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Abstract

In this research work, an exact analytical solution for frequency
characteristics of the free vibration of rotating functionally graded
material (FGM) truncated conical shells reinforced by eccentric
FGM stringers and rings has been investigated by the displace-
ment function method. Material properties of shell and stiffeners
are assumed to be graded in the thickness direction according to a
simple power law distribution. The change of spacing between
stringers is considered. Using the Donnell shell theory, Leckhnisky
smeared stiffeners technique and taking into account the influ-
ences of centrifugal force and Coriolis acceleration the governing
equations are derived. For stiffened FGM conical shells, it is diffi-
cult that free vibration equations are a couple set of three variable
coefficient partial differential equations. By suitable transfor-
mations and applying Galerkin method, this difficulty is overcome
in the paper. The sixth order polynomial equation for w is ob-
tained and it is used to analyze the frequency characteristics of
rotating ES-FGM conical shells. Effects of stiffener, geometrics
parameters, cone angle, vibration modes and rotating speed on
frequency characteristics of the shell forward and backward wave
are discussed in detail. The present approach proves to be reliable
and accurate by comparing with published results available in the
literature.
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Revolution shell structures involving functionally graded material (FGM) conical shells potentially

have wide application in many modern industry fields such as aerospace, airplane, missile, booster
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and other aerospace vehicles (Koizumi M. 1993, Shen HS. 2009). Therefore, the free vibration of
rotating truncated conical shells is one of interesting and important problems and has received con-
siderable attention of researchers.

For unstiffened conical shells, much significant results are obtained. Chandrasekharan and
Ramamurti (1981 and 1982) studied axisymmetric and asymmetric free vibrations of laminated
conical shells using the Rayleigh-Ritz procedure. Shu (1996) presented an efficient approach for
analyzing the free vibration of conical shells. The same author (1996) investigated the free vibration
of composite laminated conical shells by generalized differential quadrature. By using the Galerkin
and harmonic balance methods, Xu et al. (1996) studied the nonlinear free vibration of a symmetri-
cally laminated, cross-ply, geometrically perfect thick conical shell with its two ends both clamped
and both simply supported. Lam and Hua (1997 and 1999) analyzed the vibration and influences of
boundary conditions on the frequency characteristics of rotating truncated circular conical shells.
Following this direction, the frequency analysis of rotating truncated circular orthotropic conical
shells with different boundary conditions was studied by Hua (2000). That same author (2000),
based on the Love first approximation theory and Galerkin procedure, and taking into account the
influences of centrifugal and Coriolis accelerations, investigated frequency characteristics of a rotat-
ing truncated circular layered conical shell. With the improved generalized differential quadrature
method, Lam et al. (2002) analyzed free vibration characteristics of truncated conical panels. Using
the classical thin shell theory and the element-Free kp-Ritz method, Liew et al. (2005) investigated
the free vibration of thin conical shells. Civalek (2006) proposed the discrete singular convolution
method for analyzing the free vibration of rotating conical shells in which a regularized Shannon’s
delta kernel is selected as the singular convolution to illustrate his algorithm. Sofiyev et al. (2010),
by using the Donnell shell theory and Galerkin method, presented an analytical procedure to study
the free vibration and stability of homogeneous and non-homogeneous orthotropic truncated and
complete conical shells with clamped edges under external pressure.

For unstiffened FGM conical shells, there are many available results. Tornabene (2009) and
Tornabene et al. (2009), based on the first order shear deformation theory and 2-D differential
quadrature solution, studied the free vibration analysis of functionally graded conical, cylindrical
and annular plates structures using 2-D differential quadrature solution. Sofiyev (2009) analyzed the
vibration and stability behavior of freely supported FGM conical shells subjected to external pres-
sure by Galerkin method. The same author (2012) analyzed the nonlinear vibration of FGM trun-
cated conical shells by analytical approach. For unstiffened FGM conical panels, Bich et al. (2012)
investigated by analytical method the linear mechanical buckling of that structure using the classi-
cal shell theory and Galerkin method. The investigation on the linear buckling of truncated hybrid
FGM conical shells with piezoelectric layers subjected to combined action of thermal and electrical
loads was reported by Torabi et al. (2013). Based on the First order shear deformation theory
(FSDT), Malekzadeh and Heydarpour (2013) studied effects of centrifugal and Coriolis, of geomet-
rical and material parameters on the free vibration behavior of rotating FGM un-stiffened truncated
conical shells subjected to different boundary conditions.

As can be seen the above introduced results only relate to unstiffened structures. However,
in practice, plates and shells including conical shells usually are reinforced by stiffeners system
to provide the benefit of added load carrying capability with a relatively small additional
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weight. Thus, the study on dynamic behavior of those structures is significant practical prob-
lem.

For stiffened isotropic or orthotropic conical shells, Weingarten (1965) studied the free vibra-
tion of a ring-stiffened simply supported conical shell by considering an equivalent orthotropic
shell and using Galerkin method. Applying the energy approach, Crenwelge and Muster (1969)
investigated the resonant frequencies of simply supported ring-stiffened, and ring and stringer-
stiffened conical shells. Rao and Reddy (1981) studied the minimum weight design of axially
loaded simply supported stiffened conical shells with natural frequency constraints. The influ-
ence of placing the stiffeners inside as well as outside the conical shell on the optimum design is
considered. The expressions for the critical axial buckling load and natural frequency of vibra-
tion of conical shell also are obtained. By applying structural symmetry techniques, Mustaffa
and Ali (1987) investigated free vibration characteristics of stiffened cylindrical and conical
shells. Srinivasan and Krishnan (1989), using the integral equation for the space domain and
mode superposition for the time domain, obtained the results on the dynamic response analysis
of stiffened conical shell panels in which the effect of eccentricity is taken into account. Me-
citoglu (1996) studied the vibration characteristics of stiffened truncated conical shells based on
the Donnell-Mushtari thin shell theory, the stiffeners smeared technique and the collocation
method. The problem on the free vibration of rotating composite conical shells with stringer and
ring stiffeners was solved by Talebitooti et al. (2010).

