996). However, for a small equilibrium vapor density 
the isothermal process is valid (Brujan, 1999). 

The mass conservation equation for a compressible fluid is given by Batchelor (1967) 
 

( ) 0,
t

r
r

¶
+  ⋅ =

¶
u  (1) 

 

in which ρ is the fluid density, t represents time and u is the Eulerian velocity field on the liquid 
side. In this model spherical coordinates are used. The velocity components in the directions θ and φ 
are zero. Now, the mass conservation equation in spherical coordinates for the case of an incom-
pressible fluid reduces to 
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where r represents the physical distance of the center of the bubble to an arbitrary point inside the 
liquid phase, ur is the radial component of the velocity field. Integrating equation (2) from the sur-

face of the bubble of radius R(t) to an arbitrary point in the liquid (distance ), after some algebraic 
manipulation, we have 
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The equation that expresses the balance of linear momentum is given by Batchelor (1967) 
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where Σ = –pI + 2μD is the stress tensor for a Newtonian incompressible fluid, written in terms of the 

pressure field p, the identity tensor I and the rate of strain tensor D = 1

2
 Considering .[T(u׏) + u׏]

the radial component of Navier-Stokes equation in spherical coordinates, equation (4) reduces to 
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Integrating the resulting equation in the flow field (the region between the surface of the bubble 
and the infinite quiescent liquid) after some algebraic manipulation, we have 
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Where p∞ is the ambient pressure and pℓ denotes the pressure on the liquid phase at the bubble 

surface. As the bubble is considered in the present context a clean curved interface between two 
immiscible fluids, there is a normal stress discontinuity in the interface due to its surface tension. 
This jump of normal stresses is given by Young-Laplace equation: 
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where s  represents the surface tension coefficient, S ,rr  and S ,rr b  denote the radial component of 

the traction ( ⋅n̂ s ) at the liquid phase and inside the bubble phase, respectively. The pressure in-
side the bubble is given by pb(t) = pv + pg(t) where pv is the liquid vapor pressure given by the 

Classius-Clapeyron relation and pg(t) refers to the pressure of the gas, assumed as perfect and sub-

jected to a polytropic process: pgV
n = constant, where n is the polytropic coefficient, that will be 

considered unitary in this work, representing an isothermal process. The value of the polytropic 
index provides important information regarding the thermodynamic processes. Considering an equi-
librium pressure that corresponds to the bubble condition when its radius is ER  (an equilibrium 

radius), we may assume that the internal pressure is given by 
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Assuming that in the equilibrium condition the bubble radius is ER , the pressure discontinuity 

in the interface assumes the form given bellow, base don the Young-Laplace condition: 
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where bp represents the internal pressure of equilibrium and p¥  represents the static pressure of 

equilibrium applied by the fluid in the initial time. Substituting equation (9) in ( )b g vp t p p= +  , one 

reaches: 
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Thus, returning the term gp to its orinal form, and defining S ,rr b  = – pb(t) we have 
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The fluid velocity field induced by the bubble oscillations are given by equation (3). Hence, 
S ,rr  results in 
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Substituting equations (11) and (12) in (7) we obtain 
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where ¥D =  – vp p p . The forcing acoustic pressure field imposed on the bubble is taken as being 

¥p (t) = p¥ [1 + ε sin(ωt)], where ε represents the pressure amplitude and ω is the forcing pressure 

frequency. Now, substituting equation (13) in (6) the Rayleigh-Plesset equation is written as 
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2.2 Non-Dimensional Formulation 

We shall make use of non-dimensional variables indicated by asterisks, namely 
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Typical scales of velocity and time are represented by 
 

1/2
| |

, ,Ec c
c

Rp
U t

Ur

æ öD ÷ç ÷= =ç ÷ç ÷çè ø


 (16)

 

respectively. The excitation amplitude may also be written as ε* = ε( ¥D /p p ). Using these typical 

scales we can write the non-dimensional form of Rayleigh-Plesset equation (14) as being: 
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here, Re = ρUcRE/μ corresponds to the Reynolds number which measures the relative importance 

between inertial and viscous forces and We = ρUc
2RE/ s  is the Weber number, which denotes the 

ratio of inertial and surface tension forces. From now on, all the variables will be presented in their 
nondimensional form and the upper asterisks will be suppressed in order to use a lighter and clear 
mathematical notation. 

Equation (14) represents a classical equation in the framework of bubble dynamics. In practical 
applications involving cavitating bubbles the identification of these parameters and their dynamic 
control in nonlinear bubble oscillatory motion is a quite important feature for understanding and 
controlling the instability and cavitation in such a nonlinear system. 
 
2.3 Neural Networks 

As mentioned before, the main goal of this work is to show that it is possible to conceive, design 
and train a Neural Network used for pattern identification purposes in the specific dynamical prob-
lem of an oscillating micro bubble immersed in a Newtonian liquid. Multilayer neural networks are 
usually composed of an input layer, a hidden layer and an output layer. Those layers can be formed 
by activation functions and different training methods. Based on the network's input and random 
initial conditions, a transfer function is then used to calculate the output layer (Kang, 1996). The 
output yk of the kth neuron of the Network is given by 
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n

k kj j
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where yk is the output of the neural network, wkj determines the weights given for each entry, xj is 

the number of inputs and ϕ is the transfer function used. In the present work the output of the 
network yk is the number of the pattern found by the network, the input xj is the information used 

in order to train the network. In the present work this information is composed by the amplitude 
and part of the frequency spectrum around the first harmonic. A sketch of the scheme used to train 
the network is shown in figure (1).  

There are several different training methods available in the current literature (e.g. Sanaga 
2006). In the present work the Levenberg-Marquardt (LM) backpropagation method (Chlouverakis, 
2005) is explored. The Levenberg-Marquardt method seeks to minimize a nonlinear function. In this 
case the error in the pattern identification process is defined as 
 

,j j j= -,o ,o ,oe d n  (19)

 
where ∊φ,o is the error in identifying a given pattern φ for a given output o of the network, dφ,o is 

the desired value of the pattern φ that the network should identify in the output o and nφ,o is the 

current output that the network provides for a known pattern φ in a current output o. 
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Figure 1: Schematic of a typical Neural Network explored in the present work. 

 
The idea of the Levenberg-Marquardt method is to minimize this error ∊φ,o for different pat-

terns φ in different outputs o of the network. In this sense the network must adjust its weights wkj 

for each input and each known pattern during the training period in order to maximize its chances 
of predicting the correct pattern. Basically the Levenberg-Marquardt algorithm uses the Jacobian 
matrix containing the first derivatives of the Network errors with respect to its weights and biases, 
given by 
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where n is the number of weights used for each neuron of the network. The minimization of the 
error in the identification of each pattern is done through the following equation 
 

( )-⋅ ⋅= - +
1

,   aT
k+1 k k k k kw w J J I J e  (21)

 

where α is called the combination coefficient. Depending on the value of α the LM algorithm 
switches between the steepest descent and the Gauss-Newton algorithms during the training pro-
cess. The use of the Jacobian matrix is simpler to compute in comparison with the Hessian matrix 
in minimization methods such as the Newton algorithm. In this direction, the Levenberg-Marquardt 
algorithm is characterized by a fast convergence rate in comparison to other algorithms used to 
minimize nonlinear functions. 

The nonlinearity of the bubble’s oscillatory motion may generate not only pure harmonics, but 
also some spectral spreading. This phenomenon can be identified in the frequency spectrum of the 
signal R(t). The amplitude of the first harmonic and its spreading can be used to diagnose the non-
linearity degree and the involved vibrational modes in the coupled motion of the bubble and the 
surrounding liquid. We will show that this dynamical system has spectra with broad bands, similar 
to chaotic systems rather than isolated peaks. In this context a training set of 23 different simula-
tions containing 7 identified patterns is inserted into the neural network. The validation group also 
possesses the same amount of information, but in this case, the neural network should identify the 
pattern from the frequency signature. Seven tests are conducted with different random initial condi-
tions of the neural network weights. Each test improves the weights and the identification becomes 
more effective, displaying a very good percentage of correct answers in the sample.  

The training of a neural network is a slow process, in particular because it requires the use of 
different random weights in its initial conditions. On the other hand, its application is rapid and 
simple once it is trained in order to perform a specific task. The current literature recommends that 
the number of epochs, neurons and training algorithm is an important factor for the choice of the 
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network weights (Sanaga, 2006). More details on the implementation, training and performance of 
the Neural Network will be given in subsequent sections. 
 
3 NUMERICAL METHODOLOGY 

Due to the nonlinearity of the governing differential equation we do not have an analytical solution 
for arbitrary input parameters. In this sense we must recur to the use of a numerical algorithm to 
integrate the governing equation of the bubble-liquid dynamical system. In this work we use a 
Runge-Kutta scheme (RKS). Our RKS algorithm uses the advanced predictor-corrector algorithm, 
which uses weighted averages of a function f calculated at the extremes and at intermediate points 
of several time intervals [tj, tj+1] (Malvar, Gontijo and Cunha, 2016). 