For stiffened FGM shells, Najafizadeh et al. (2009) with the linearized stability equations in
terms of displacements studied buckling of FGM cylindrical shell reinforced by rings and stringers
under axial compression. The stiffeners and skin, in their work, are assumed to be made of function-
ally graded materials and its properties vary continuously through the thickness direction. Follow-
ing this direction, Dung and Hoa (2015) obtained the results on the static nonlinear buckling and
post-buckling analysis of eccentrically stiffened FGM circular cylindrical shells under torsional loads
in thermal environment. The material properties of shell and stiffeners are assumed to be contin-
uously graded in the thickness direction. Galerkin method was used to obtain closed-form ex-
pressions to determine critical buckling loads. Dung et al. (2014) investigated the static buckling
of FGM conical shells reinforced by FGM stiffeners under axial compressive load and external pres-
sure by analytical method. The change of distance between stringers is considered in that work.
By considering homogenous stiffeners, Bich et al. (2013) obtained the results on the nonlinear
static and dynamic analysis of eccentrically stiffened FGM cylindrical shells and doubly curved
thin shallow shells based on the classical shell theory. The governing equations of motion were
derived by using the smeared stiffeners technique and the classical shell theory with von Kar-
man geometrical nonlinearity. The nonlinear critical dynamic buckling load is found according
to the Budiansky-Roth criterion. Dung et al. (2013) studied a mechanical buckling of eccentrically
stiffened functionally graded (ES-FGM) thin truncated conical shells subjected to axial compressive
load and uniform external pressure load based on the smeared stiffeners technique and the classi-
cal shell theory and considering homogenous stiffeners. Dung and Nam (2014) solved the problem
on the nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical
thin shells under external pressure and surrounded by an elastic medium. The nonlinear critical
dynamic buckling load is found according to the Budiansky-Roth criterion.
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From the review of the literature, as can be seen the free vibration of rotating FGM truncated
conical shell reinforced by eccentric stiffener system and taking into account the influences of cen-
trifugal force and Coriolis acceleration still is not investigated. The aim of this paper is to investi-
gate just mentioned problem. We focus on three new contributions as: FGM truncated conical shells
are reinforced by FGM stringers and rings; A change of spacing between stringer stiffeners is con-
sidered; A centrifugal force and Coriolis acceleration are taken into account. The governing equa-
tions are derived using Donnell shells theory and smeared stiffeners technique. For stiffened FGM
conical shells, it is difficult that these equations are a couple set of three variable coefficient partial
differential equations, while for stiffened cylindrical shells those governing equations only are a cou-
ple set of constant coefficient partial differential equations. This difficulty is overcome in the paper.
The sixth order polynomial equation for frequency w is obtained by applying Galerkin method.
Numerical simulations are been done to show effects of geometrics parameters, vibration modes and
rotating speed, reinforcement stiffener on frequency characteristics of the shell. The present results
are validated by comparing with those in the literature.

2 MATERIAL PROPERTIES OF SHELL AND STIFFENERS

Consider a thin circular truncated conical shell with the semi-vertex angle @, thickness h, length L
and small base radius ras shown in Fig. 1. The curvilinear coordinate system is defined as

(:L“, 0, z), where the origin is located in the middle surface of the shell, z is in the generatrix direc-
tion measured from the vertex of shell, @ is in the circumferential direction and the axes z is per-
pendicular to the plane (x, 9) and its direction is the outwards normal direction of the conical shell.
Denotes Zjy- the distance from the vertex to small base, and «, v and w - the displacement com-

ponents of a point in the middle surface in the direction &, 6 and Z, respectively.

e
Ci e -

Figure 1: Geometry and coordinate system of a stiffened FGM truncated conical.
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Assume that the FGM conical shell rotates about its vertical symmetrical axis with a constant
angular velocity denoted by €2 . Also assume that the shell is stiffened by closely spaced circular
rings and longitudinal stringers and the stiffeners and skin are made of functionally graded materi-
als varying continuously through the thickness direction of the shell with the power law. Two cases
are investigated in this work.

Case 1: Conical shell with ceramic outside surface and metal inside surface and inside stiffener.

Case 2: Conical shell with ceramic outside surface and metal inside surface and outside stiffener.

For case 1, Young Modulus and densities of FGM shell and FGM stiffeners are given by (Naja-
fizadeh et al., 2009; Dung et al., 2014)

2%+ h)
Esh,:Enl+Ecw1[z+ ],—h/QSZSh/ZkZZO, (1)
2%+
psthm+pcm[ ZQ_}: ]7—h/2§Z§h/2,]€20, (2)
]‘*z
EszEerEcm[—Qerh /2= <2<-h /2 k>0 3)
2 + 1)
ps_pm—i_pcm[_ 22}: ] 7_h/2_h1§2§_h/2’k220; (4>
k3
E,,:Em+Ecm[—222:2h h/2—hy <z<-h/2 k>0 (5)
k3

where Vg, =V, =V, =V =CONSt k, k,and k, are volume fractions indexes of shell, stringer and

ring, respectively and subscripts ¢, m, sh, s and r denote ceramic, metal, shell, longitudinal stringers
and circular ring, respectively. It is evident that, from Egs. (1)-(6), a continuity between the shell
and stiffeners is satisfied. Note that the thickness of the stringer and the ring are respectively denot-

ed by hl, and h2; and £, E

(]

are Young Modulus of the ceramic and metal; and Esh ) E;,, Er,

Pq,, Ps, P, are Young Modulus and densities of shell, of stiffener in the s-direction and 0.
direction, respectively. The coefficient v is Poison’s ratio.

Note kg :kg, =k when kg —Q kg, — O Jeads to homogeneous stiffener.

The Poisson’s ratio » is assumed to be constant.
Young Modulus and densities for the case 2 are given in Appendix I.
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3 FUNDAMENTAL EQUATIONS

According to the Donnell shell theory, the strain components at distance z from the reference sur-
face of shell are of the form (Brush and Almroth, 1975; Reddy, 2004; Volmir, 1972)

& Eom kw
€ | = |€m |t 2|k | (7)
Vap Vabm 2kx0

where €, and &y, are the middle surface strains in meridional and circumferential direction, and

Yoom is the shear strain of the middle surface of the shell, and kx, k@ and k}ﬂg are the change of

curvatures and twist, respectively. They are related to the displacement components WHW
(Brush and Almroth, 1975; Volmir, 1972; Hua, 2000)

€ Yo
rm 1
Eom —V, +—+—cota;
Tsino T x
’yazﬁm 1 v
— Uy ——+V,
rsino T ’
(8)
W,
.
COS & w,
kf) :_2.2 w,09+2.2 7}79—
T sin” o 7 sin” « T
70 1 1 cos Qv cos
- . w,.??@ + 92 . w.ﬂ + . ’U’x - 92 . v
TSI &« T° sin o T S1in o T sin o

Using Hooke’s Law, the stress-strain relations are expressed by:
For the conical shell

E
sh
ol 1—1/2(%—“/66)
ot | = sh 5 (59 + Vsm) . (9)
sh 1—-v
o
z0 Esh
2(1+v) Tat
For the stringer and ring stiffeners
U;t _ EsEx .
Ugt - Erfe ’ (10)

where the subscripts sh and st denote shell and stiffeners, respectively, and E;,E;n are Young Modu-

lus of stringer and ring stiffener respectively.
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The contribution of stiffeners is taken into account by using the smeared stiffener technique. In
addition, the change of spacing between stringers in the meridional direction also is considered. In-
tegrating the above stress-strain equations and their moments through the thickness of the shell, the
expressions for force and moment resultants of ES-FGM truncated conical shells are defined as
(Brush and Almroth, 1975; Najafizadeh et al., 2009; Dung et al., 2014)

0

E b
All + L 8:L"m A €9m + Bll + -+ k.'L + BIQkH
X, o Jo
Ny | = A2 [AZQ ] Egm T Biok, + (Byy + Cy)ky | (11)
N:L‘@
A667z9m + 2Bﬁﬁkwt9
C{) E39b1
By +— ey + By, +| Dy +—— |k, + Dk,
M ‘L’ 4
‘ E, b
My | =|Bye,, + By +Cy)ey, + Dk, +| Dy + 222 ]ke ) (12)
MZL’

o By6Vsom + 2Dg6k 0

where C! v Gyd,dy BB B B, AZ], “, can be found in Appendix I.

The fundamental equations for the vibration of rotating truncated conical shells, basing on the
Donnell shell theory, are as (Hua, 2000; Chen et al., 1993)

ON NY 2
ON, n 1 20 0 M—xcosasina@ —|—l(N Ny)
0x rsina 00 2 sin? o | 962 oz x 7
oPu
—|—2pleinoc% _plg =0
ON 1 ON, cotadM, cosa OM,
. : 4 . 5
ox rzsina 060 T Ozx 2 sin’ o 89
Ny 0%u ) s Ov| 9y
+—0 |rsina +sina % 4zsin® a— | 4 Za0 1
xzsin2a[ 0z00 S 00 ox + T ( 3)
ou 3w v
~2Ap, | sina— + cosa — =0
ot at atZ

oM, I 2 M, n 1 &M, L20M, 10M,
o zsina 000r  Psinfa 002 x Oz oz Oz
Ny [a? au] N Ny

(woos® o + usinavcos ) — Ot

22 sin’ a z

—— —rsinacosa—

N
00> o

22 sin’ a
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ov _ Ow
+2pchosa—v P — =0
ot ot
where P; can be found in Appendix I, and the quality Ng) is defined as the initial hoop tension due

to the centrifugal force effect and given by (Hua, 2000)
= ,01(2212 sin® . (14)

Note that the system of equations (13) not only consists of three terms of relative accelerations

ou / 8t2, F U/ o and Pw / or but also four terms of Coriolis accelerations 2Qsinadv / dt,
2Qsinadu / 0t, 2Qcosadw / 0t and 2Qcosadv / Ot.

Introducing Egs. (7-10) into Eqgs. (11-12), then substituting the resulting equations and Eq. (14)
into Eq. (13), the vibration equations in terms of displacements for rotating ES-FGM truncated
conical shell are obtained as

Ry (u) + Ry(v) + Rg(w) =0 (15)
Ry (u) + Ry (v) + Rog(w) =0 (16)
Ry (u) + By (v) + By (w) =0 (17)

where Ej are partial differential operators and defined as following

A1 bl] AG P3 QZ 8_2
' AT ) Ox? :v2 sina x 06 ()
2
Ay 9 1 _|_E17"b2 _ + 9
* r 0w 2 A22 dz & (9152,
1 E b
+ cota —I-QB 0 12 +
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t
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z° sin o 00 T ot
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Rl?) 1 T 8:)33 x2 sin? (EQ 2%6) Oz (992 x 612 7% sin? o
(B, +2By + By +C) l A cotar +—(822 o)) |y + B |Pawsasina 62 (20)
T x

A22 dg ]Cota
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The system of Eqs. (15-17) is used to analyze the frequency characteristics of rotating ES-FGM
truncated conical shells. It is difficult that these equations are a couple set of three variable coeffi-
cient partial differential equations. This is a main difference between the free vibration analyses of
rotating conical shell and cylindrical shell. This is also a reason why the investigations on the vibra-
tion of a rotating ES-FGM conical shell are very limited. This difficulty will be got over below.

4 BOUNDARY CONDITIONS AND SOLUTION OF THE PROBLEM

Assuming that the stiffened FGM truncated conical shell is simply supported at both ends. Thus
the boundary conditions are expressed in the following form

v:w:O,NmZO,MTZO T=1,r=12+L (27)

at
The displacement components satisfying accurately the above mentioned geometric boundary
conditions and the force boundary conditions in the average sense, may be chosen as

mm(x — x,)

u = ¥, cos cos(nf + wt);

m7(x — z,)

sin(nf + wt); (28)

v =V, sin

mm(z — x,)

w = V¥, sin cos(nf + wt);
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where m is the number of half-waves along a generatrix and n is the number of circumferential full-

waves, « (rad/s) is the natural circular frequency of the rotating ES-FGM conical shell, and @1,@2

and \1’3 are un-known constants.

As above noted, it is difficult to use the trial function (28) and Eqs. (15-17) to obtain directly
the polynomial equation of frequency. Therefore, a different procedure is proposed as follows. Be-

cause Iy <z SCUO +L0<0<2m so we can carry out following equivalent transformations.

Firstly multiplying Eq. (15) by * ? and Eqs. (16, 17) by = ® then applying Galerkin method for the
resulting equations, leads to

2
w TotL2m

mm(r — x)

x3
T, [ [}%1(10 +Rl2(v) +}213(w)] €os L COS(ne + wt) sin ad@dzdt = 0,

o=t 3

27

5

W Tot+L 2w
f fX4 . m7(z — ) (29)
0 1z, 0 [R21(“) +Ry(v) +R23(w)] o L sin(nf + wt) sin adfdadt = 0;
27
zy+L 27w

ma(z — x,)

Lr/f: L[X [Rfﬂ(u) + Ry (v) +R33(w)] ST cos(nd + wt) sin adddadt = 0.

= ¢ |

Substituting expressions (28) into Egs. (15-17) then into Eq. (29), after integrating longer and

some rearrangements, we obtain
(Hlol + Hjjw? )\1’1 +(H102 +H112w)\112 +H{)3\I]3 =0
(Hgl + H211w)\111 +(H32 + Hyyw? )‘112 +(Hg3 + H%zw)\p:% =0 (30)

Hy W, + (H§2 + HéQW)% +(H§3 + H§3W2) oy =0

where the coefficients H'

Zj,Hilj are given in Appendix II.

For Eq. (30) to have nontrivial solution, the determinant of the characteristic matrix should be
set equal to zero. Developing that determinant and solving resulting equation for frequency o |
yields

Hy, Hyy Hyyo” +{H111H212H§3 +H), Hy, Hyy -y, Hy Hyy —Hi, Hy oy —H), Hy, ), ]“’4
_{Hsz%1H§3 +H112H81H§3 +H111H§2H§3 +Hy, Hyy Hy, }(’33
+{HP1H212H§3 -+Hy, Hyy Hyy +HY), Hyy Hyy +Hyy Hy Hy, +Hy, Hop H, (31)
_H1O3H§1H212 _H112H%1H§3 _H102H201H§3 _H111H§3H§2 —H,), Hy, Hy, ]“’2
+{H93HS1H?1,2 +Hpy 1y, Hyy ~+Hyp Hio Hyy +Hy, Hy Hyy —Hyy Iy, Hy,

Latin American Journal of Solids and Structures 13 (2016) 2679-2705



2690 D.V. Dung and H.T. Thiem / Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material...

—Hy, Hyy Hyy —H), Hy, Hy —HY\ HY, Hy, | o +Hy Hy Hyy +H) Hy Hy
+H§1H?2H§3 — 13H31H202 _H%H%Hg?, _H101H§2H§3 =0.