The nonlinearity of our dynamical system requires a careful calibration of the numerical time-
step. For the most unstable regions where the radius of the bubble presents a rapid variation in 
time, the time step must be very small. On the other hand, when the bubble’s oscillatory motion is 
harmonic, the computational cost may be unnecessarily increased by using small time steps. In or-
der to solve this numerical issue, an adaptive time scheme is incorporated to the dynamic simula-
tions. Here we use the adaptive time step method scheme first proposed by Fehlberg (Press et al., 
1992) that uses the difference between two R predictions. The first prediction of R using a fifth 
order scheme and the second prediction of R by means of a fourth order scheme. In this way we 
have a good prediction of the truncation error by dynamically adjusting the numerical time step. 
The formula written in terms of kn constants for each time step is given by Cash et al. (1990): 
 

1 1 3 4 5 6

2825 18575 13525 277 1
.

27648 48384 55296 14336 4n ny y k k k k k+ = + + + + +  (22)

 

The recurrence formula of a fourth order RKS is given by: 
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with the associated error given by 
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In bubble dynamics studies it is useful to establish a minimum radius Rmin, associated with a 

collapse criterion, to stop the simulation. In order to evaluate the minimum radius at the eminence 
of the collapse, an asymptotic theory (Albernaz and Cunha, 2013) is used as criteria to stop our 
simulations. In this asymptotic theory the most adverse flow condition is considered, that is Re →	
∞, and a constant ambient pressure p∞(t) = p  that compresses the bubble. Under this condition we 

can solve the Rayleigh-Plesset equation using the integrating factor method. The asymptotic expres-
sion for Rmin results in 
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where Rmin is the minimum radius, Ro is the initial radius and We is the Weber number. 

It should be noted that the collapse in the present context is defined as an abrupt release of 
pressure that occurs outside the spectrum of continuum mechanics time scales. This sudden expan-
sion occurs after significant rapid shape deformations. During these extremely small time intervals 
the bubble cannot be considered as an isotropic sphere. It is important to say that we are not fo-
cused in exploring bubble collapse in the present work. Instead, we are interested to explore the 
vibrational patterns associated with the nonlinear motion of a spherical bubble and to identifying 
them through the use of Neural Networks. 
 
3.1 Numerical Tools 

In this work we have used a series of numerical tools. The code that computes the motion of the 
bubble was written in Fortran95 for Linux platforms. For the post-processing of the numerical re-
sults, the Softwares Matlab and Tecplot have been used. The full analysis of the neural network is 
done by the neural networks toolbox of Matlab, which is based on the FFT responses acquired by a 
Scilab computational script. The neural network is based on the Levenberg-Marquardt method. We 
also used the gradient descent method, which allows us to recalculate the delta function based on 
the weights updated using the decrease of the error and determining the minimum value of the error 
function (Kazemi et al., 2012). The training method used, trainoss (i.e. one step secant backpropa-
gation), is a more efficient version of the Levenberg-Marquardt algorithm and has allowed calcula-
tions requiring a smaller computational cost with better accuracy. For computing the Lyapunov 
exponents of the system we have also used a Matlab Lyapunov Exponents Toolbox (Matlab LET 
code [Siu, 1998]). 
 
3.2 Code Validation 

In order to validate our numerical code, an asymptotic solution for ε ≪ 1 is proposed. For this pur-
pose, a regular asymptotic expansion method is proposed (Hinch, 1991). Specifically, a regular dis-
turbance parametric method was used. In order to develop the asymptotic solution for the nonlinear 
governing equation (13) in the limit ε ≪ 1, a convenient change of variable is proposed so that R = 
(1 + r). The disturbances r around an equilibrium radius R = 1 are assumed to have the form r(t) 
= εy1(t) + ε2 y2(t) + ࣩ(ε3), here we truncate the regular expansion for terms ࣩ(ε3). After this expan-

sion we obtain the following system of two linear differential equations ࣩ(ε) and ࣩ(ε2) governing the 
quasi-nonlinear dynamic system. 
 

1 1 1( ) ( ) ( ) ( ),y t y t y t sin tg k w+ + = -   (26)
 

and 
 

2 2 2
2 1 1 1 2 1 1 1 2 2 1

3
( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( )) ( ) ( ) 0.

2
y t y t y t y t y t y t y t y t y t y t y ta b g l h+ + - - - - + - =      (27)

 

Note that equations (26) and (27) are both second order ordinary differential equations. The 
constants that appear in (26) and (27) are given by 
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Figure 2 shows a comparison between the ࣩ(ε) and ࣩ(ε2) asymptotic solutions with the numeri-
cal solution (RKS). It is seen that in the limit ε → 0 the asymptotic solutions are exact solutions of 
the problem. 

The insert of figure 2 shows the behavior of each solution for the interval 0 ൑ ε ൑ 0.2. The error 
between the ࣩ(ε2) and the numerical solution exceeds 1% for ε ≅ 1 . In addition, the results pre-
sented in figure 2 serve as a validation of the proposed algorithm. Therefore, in the next sections we 
use the developed code in order to explore other regimes that cannot be captured by our asymptotic 
solution 
 

 

Figure 2: Comparison between the asymptotic solutions ࣩ(ε) (filled line), ࣩ(ε2)  

(dashed line) and the numerical RKS (filled black circles) for the maximum bubble  

radius during its oscillatory motion as a function of the forcing pressure amplitude ε. 

 
4 RESULTS 

In this section we present different vibrational patterns of the nonlinear motion of the bubble that 
have been organized in seven possible patterns observed within the range of parameters Re = 
[0,100], ε = [0,1] for constant values of We = 6, n = 1 and ω = 1. In previous works (Malvar, 2014), 
it has been proved by a collapse diagram in which Reynolds and Weber numbers were taken into 
account, that the bubble is more sensitive to Reynolds number when considering collapse and insta-
bility. Physically, the increased of the Reynolds number means that more inertia is present in the 
system when compared to viscous forces. The Weber number, related to interfacial tension, repre-
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sents the restoring forces acting on the bubble trying to bring its behavior to an equilibrium point. 
It is easy to realize that for small excitation amplitudes, the bubble presents a harmonic oscillation. 
However, for a fixed Reynolds number, when  is increased, the bubble movement responds in a 
nonlinear fashion even though a harmonic pressure field is applied. This sequence of bifurcations is 
completely controlled by Re and ε. It is interesting to note that the change of the applied pressure 
field frequency is related to the system response. However, this change is also coupled with the iner-
tial effects. In the present context, we do not intend to characterize all possible vibrational modes of 
the nonlinear bubble oscillatory motion, as done in previous works (Malvar, 2014). Our goal is the 
conception, design and training of a neural network in order to be applied as a tool for identifying 
patterns and nonlinear responses in the specific flow problem of an oscillating bubble in a Newtoni-
an fluid. This step is quite necessary to extend the approach for investigating bubbles in complex 
fluids such as non-Newtonian fluids and magnetic suspensions. For this end we propose the classifi-
cation of different vibrational modes into seven identified patterns based on the time response of the 
system, on the frequency spectrum and on the phase plane diagram. Each pattern is examined and 
discussed in details. A bifurcation diagram is also presented as a function of the parameters Re and 
ε. A bifurcation diagram in these dynamical system analysis is useful in order to identify the oscil-
lating pattern for a given pair of Re and ε. The concept of Poincaré sections and Lyapunov expo-
nents commonly used for analyzing nonlinear responses of dynamical systems is also applied to the 
investigated bubble system. Actually with these tools, we investigate if a chaotic characteristic is 
presented in the bubble nonlinear motion. Next, a neural network is designed and trained based on 
information regarding the first harmonic on the frequency response of the bubble motion. 
 
4.1 Different Patterns of Response 

Four of the seven identified patterns are shown in figure 3. This figure shows a typical bifurcation 
diagram for a fixed Weber number. In this diagram we may see how a combination of Reynolds 
number and excitation amplitude leads to the emergence of different vibrational patterns. We have 
omitted patterns 5, 6 and 7 to avoid visual pollution in the image. Based on the distortions of the 
bubble response on the phase diagrams, the vibrational modes of the bubble system are identified in 
seven different patterns. 1) periodic with mild distortion in the lower peak; 2) periodic with moder-
ate distortion in the lower peak; 3) periodic with mild distortion; 4) periodic with moderate distor-
tion; 5) without harmonic distortion; 6) non-harmonic and non-periodic; 7) non-harmonic and non-
periodic type 2. Here we have proposed that the concept of distortion should be based on a pattern 
deformation coefficient.  

So we define this coefficient as the ratio between the two coexisting peaks shown in figure 4. 
This ratio determines the degree of distortion in the time response. While values bellow a unit cor-
respond to a slight distortion, a null value means that the answer is harmonic and values greater 
than the unit represent a moderate signal distortion by our definition. The simulations all assume a 
polytrophic coefficient n = 1, a forcing pressure frequency ω = 1 and the Weber number set as We 
= 6. The input parameters that we have varied in order to produce these vibrational patterns are 
the Reynolds number and the amplitude of excitation. We have decided to adopt this methodology 
because they are the most relevant physical nondimensional parameters of the problem. The Reyn-
olds number expresses a relation between a diffusive and a convective time scale. Here the term 
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diffusive refers to the diffusion of linear momentum by the fluid’s viscosity, while the convective 
time scale is related to a period of excitation. In this sense, the Reynolds number relates relevant 
time scales of our dynamical system. The amplitude of excitation was varied in order to increase the 
degree of nonlinearity of the system. Since we have developed an asymptotic solution for small am-
plitudes, we decided to explore higher values of ε to study some cases that cannot be solved analyti-
cally. 