Eq. (31) is the sixth order polynomial equation for w and it is used to analyze the frequency
characteristics of rotating ES-FGM conical. Numerical results below will show that this equation
will have two roots whose absolute values are smallest and they are real numbers, one positive and
the other negative. The positive value corresponds to the forward wave and the negative value cor-
responds to the backward wave.

5 NUMERICAL RESULTS AND DISCUSSION
5.1 Verification of the Present Method

Before stating the analysis of shell frequency characteristics, the validity of the present study should
be ensured. Table 1 compares the frequency parameter results of this paper for unstiffened isotropic
truncated conical shell with the frequency parameter given by (Hua, 2000)

? R 2
= W
A

11

Computations have been carried out for a statonary isotropic conical shell with the following
data base as:

k=00 = 0,m = 1, h/R=00LL =0.25R / sine, E = 4.8265 x 10°(Pa),v = 0.3,p = 1314 (kg /m®).

Frequency w is found from Eq. (31).
It can be observed a good agreement is obtained in this comparison.

f a = 30° a =45 a = 60

N Present Hua [14] Present Hua [14] Present Hua [14]
2 0.8360 0.8420 0.7589 0.7655 0.6322 0.6348
3 0.7365 0.7376 0.7175 0.7212 0.6223 0.6238
4 0.6378 0.6362 0.6725 0.6739 0.6138 0.6145
5 0.5550 0.5528 0.6322 0.6323 0.6106 0.6111
6 0.4962 0.4950 0.6034 0.6035 0.6161 0.6171
7 0.4652 0.4661 0.5908 0.5921 0.6327 0.6350
8 0.4624 0.4660 0.5967 0.6001 0.6618 0.6660
9 0.4854 0.4916 0.6216 0.6273 0.7036 0.7101

Table 1: Comparison of frequency parameter f for a stationary isotropic

conical shell with simple-supported boundary conditions.
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5.2 ES-FGM Truncated Conical Shells

In the following subsections, the materials used are Alumina with EC =330 GPa, p. = 3300 kg /m*

and Aluminum with Em =T0GPa, P, =2102kg/m® and »=0.3. The stiffeners are FGM.

5.2.1 Effect of Circumferential Wave Number n

Table 2 and Fig. 2a and 2b show effects of circumferential wave number n on frequency w in case
forward wave (Line(a)) and backward wave (Line(b))with volume fraction index k£ = 1; 5 and semi-
vertex angle o = 30°;45°;60° . Consider stiffeners attached to inside of the shell. The input param-
eters are taken as h=0.004 m, r/h=30, L/r=2.5, 51=0.002 m, m=0.004 m, ns=40, b2=0.002 m,
h2=0.004 m, ny=40, m=1, Q=150 rad/s, k=ke=ks=1. As can be seen that at the same rotating ve-
locity €2 when n <3 the frequency w decreases with the increase of circumferential wave number
n. But the frequency w increases with the increase of circumferential wave number n when 17 >5.

We also can be seen that frequency w has the minimum value at mode (m, n)=(1,4).

® a=30° a=45" a—60°

n=1  ®0.2582+5 -)0.2564e-+5 (2)0.1983¢+5 -)0.1974e+5 (@)0.1317e+5 -1)0.1314e-+5
2 0.1673¢+5 -0.1656e+5 0.1400e+5 -0.1389¢+5 0.0987¢+5 -0.0982¢-+5
3 0.1156e-+5 -0.1143e+5 0.1003e+5 -0.0994e+5 0.0742e-+5 -0.0738¢+5
4 0.1044e+5 -0.1034e+5 0.0868e+5 -0.0861e+5 0.0674e-+5 -0.0671e+5
5 0.1276e-+5 -0.1268¢+5 0.0989¢+5 -0.0983¢+5 0.0792e-+5 -0.0789%¢+5
6 0.1720e-+5 -0.1714e+5 0.1287e+5 -0.1282e-+5 0.1039¢+5 -0.1037e+5
7 0.2299¢+5 -0.2294e+5 0.1696e+5 -0.1693e+5 0.1371e+5 -0.1370e+5
8 0.2986¢+5 -0.2982¢+5 0.2191e+5 -0.2188¢+5 0.1770e+5 -0.1769e+5
9 0.3773e+5 -0.3769e+5 0.2760e+5 -0.2757e+5 0.2229¢+5 -0.2228¢+5
10 0.4656e+5 -0.4652e+5 0.3400e+5 -0.3398¢+5 0.2745e+5 -0.2744e+5

Forward wave-Line(a), Backward wave-Line(b).

Table 2: Effect of circumferential wave number n on frequency w.

4 4

x 10 x 10
.......... k=k2=k3=1 g T =k2=k3=1
k=k,=k =5 1

h=0.004 m, r/h=30, L/r=2.5

b,=b_=0.002 m, n_=n =40
172 s T

3 h,=h,=0.004m, m=1

~, Q=150 rad/s

h=0.004 m, r/h=30, L/r=2.5
b,=b,=0.002 m, n =n =40
h,=h,=0.004m, m=1
*, =150 rad/s
1: =30° | 1IN
2: q=45°
3: ¢=60° 3: ¢=60°
2 4 n 6 8 10 2 4 n 6 8 10

.
8
o
. o
....
. .
.
______
e

Line (a) - Forward wave Line (b) - Backward wave

Figure 2: Effects of circumferential wave number n on frequency o (m=1).
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5.2.2 Effect of Rotating Speed 2

Table 3 describes effects of rotating speed €2 on the critical frequency. It is clear that the critical
frequency o increases with the increase of €2 . For example, in Table 3, for the forward wave (with
o = 60°) when the rotating speed {2 varies the values from 0 to 2000 (rad/s), the value wer in-
creases from 0.0670e+5 to 0.0970e+5. This increase is considerable about 30.9 %.

Graphically, Figs. 3 and 4 also show that the critical frequency w increases with the increase of
{2 . In addition when the conical shell is a stationary state (for €2 =0) a standing wave occurs.