Figure 4 indicates that under the simulated conditions if Re < 5, the bubble response corre-
sponds always to the harmonic pattern 1 regardless of the pressure forcing amplitude. It is also in-
teresting to note that with ε ~ 1 all patterns tend to a harmonic configuration at low Re. So, we 
identify a critical Reynolds number for which the bubble motion seems to be always harmonic even 
for ε ~ 1. Now, the stability of the bubble motion is analyzed by examining the phase plane (where 
g represents R ), frequency and time responses of the seven identified patterns. 
 

 

Figure 3: Bifurcation diagram. Parameter Re as a function of the pressure forcing amplitude ε, for We = 6. 

 
Figure 5 shows that the phase space for pattern 1 approaches to a stable, periodic and harmonic 

response. In this case, the bubble response is represented by a figure similar to a circle in the phase 
diagram, despite a slight distortion in the second quadrant as a direct consequence of the velocity 
variations on the lower peak for smaller radius. The limit cycle, is also seen as a closed orbit, repre-
senting in the phase space a periodic trajectory with a finite and well defined period. In this case, 
we have an attracting limit cycle. The bubble response on the frequency domain shows that most 
part of the energy is located in frequencies around ω = 1. This implies a signal (or time series) pret-
ty close to a harmonic response. A second harmonic is presented due to the small deformation in 
the lower peak of the time response signal. 
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Figure 4: Identification of a typical time series (R versus t) of the bubble response. 

 
In pattern 2, the shape anisotropy of the phase diagram is more significant due to higher distor-

tions. A sudden change in speed not only increases the amplitude of the frequency response in the 
Fourier space, but produces a third harmonic to the system. On the other hand, the phase diagram  
distortion is not enough to produce an inner limit cycle. In pattern 2, shown in figure 6, the distor-
tion on the phase space suggests the deviation from the harmonic response. This deviation is associ-
ated with a higher contribution of inertial forces on the liquid. As shown in figure 3 for a given val-
ue of ε, say ε = 0.1, the transition from pattern 1 to pattern 2 occurs for Re = 10 so for Re < 10 
the bubble response is represented by pattern 1, while for Re > 10 the bubble responds according to 
pattern 2. 
 

Figure 5: Pattern 1 characterized by a time series of R(t) (a), (b) phase plane and (c) Power spectrum given by  

FFT of the output. The parameters used are 5, 6, 1, 1Re We n w= = = = and 0.1e = . 

 
The presence of a slight distortion on the time response (pattern 2) allows us to infer about the 

existence of different harmonics with different energetic levels. Pattern 2 is characterized by differ-
ent states with nonlinear characteristics but still having one period. In contrast pattern 3 is seen 
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clearly to have a time-series with double-periods that represents a more nonlinear motion of the 
bubble in comparison to the harmonic one of pattern 1. At higher Reynolds number, even for ε ~ 
0.1, we can see a quite nonlinear response of the bubble motion tending to present a continuous 
spectrum of vibrational degrees of freedom or periods. In this sense, we may state that the oscillat-
ing motion of the bubble may be highly nonlinear, even when it is immersed in a Newtonian liquid. 
We can see similar speed changes on patterns 3 and 4, figures 7 and 8. 
 

Figure 6: Pattern 2 characterized by a time series of R(t) (a), (b) phase plane and (c) Power spectrum given by  

FFT of the output. The parameters used are 12, 6, 1, 1Re We n w= = = = and 0.3e = . 

 
However, the change in position of pattern 4 is much more expressive, also increasing the ampli-

tude of the fourth harmonic. In particular, the moderate distortion provides a new limit cycle, 
smaller than the main one. Thus, it is observed that the common generated distortion transforms 
the stable cycle and attenuates abrupt velocity variations of the bubble surface. In other words, we 
can say that large accelerations of the bubble surface induce internal extra cycles with different 
periods. The size of the main limit cycle is proportional to acceleration’s variations. 
 

Figure 7: Pattern 3 characterized by a time series of R(t) (a), (b) phase plane and (c) Power spectrum given by  

FFT of the output. The parameters used are 20, 6, 1, 1Re We n w= = = = and 0.3e = . 

 
The third pattern, shown in figure 7, does not present a distortion over the valley in the time 

response. The phase space becomes more symmetric, showing that the velocity changes of patterns 
3 and 4 are quite similar. However, there is an expressive change in position in pattern 4, which 
increases the amplitude of the fourth harmonic. 
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Figure 8: Pattern 4 characterized by a time series of R(t) (a), (b) phase plane and (c) Power spectrum given by  

FFT of the output. The parameters used are 4, 6, 1, 1Re We n w= = = = and 0.5e = . 