However, forward and backward waves will appear when the conical shell starts to rotate.

wcr a = 15° a = 30° a = 45° a = 60°
Q=0 rad/s 0.1191e+5 (3) 0.1037 e+5 (4) 0.0863¢+5 (4) 0.0670e+5 (4)
Q=50 rad/s 0.1194e\5(3)* -0.1188e+5 (3 0.1039%+5 (4 -0.1036e+5 (4 0.0864e+5 (4 -0.0862e\5(4 0.0671e\5(4 -0.0670e-+5 (4

)

0.0672 e+5 (4)  -0.0670e+5 (4

0.0677e+5 (4)  -0.0672e+5 (4
)

Q=100 rad/s 0.1197e-+5 (3 -0.1186e+5 (3)  0.1042e+5 (4 0.0866e-+5 (4)  -0.0861e+5 (4

Q=200 rad/s 0.1203e+5 (3 -0.1181e+5 (3)  0.1047e+5 (4 -0.0862e+5 (4

)

)

) 0.087let5 (4
Q=500 rad/s  0.1226e+5 (3 )
)

(
0.0969¢+5 (4)  -0.0923e+5 (4 -0.0766e-+5 (4

S
=
[}
3
=]
@
+
w

Q2=1000 rad/s  0.1277e+5 (3 -0.1167e+5 (3)  0.1140e+5 (4

0.1177e+5 (3 0113415 (4)  0.1075+5 (4 0.0880e-+5 (3

)

)

)

0.0693e-+5 (4)

)

Q=1500 rad/s  0.1343¢-5 (3 )
)

®) ) ( ) )
) ®) ) ( ) )
) ®) ) ( ) ) (
) -0117le+5(3) 0107245 (4) -0.1038¢+5 (4)  0.0896e+5 (4) -0.0873e+5 (4)  0.0704e+5 (4
) 3) ) ( ) ) 0.078%e+5 (4
) ®) ) ( ) ) (
) ®) ) ( ) ) (

(
( ( ) (

0.1238+5 (4 -0.1006e+5 (4 ) -0.0839e+5 (3
( ( ) (

Q=2000 rad/s  0.1421e+5 (3 -0.1201e+5 (3)  0.1358e+5 (4)  -0.1220e+5 (4)  0.1206e+5 (4) -0.1115e+5 (4 0.0970e+5 (3)  -0.0916e+5 (3

" Circumferential wave number n
h=0.004 m, r/h=30, L/r=2.5, b1=0.002 m, l1=0.004 m, ns=40, b2=0.002 m, h2=0.004 m, n,=40, m=1, k =k, =k;.

Table 3: Effect of rotating speed Q on critical frequency wer (inside FGM stiffener).

1.6 1.6

___________ Forward wave serernenns Porward wave

Backward wave

Backward wave

o
ot
.
.t
.
.t
s
.t
s
.....

k=k, =k =1 a=30°
0.6 : : : 0.6 beasazzzs ‘ ‘
0 500 1000 1500 2000 0 500 1000 1500 2000
Q Q
Figure 3: Effects of €2 on critical Figure 4: Effects of €2 on critical
frequency wer (a changes). frequency wer (k changes).

5.2.3 Effect of Semi-Vertex Angle «

Table 4 presents effects of semi-vertex angle o on critical frequency wer. The geometrical parameters
of shell and stiffener are given by h=0.004 m, r/h=30, L/r=2.5, b1=0.002 m, h=0.004 m, ns=40,
b2=0.002 m, h2=0.004 m, n,=40, m=1, Q=150 rad/s, ka=ks=k.
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As can be observed that the critical frequency of shell decreases when the semi-vertex angle in-
creases. This decrease is significant. For example, for the forward wave with Q=150 rad/s, k=1
when the semi-vertex angle varies the values from 10° to 800, the critical frequency wer decreases
from 0.1215e +5 to 0.0342e+5.

Graphically, Fig. 5 also shows that critical frequency decreases when . increases.

Wer k=0.5 k=1 k=5
a=10"  0.1295¢+5 (3)  -0.1278e+5 (3)  0.1215e+5 (3)  -0.1198¢+5 (3) 0.0974e+5 (3) -0.0957e+5 (3)
a=15"  0.1283¢+5 (3)  -0.1267e+5 (3)  0.1200e+5 (3)  -0.1183e+5 (3) 0.0956e-+5 (3) -0.0940e+5 (3)
a=20"  0.1258¢+5 (4)  -0.1245¢+5 (4)  0.1192+5 (3)  -0.1176e+5 (3) 0.0946e+5 (3) -0.0930e-+5 (3)
a=30"  0.1105e+5 (4)  -0.1095¢+5 (4)  0.104de+5 (4)  -0.1034e+5 (4) 0.0848e+5 (4) -0.0837e-+5 (4)
=45 0.0922e+5 (4)  -0.0915e+5 (4)  0.0868¢+5 (4)  -0.0861e+5 (4) 0.0701e+5 (4) -0.0694e+5 (4)
a=60"  0.0715¢5 (4)  -0.0712+5 (4)  0.067det5 (4)  -0.0671e+5 (4) 0.0547e+5 (4) -0.0544e+5 (4)
a=75"  0.0464e+5 (3)  -0.0463e+5 (3)  0.0434e+5 (3)  -0.0433e+5 (3)  0.03505¢+5 (3) -0.03494e+5 (3)
a=80"  0.0364e+5 (3)  -0.0364e+5 (3)  0.0342e+5 (3)  -0.0342e+5 (3)  0.02811e+5 (3)  -0.02807e+5 (3)
Table 4: Effect of semi-vertex angle o on critical frequency wer (inside FGM stiffener).
4
14 x10° 10 10
‘ ‘ 1. kek,=k,=0.5 Stiffened (2)5 ";:zggg
o=kt || e Unstiffened (b): r/h=
121 =5 10
3
10 | 8l Forward wave
r=0.08 m, L/r=2, m~=1
5 ® b1=b2=0.002 m, ns=nr=40
8 8t B 6 h1=h2=0.004m, =150 rad/s b
kek, k=1, 0=45°
6+ Forward wave 4
h=0.004 m, r/h=30, m~=1
L/r=2.5, n_=n =40
S r
41 b,=b,=0.002 m, =150 rad/s 2
h,=h_=0.004m
12
2 ‘ : ‘ o—= (1.3) ‘ ‘ ‘
20 40 o 60 80 1 3 5 n 7 9 11 13
Figure 5: Effects of 4 on the critical frequency wer. Figure 6a: Effects of stiffeners on frequency w.
5.2.4Effect of Stiffeners

Table 5 describes effects of stiffener on frequency with r/h=100, r=0.08 m, L/r=2, 5=0.002 m,
h1=0.004 m, 52=0.002 m, h2=0.004 m, m=1, Q=150 rad/s, k=ko=ks=1, a=45". From obtained re-

sults as can be seen with the same stiffener numbers, the critical frequency &, of orthogonally stiff-

ened shell is the biggest and the critical frequency &),. of the shell with the stringer is the smallest.