 
Patterns 5 and 6 are shown in figures 9 and 10. It is observed that these patterns can be divided 

into two categories. Pattern 5 presents a harmonic behavior without distortion. Pattern 6 is not 
harmonic and non-periodic. Pattern 5 has a tendency of stability in the phase space and only two 
harmonics in the frequency response. The first harmonic contains almost all the energy of the sys-
tem. On the other hand, pattern 6 shows a damping effect on the bubble time response and a con-
tinuous decrease in its energetic level in the phase diagram. We speculate that this energy loss is 
associated with an energy exchange between the bubble and the surrounding liquid. This damping 
effect presented by pattern 6 occurs due to the diffusion of linear momentum by the action of the 
fluid’s viscosity. For a certain range of Reynolds number, the times the surrounding liquid takes to 
diffuse the energy of the oscillating bubble is much smaller than a period of oscillation. When this 
phenomenon occurs, the energy related to the oscillating motion of the bubble is quickly dissipated 
by the surrounding liquid’s viscosity. 
 
 

 

Figure 9: Pattern 5 characterized by a time series of R(t) (a), (b) phase plane and (c) Power spectrum given by  

FFT of the output. The parameters used are 10, 6, 1, 1Re We n w= = = = and 0.1e = . 

 
During this bubble-liquid interaction the viscosity of the liquid works as a damper, decreasing 

the overall energy of the oscillating bubble. In the time response, we note that in each oscillation, 
the distortion parameter changes, inducing different vibrational responses. 
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Figure 10: Pattern 6 characterized by a time series of R(t) (a), (b) phase plane and (c) Power spectrum given by  

FFT of the output. The parameters used are 60, 6, 1, 1Re We n w= = = = and 0.3e = . 

 
Finally, pattern 7, shown in figure 11, presents a low distortion of the peak and a weak aperio-

dicity. This anisotropic behavior in the shape of the phase diagram is observed, which may be in-
terpreted as a superposition of several degrees of freedom or energy levels. This system is highly 
nonlinear, showing a different frequency spectrum and phase space according to the variation of the 
nondimensional parameters. This indicates that in the studies of dynamic systems stability, control-
ling the physical parameters of the problem is as important as the oscillation amplitude or even the 
type of external forcing. Viscous and restoring forces in relation to inertia forces are as important on 
the dynamics of the system as its forcing field. 
 
 

Figure 11: Pattern 7 characterized by a time series of R(t) (a), (b) phase plane and (c) Power spectrum given by  

FFT of the output. The parameters used are 30, 6, 1, 1Re We n w= = = = and 0.1e = . 

 
4.2 Poincaré Sections and Lyapunov Exponents 

Another interesting approach used to explore the behavior of our nonlinear system is the Poincaré 
section of the phase plane. For instance, the construction of the Poincaré map (section) is extremely 
useful in order to convert the study of the flow in the vicinity of a closed orbit. Roughly speaking, 
the Poincaré map corresponds to the process of periodically strobing a phase portrait. In particular, 
we can see from figure 12 that different parameters can lead to an attractor if the collapse criterion 
is turned off.  
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Figure 12: Poincaré section for different patterns. (a) the phase plane and the Poincaré section of  

an harmonic pattern with low Reynolds and Weber numbers. The transient response is represented  

by the dashed line. (b) a nonlinear pattern obtained with high Reynolds number and excitation  

amplitude when the collapse criteria is turned off. Those different parameters leads to an attractor. 

 
However, the results indicate that even a bubble describing nonlinear oscillations its motion will 

not bifurcate for a chaotic motion if it is immersed in a linear liquid. This type of response is seen 
even under a high Re and We numbers condition. We might argue, however, that for a chaotic con-
figuration to appear, the bubble should develop oscillations with a period in the same time scale of a 
complex nonlinear liquid such as a viscoelastic and magnetic fluid (Cunha et al., 2002; Albernaz and 
Cunha, 2013). In another words, the motion of the bubble should be coupled with the mechanism of 
structure relaxation (e.g. macromolecules and chains present on these liquids). As the relaxation 
time of a Newtonian linear liquid is zero compared with any period of the bubble oscillation, the 
effect of the liquid is related with dissipation and inertia. These mechanisms are not sufficient to 
produce a chaotic route. These findings have currently motivated us to examine in full details the 
bubble dynamics in a magnetic anisotropic suspension (Malvar, Gontijo and Cunha, 2016). Actual-
ly, in practical application the bubble would collapse before its motion displays a chaotic motion. In 
order to produce the attractor shown in figure 12 the collapse criteria suggested in Albernaz and 
Cunha (2013) based on an asymptotic critical radius of collapse was turned off in this specific simu-
lation. 

Now, we continue examining the nonlinear response of the bubble dynamics through the con-
cept of Lyapunov exponents of this system. This study allows to observe the sensitivity of the bub-
ble system to initial conditions and also the divergence and convergence rates of nearby trajectories 
in the phase space. In other words, the Lyapunov exponents (LE) herein called  are a measure of 
the exponential separation (eλ) of the neighboring trajectories over all points of a trajectory around 
an attractor. For stable cycles λ < 0 and neighboring trajectories converge, whereas λ > 0 corre-
sponds to a chaotic attractor. In terms of the Kolmogorov entropy (entropic metric) the LE may be 
interpreted as a measure of the disorder in the bubble motion response due to the acoustic forcing 
pressure and its nonlinear interaction with the surrounding liquid. The Lyapunov exponents are also 
considered to be a dynamic measure of the complexity of delays and may be used for the characteri-
zation of chaos and bifurcations. These are standard consequences of a dynamical system with a 
high degree of nonlinearity and instabilities as can be seen in the unsteady oscillatory motion of a 
bubble in a complex liquid. LE are found in the present work by numerical computations. It can 



S. Malvar et al. / Pattern Identification on the Nonlinear Radial Motion of an Oscillating Spherical Bubble Using Neural Networks     2483 

Latin American Journal of Solids and Structures 13 (2016) 2464-2489 

only be evaluated analytically in some simple cases. Most of them without practical importance in 
the scenery of nonlinear dynamic systems. 

We shall now explore the behavior of Lyapunov exponents for an equivalent autonomous sys-
tem representing the nonlinear motion of the bubble. Since we are considering the radial motion of a 
non-deformable bubble in a three dimensional quiescent liquid in the absence of any rotational mo-
tion, we have a dynamical system with three translational degrees of freedom. In this sense we can 
use equation (14) in order to express the primary system as being an autonomous system. In this 
particular case, in which the bubble is immersed in a Newtonian liquid, Rayleigh-Plesset equation 
can be just written as an equivalent autonomous system as 
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The Jacobian of the system of nonlinear ordinary differential equations given in (29) is ex-
pressed by equation (30). Considering different values of Re, We, ε and the initial conditions it is 
possible to test whether the bubble presents a chaotic behavior or not. For this purpose, we have 
used the Matlab Lyapunov Exponents Toolbox (Siu, 1998). The output can present different behav-
iors which are characterized as periodic cycles or stable equilibrium, nonlinear chaos and pure ran-
dom processes. In the Jacobian approach, the Jacobians are usually found by locally linear mapping 
in the neighborhoods near the reference trajectory to neighborhoods at a subsequent time (Ataei et 
al., 2003). Along with the Lyapunov exponents, the Lyapunov dimension is also given for each time 
step. This dimension, also known as Kaplan-York dimension can be defined as the fractal dimension 
in which a cluster of initial conditions will neither expand nor contract as it evolves in time (Chlou-
verakis et al., 2005). The rate of expansion is the sum of the Lyapunov exponents, and this sum will 
necessarily be negative for an attractor, for instance, 
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Figures 13 and 14 show that even though the bubble response in a Newtonian fluid is highly 
nonlinear, the formal requirements for reaching chaotic configurations of the bubble oscillations are 
not satisfied. 

Actually all Lyapunov exponents are negatives and the Lyapunov dimensions of both systems 
are null. The Lyapunov dimension is zero when the system is a first order one-dimensional system, 
such as it occurs in the logistic map or when all the Lyapunov exponents are negative (or zero). All 
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the tests were conducted with no collapse criteria. Under this condition, we can argue that none of 
the combination of parameters physically accepted would lead to a chaotic motion. 
 

 

Figure 13: (a) Lyapunov exponents for the bubble dynamic system, (b) phase space and  

(c) Poincaré section for Re = 150, We = 2, ε = 0.8 and ω = 8. 

 

 

Figure 14: (a) Lyapunov exponents for the bubble dynamic system, (b) phase space and  

(c) Poincaré section for Re = 200, We = 200, ε = 1.5 and ω = 15. 
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4.3 Neural Network Training Data from the Bubble Dynamical System 

In this part of our dynamic analysis a neural network is designed for identifying the vibrational 
patterns of the nonlinear motion of the bubble through its FFT response. Previously, we know that 
the bubble motion is stable. The set of parameter ranges for these tests are Re = [0,100], ε = [0,1] 
under a condition of constant ω = 1, n = 1 and We = 6. More precisely the input data on the net-
work consists on the frequency f spectrum ranging from 0.2 ൑ f ൑ 1.5. This band in the frequency 
spectrum includes information regarding the amplitude of the first harmonic together with the spec-
tral spreading behavior on its vicinities.  