Figs 6 describes effects of stiffener on frequency with two cases r/h=100 and r/h=200. As can
be observed the w — n curves of stiffened FGM rotating conical shell are lower than those of un-
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stiffened FGM rotating conical shell when the value of n is smaller any value 7% (In this example

Ny = 4) and inverse trend for 7 > N .

ox 107 Stringer Ring Orthogonal
ns=80, nr=0 ns=0, nr=80 ns=40, nr=40
n=1 0.2779 -0.2772 0.2253 -0.2236 0.2579 -0.2564
n=2 0.2091 -0.2082 0.1278 -0.1266 0.1550 -0.1539
n=3 0.1527 -0.1518 0.0915 -0.0908 0.1098 -0.1091
n=4 0.1135 -0.1127 0.1074 -0.1070 0.1190 -0.1185
n=>5 0.0888 -0.0882 0.1565 -0.1562 0.1666 -0.1663
n=6 0.0759 -0.0753 0.2239 -0.2238 0.2352 -0.2350
n=7 0.0719 -0.0715 0.3055 -0.3055 0.3190 -0.3189
n=8 0.0745 -0.0741 0.4002 -0.4004 0.4164 -0.4165
n=9 0.0814 -0.0810 0.5076 -0.5079 0.5271 -0.5273
n=10 0.0913 -0.0909 0.6274 -0.6278 0.6507 -0.6510
Table 5: Effect of stiffeners on the frequency w.
i x10° | | | | 5 x10° | | 7
Stiffened (a): r/h=100 Forward wave
. Unstiffened | (D) /=200 14 Effbgggc%zﬂrﬁfq?;lo |
h1=h2=0.004m, 0=150 rad/s
10+ Backward wave 12 «=30°, k=k,=k, 1
r=0.08 m, L/r=2, m=1
Ch :;2;8:881:19”5:_1%;2(1/5 ] T
6l KRk, 045 | g g
4 4 61 1:Lr=2
2 0.609¢+4 (1,9) o Lr=2.5
2 2al 4 3: Lr=3
---------- 4: Lir=4
o 0-854¢%4 (13) ‘ ‘ b ) ‘ ‘
1 3 5 7 n 9 11 13 14 102 10° K 102
Figure 6b: Effects of stiffeners on the frequency w. Figure T7: Effects of k on the critical

frequency wer (L/r changes).

5.2.5 Effect of Volume Fraction Index k

Table 6 considers effects of index volume k on the critical frequency for a stiffened FGM truncated
conical shell when the rotating speed Q=0 rad/s, 150 rad/s and 400 rad/s.

Fig. 7 plots 4 lines W, —k corresponding to L/r=2; 2.5; 3; 4.

Fig.8 plots 4 lines W,.. —k corresponding to o = 15°;30°;45%;60° .
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It is found that the critical frequency wer decreases when k increase. This is reasonable because
the value increase of k implies the increase of metal constituent in shell. So the stiffness of shell
decreases and that leads to the critical frequency wer decreases.

@ oer Q=0 rad/s Q=150 rad/s =400 rad/s
Ceramic 0.1185e+5 (4) 0.1192e+5(4) -0.1182e+5 (4) 0.1209e+5 (4) -0.1182e+5 (4)
k=0.5 0.1098e+5 (4) 0.1105e+5 (4) -0.1095e+5 (4) 0.1123e+5 (4) -0.1095e+5 (4)
k=1 0.1037e-+5 (4) 0.1044e+5 (4) -0.1034e+5 (4) 0.1063e+5 (4) -0.1035e+5 (4)
k=5 0.0840e+5 (4) 0.0848e+5 (4) -0.0837e+5 (4) 0.0868e+5 (4) -0.0840e+5 (4)
k=10 0.0760e+5 (4) 0.0768e+5 (4) -0.0757e+5 (4) 0.0790e+5 (4) -0.0762e+5 (4)
Metal 0.0603e+5 (4) 0.0611e+5 (4) -0.0601e+5 (4) 0.0636e+5 (4) -0.0609e+5 (4)
h=0.004 m, r/h=30, L/r=2.5, b1=0.002 m, h1=0.004 m, ns=40, b2=0.002 m, h2=0.004 m, n,=40, m=1, a:300, ko=ks=k.
Table 6: Effect of volume fraction index k on the critical frequency (inside FGM stiffener).
x10° x 10"
16 Forward wave 2.5 ‘ ‘ ‘ ‘ 1
h=0.004 m, r/h=30, m=1 Forward wave
14 b1=b2=0.002 m, ns=nr=40, k=k2=k§
h1=h2=0.004m, =150 rad/s
1: 1: Lir=2
2: 0.5} 2:Lr=25
3: 3:L/r=3
4: ¢=60° 4:Ur=4
2 ; - - 0 ‘ ‘ ‘ ‘
10° 10° k 10 100 200 t/h 300 400 500
Figure 8: Effects of k on critical Figure 9: Effects of 7/h on the critical frequency wer.

frequency wer ( « changes).

5.2.6 Effect of r/h and L/r

Tables 7, 8 and Fig. 9 illustrate effects of the radius-to-thickness ratio r/h and length-to-radius ratio
L/r on critical frequency wer of stiffened FGM truncated conical shells with the parameters given by
r=0.08 m, b1=0.002 m, h1=0.004 m, ns=40, b2=0.002 m, h2=0.004 m, =40, m=1, Q=150 rad/s,
k—ko—ks—1, 0—30" .

Figs. 10 and 11 show the effects of r/h ratio and L/r ratio on frequency  of the shell. Tt is ob-
served that the critical frequency wer as well «w decrease markedly with the increase of those ratios.

This decrease is considerable. For example in Table 7, the value W, = 0.3775e+5 (with r/h=20,

L/r=1) decreases about 1.8 times in comparison with &,. = 0.2052e+5 (with r/h=100, L/r=1).

Latin American Journal of Solids and Structures 13 (2016) 2679-2705



2696 D.V. Dung and H.T. Thiem / Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material...
r/h=20 0.3775e+5 (3) 0.2166e+5 (3) 0.1781 (3) 0.1504e+5 (3) 0.1135e+5 (3) 0.0903e+5 (3)
50 0.2632e+5 (3) 0.1639e+5 (3) 0.1392 (3) 0.1207e+5 (3) 0.0948e+5 (3) 0.0765e+5 (4)
100 0.2052e+5 (3) 0.1307e+5 (3) 0.1130 (3) 0.0997e+5 (3) 0.0805e+5 (3) 0.0673e+5 (3)
200 0.1614e+5 (3) 0.1029e+5 (3) 0.0899 (3) 0.0802e+5 (3) 0.0661e+5 (3) 0.0563e+5 (3)
500 0.1224e+5 (3) 0.0765e+5 (3) 0.0668 (3) 0.0597e+5 (3) 0.0497e+5 (3) 0.0428e+5 (3)
Table 7: Effect of r/h and L/r on the critical frequency &), (forward wave).
r/h=20  -0.3765e+5 (3)  -0.2153e+5 (3)  -0.1768 (3)  -0.1491e+5 (3)  -0.1121e+5 (3)  -0.0889%e+5 (3)
50 -0.2622e+5 (3)  -0.1627e+5 (3)  -0.1380 (3)  -0.1195e+5 (3)  -0.0935e+5 (3)  -0.0754e+5 (4)
100 -0.2041e+5 (3)  -0.1295e+5 (3)  -0.1118 (3)  -0.0984e+5 (3)  -0.0792e+5 (3)  -0.0660e+5 (3)
200 -0.1603e+5 (3)  -0.1017e+5 (3)  -0.0887 (3)  -0.0789%¢+5 (3)  -0.0649¢+5 (3)  -0.0550e+5 (3)
500 -0.1213e+5 (3)  -0.0754e+5 (3)  -0.0656 (3)  -0.0585e+5 (3)  -0.0484e+5 (3)  -0.0415e+5 (3)
Table 8: Effect of r/h and L/r on the critical frequency w (backward wave).
x 10* x 10*
7 : 7