The trained network uses a set of 36 input matrices called Patterns. Each one with 15 different 
pairs of information concerning a set of points that accounts for the spectral spreading around fre-
quencies in the interval 0.2 ൑ f ൑ 1.5. The system uses 1000 epochs with a linear transfer function 
on the first layer of the network and a logarithmic transfer function on the second layer. The first 
layer is built with 30 neurons and the second with a single neuron. Each training set has an output, 
called target, referring to its vibrational pattern. The validation set is not used for training. In this 
sense we test the performance of the network by providing an input with information never seen 
before during its training. In order to validate the performance of the network and its ability in 
identifying the vibrational patterns of the bubble nonlinear dynamic we have carried out seven 
tests. In each test the network uses a different set of weights in its initial condition. For a given 
input data containing 15 points of the FFT signal in the interval 0.2 ൑ f ൑ 1.5, the output of the 
network is a real number. This real number corresponds to the pattern the network is supposed to 
identify. Figure 15 shows the plots of the network performance for identifying the particular pat-
terns. 
 
 

 

Figure 15: (a) Network output as a function of the patterns considering seven tests with  

different initial weights for each neuron. The symbols represent the Network output for  

different tests. (b) Average values of the Network output for seven different tests, denoted by  

the filled black circles. In both plots the full line represents the desired output for each pattern. 
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Figure 15a shows the output for seven different tests for a given input containing all the possi-
ble patterns. The symbols denote the output of the network for different tests. The continuous line 
would be the expected answer of the network. Since the network uses different initial conditions its 
output changes for each test. In order to demonstrate the ability of the network in identifying the 
patterns we might perform an ensemble average over all validation tests. The result of this ensem-
ble average is presented in figure 15b. Here, the expression Network output denotes a real number 
identified by the trained network that represents the guessed vibrational pattern. Since we are deal-
ing with a nonlinear continuous ODE, in each test the Neural Network may think that a pattern 
could display some intermediary features of more than a single pattern. In this sense, different tests 
(with different initial conditions for the Network’s neurons) may obtain different responses, as 
shown in figure 15a. It is seen that the resulting network is able to identify the correct pattern for 
all the defined patterns within the range of the physical parameters explored in this work. This 
result indicates that the network has the ability of reading a new set of data that it had never seen 
before and predict what pattern is responsible for that specific data. The tests point out that using 
a simple statistical analysis (by considering an ensemble average of 7 tests) the confidence of the 
network ability for recognizing the vibrational patterns is of 100%. 

Identifying the pattern supports us for understanding the nonlinear bubble motion and the in-
fluence of the physical parameters on the vibrational modes of the oscillating bubble. Using the 
collapse diagram available from our previous work (Malvar, Gontijo and Cunha, 2014), we can 
identify the full range of Reynolds and Weber numbers that leads to the bubble collapse. As a 
promising application the control of a cavitating bubble by monitoring the bubble collapse time 
could be done by using neural networks. 
 
5 CONCLUSIONS 

The dynamic behavior of a single gas bubble immersed in a Newtonian liquid in the presence of an 
acoustic pressure forcing was successfully explored and identified with a neural network. The main 
conclusions are: 

 The numerical simulations performed in this work have idendetified several anisotropic 
shapes in the phase diagram and different modes in the frequency response of the nonlinear 
bubble oscillatory motion.  

 The existence of several vibrational modes has shown a rich dynamical behavior of the bub-
ble-liquid dynamic system explored here. Surprisingly, for bubble nonlinear dynamics in a 
Newtonian fluid, a chaotic configuration is never reached.  

 Attractors resulting from the nonlinear motion in the phase plane in the absence of bubble 
collapse was largely examined. This analysis was performed by using both Lyapunov expo-
nents as well as Poincaré section methods. The Lyapunov exponents were always negative 
under all conditions simulated.  

 A fractal dimension was not identified in this nonlinear system of bubble dynamics in a New-
tonian liquid. However, the lack of a purely chaotic behavior contributes to the stability of 
the neural network. 



S. Malvar et al. / Pattern Identification on the Nonlinear Radial Motion of an Oscillating Spherical Bubble Using Neural Networks     2487 

Latin American Journal of Solids and Structures 13 (2016) 2464-2489 

 By determining the network parameters, the vibrational patterns were identified and related 
as being a function of the relevant non-dimensional physical parameters governing the bubble 
motion dynamics. The present study has successfully shown a rate of 100% guesses of the 
network in identifying the vibrational pattern of the bubbleresponse system by using numeri-
cal data which did not belong to the training set.  

 The present work certainly can be considered a first step towards understanding and control-
ling the nonlinear response of bubbles in oscillatory motions from a dynamical system point 
of view. Topological transitions in phase plane using of Poincaré sections and the solution in 
the Fourier space have been identified. We can argue that a chaotic behavior related to a 
strange attractor could evolve if the bubble is immersed in a complex fluid like a viscoelastic 
liquid or a magnetic suspension. In this case a drastic change in the bubble oscillations may 
be possible since a typical period of the bubble oscilations occurs in the same time scale of the 
particle relaxation time of the ambient liquid. In a future work we plan to continue investi-
gating bubble dynamics in complex fluids using the new approach presented here by incorpo-
rating the larger set of dynamical system tools explored successfully in this work. 
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