Forward wave
6 r=0.08 m, r’h=100, m=1
b,=b,=0.002 m, n_=n =40
5! h1=h2=0.004m, =150 rad/s
k=k,=k,=1, 0=30°

Forward wave

6 r=0.08 m, L/r=2.5, m=1
b1=b2=0.002 m, n =nr=40

5! h1=h2=0-004m, Qs=150 rad/s
k=k,=k,=1, 0=30°

4! ] 4
3 3
3F B 3
2 1.392e+4 1 2 1.307e+4
1: r/h=50 ~ore .
2: r/h=100 ] ;j ::;::3 5
1 899e+4 3:r/h=200 | I e
1.13e+4 1.136+4 ( g05e+4 3: Ur=4
O L L L L L L L O L L L L L L L
1 2 3 4 5 n 6 7 8 9 1 2 3 4 5 n 6 7 8 9

Figure 10: Effects of r/h on the frequency Figure 11: Effects of L/r on the frequency .

5.2.7 Comparison Between Outside FGM Stiffener and Inside FGM Stiffener

Table 9 compares effects of outside FGM stiffener and inside FGM stiffener on the critical frequen-
cy with k=0.5; 1; 5 and a=10"% 30% 45°; 60°% 75" and h=0.004 m, r/h=30, L/r=2.5, b1=0.002 m,
h1=0.004 m, ns=40, b2=0.002 m, h2=0.004 m, n;=40, m=1, Q=150 rad/s, ke=ks=1/k. We can see
with the same input parameter the critical frequency wer for inside FGM stiffener is bigger than
outside FGM stiffener when 10° < o < 45° while 60° < o < 75°the critical frequency wer for
inside FGM stiffener is smaller than outside FGM stiffener.
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W o k=0.5 k=1 k=5
0 20.1246e+5 (3) -0.1228e+5 (3)  0.1140e+5 (4) -0.1125e+5 (4)  0.0903e+5 (3)  -0.0885e+5 (3)
20.1295¢-+5 (3) -0.1278e+5 (3) 0.1215e+5 (3) -0.1198e+5 (3)  0.0974e+5 (3)  -0.0957e+5 (3)
s 20.1045e+5 (4) -0.1033¢+5 (4)  0.0956e+5 (4) -0.0944e+5 (4)  0.076le+5 (4)  -0.0749e+5 (4)
P0.1105¢+5 (4) -0.1095¢-+5 (4) 0.1044e+5 (4) -0.103de+5 (4)  0.0848e+5 (4)  -0.0837e+5 (4)
L %0.0919e+5 (4)  -0.0911e+5 (4) 0.0834e+5 (5) -0.0827e+5 (5)  0.0671e+5 (4)  -0.0663c+5 (4)
20.0922e+5 (4) -0.0915e+5 (4) 0.0868e+5 (4) -0.0861le+5 (4)  0.070le+5 (4)  -0.0694e+5 (4)
e 20.0728e+5 (4)  -0.0724e+5 (4)  0.0669e+5 (4) -0.0665e+5 (4)  0.0534e+5 (4)  -0.0530e+5 (4)
P0.0715¢+5 (4) -0.0712e+5 (4) 0.0674e+5 (4) -0.067le+5 (4)  0.0547e+5 (4)  -0.054de+5 (4)
- %0.0505e+5 (4) -0.0504e+5 (3)  0.0460e+5 (4) -0.0458¢+5 (4)  0.037le+5 (3)  -0.0370e+5 (3)
°0.0464¢+5 (3) -0.0463e+5 (3) 0.0434e+5 (3) -0.0433e+5 (3)  0.03505¢+5 (3)  -0.03494e+5 (3)

* Outside FGM stiffener, " Inside FGM stiffener

Table 9: Comparison of critical frequency wer between outside FGM stiffener and

inside FGM stiffener when the semi-vertex angle a varies.

W o Q=0 rad/s Q=150 rad/s Q=400 rad/s

o %0.1038e+5 (4) 0.1045¢-+5 (4) -0.1033e+5 (4) 0.1064e+5 (4) -0.1033¢-15 (4)
e 20.1098e+5 (4) 0.1105e+5 (4) -0.1095e-+5 (4) 0.1123¢+5 (4) -0.1095¢+5 (4)
oy %0.0948¢+5 (4) 0.0956e+5 (4) -0.0944e+5 (4) 0.0976e+5 (4) -0.0944e +5 (4)
- P0.1037e+5 (4) 0.1044e+5 (4) -0.1034e+5 (4) 0.1063¢+5 (4) -0.1035¢-15 (4)
s %0.0753e+5 (4) 0.0761e+5 (4) -0.0749e+5 (4) 0.0784e-+5 (4) -0.0752e+5 (4)
: 20.0840e+5 (4) 0.0848¢+5 (4) -0.0837e+5 (4) 0.0868¢+5 (4) 10.0840¢+5 (4)

1 %0.0701e+5 (4) 0.0709¢+5 (4) -0.0697e-+5 (4) 0.0733¢-+5 (4) -0.0702¢+5 (4)
- b0.0760e+5 (4) 0.0768¢-+5 (4) 0.0757e+5 (4) 0.0790e+5 (4) -0.0762e+5 (4)

* Outside FGM stiffener, " Inside FGM stiffener
h=0.004 m, r/h=30, L/r=2.5, b1=0.002 m, h1=0.004 m, ns=40, b2=0.002 m, h2=0.004 m, n,=40, m=1, a=30°, ke=k3=1/k.

Table 10: Comparison of critical frequency wer between outside FGM stiffener and

inside FGM stiffener when the volume fraction index k varies.

Table 10 compares effects of inside FGM stiffener and outside FGM stiffener on the critical fre-
quency with k=0.5; 1; 5; 10 and Q=0; 150; 400 rad/s. As can be seen that the critical frequency er
of an inside FGM stiffener attached shell is bigger than one of outside FGM stiffener attached shell.

5.2.8 Comparison Between FGM Stiffener and Homogeneous Stiffener (Inside Stiffener)

Table 11 compares the critical frequencies of homogeneous stiffener attached shell with those of
FGM stiffener attached shell when the volume fraction index k=0.5; 1; 5 and o varies the values
from 10° to 60°.

Table 12 also compares the critical frequencies of homogeneous stiffener attached shell with
those of FGM stiffener attached shell when the volume fraction index k=0.5; 1; 5 and the rotating
speed Q=0; 150; 400 (rad/s).

It is found that the critical frequency corresponding to FGM stiffener attached shell is bigger
than one of homogeneous stiffener attached shell in these two cases.
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W e k=0.5 k=1 k=5
woe? 01173645 (4) 0115945 (4) 01115045 (4) -0.1101e+5 (4)  0.0913e+5 (3)  -0.0896e+5 (3)
°0.1295¢+5 (3)  -0.1278¢+5 (3)  0.1215¢+5 (3)  -0.1198e+5 (3)  0.0974e+5 (3)  -0.0957e+5 (3)

g 01100et5 (4)  -0.1087e+5 (4)  0.1041et5 (4) 0.1027e+5 (4)  0.0915e+5 (4)  -0.0902+5 (4)
P0.1283e+5 (3)  -0.1267e+5 (3)  0.1200e+5 (3)  -0.1183e+5 (3)  0.0956e+5 (3)  -0.0940e-+5 (3)

o) [0-1055e+5 (4) 0104245 (4)  0.0993¢+5 (4)  -0.0980e+5 (4)  0.085de+5 (4)  -0.0841e+5 (4)
20.1258¢+5 (4)  -0.1245e+5 (4)  0.1192e+5 (3)  -0.1176e+5 (3)  0.0946e+5 (3)  -0.0930e+5 (3)

g 0099215 (4)  -0.0981et5 (4) 0092815 (4) -0.0917et5 (4) 0.0772+5 (4)  -0.076le+5 (4)
°0.1105¢+5 (4)  -0.1095e+5 (4)  0.104de+5 (4)  -0.1034e+5 (4)  0.0848e+5 (4)  -0.0837e+5 (4)

) (0083945 (5)  -0.0833¢+5 (5)  0.07960+5 (5) -0.0790e+5 (5)  0.0660e+5 (4)  -0.0652+5 (4)
°0.0922¢+5 (4)  -0.0915e+5 (4)  0.0868¢+5 (4)  -0.086le+5 (4)  0.070le+5 (4)  -0.0694e-+5 (4)

o '0.0673¢+5 (4) -0.0670e-+5 (4)  0.0628e+5 (4) -0.0625¢+5 (4) 0.0514e+5 (4)  -0.0511e+5 (4)
400 vy 715615 (4)  -0.0712e+5 (4)  0.0674e+5 (4) -0.0671e+5 (4)  0.0547e+5 (4)  -0.0544e+5 (4)

* Homogeneous stiffener, " FGM stiffener
h=0.004 m, r/h=30, L/r=2.5, b1=0.002 m, h1=0.004 m, ns=40, b2=0.002 m, h2=0.004 m, n,=40, m=1, Q=150 rad/s.

Table 11: Effect of semi-vertex angle a on critical frequency wer.

Wer Q=0 rad/s Q=150 rad/s Q=400 rad/s
o %0.0985e+5 (4) 0.0992e+5 (4) -0.0981e+5 (4) 0.1011e+5 (4) -0.0982e-+5 (4)
20.1098¢+5 (4) 0.1105¢+5 (4) -0.1095¢+5 (4) 0.1123¢+5 (4) -0.1095¢+5 (4)
o 90.0921e+5 (4) 0.0928¢+5 (4) -0.0917e+5 (4) 0.0948¢+5 (4) -0.0919¢+5 (4)
P0.1037e+5 (4) 0.1044e-+5 (4) -0.1034e+5 (4) 0.1063¢+5 (4) -0.1035¢-+5 (4)
%0.0765 e+5 (4) 0.0772e-+5 (4) -0.0761e+5 (4) 0.0794e+5 (4) -0.0765e+5 (4)
A= 20.0840e+5 (4) 0.0848e-+5 (4) -0.0837e+5 (4) 0.0868¢-+5 (4) -0.0840¢ +5 (4)

* Homogeneous stiffener, " FGM stiffener
h=0.004 m, r/h=30, L/r=2.5, b1=0.002 m, h1=0.004 m, ne—40, b>=0.002 m, hs=0.004 m, n—40, m=1, o—30".

Table 12: Effect of the volume fraction index k on the critical frequency.

6 CONCLUSIONS

An analytical solution is presented, in this paper, to investigate the free vibration of rotating eccen-
trically stiffened functionally graded truncated conical. Some new contributions are obtained as
follows:
i. FGM truncated conical shells are reinforced by FGM stringers and rings in which a change of
spacing between stringer stiffeners is considered;
ii. A centrifugal force and Coriolis acceleration are taken into account.
iii. The sixth order polynomial equation for w is obtained analytically and it is used to analyze
the frequency characteristics of rotating ES-FGM conical shells.
iv. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed
on frequency characteristics of the shell forward and backward wave are discussed in detail.
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APPENDIX |

h+h h + h, E, b, E, b, L

Al:lhl’AQZQh'z?Zl:TaZQ:TaCz: d, ,0102 N , A = M\, :n_r,
2msina E, VE, E, E,
En—— = = R = R = —, — B — :
X n, A=Ay 1_ .2 A, 1_ .2 Ag o1+ 1) 11 2= 5
B. = vE = £, D. =D. = E3 D. — VE3 _ E3

For shell
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E =Eh+E h/(k+1), E,=E, h[1/(k+2)-1/2k+2)];
By = B h® /12 + B, h3[1) (k+3)—1/ (k+2)+1/ 4k + 4)]; p, = p, + 22
xT

For inside stiffener

h hh 4 h? h? h.h
Els = Emhl + Ecm—l’ EQS = _E7n1—+1 — Hem ! ! ’
ky +1 2 ky +2 2k +2
3hh? + 6h>h + 4h} 3 hh h,h*
E35:Em h'l + hl + 1 . h'l 4 1 1 :
12 ky +3  ky+2 4k, +4
h. h + h)? 2 h
Elr = Eth + Ecm—z’ E27’ = _E'mM — em h2 + h2 )
ky + 1 ky +2 0 2k +2
3hoh% + 6h2h + 4h)? 3 ’h h?
g, —p Yl ORI (B b e
12 ky +3  ky+2 4k +4
p=lp PPy ]y P P A
k41 k, +1 )d, ky +1 )
For outside stiffener
k,
Es:EC+EﬂLC[2Z_h] Jh)2<2<h/2+h;
2hy
kg
22 — h
E =E +E,, S s hy=ky=1/k h/2<z<h/2+hy;
h 2 4 hyh 2 h
Els = Echl + Emc—l’ EQs = Echl; + Emc hl + hl ]
ky +1 2 ky +2 2k +2
B, - C3hlh2+6h12h+4h13 » h} N hih N h h? ;
12 \ky +3 ky+2 4k, +4
h. h? + hoh h,? hoh
Elr = EchQ + Emc—2’ E2r = Ecg + Emc 2 + 2 )
ky + 1 kg +2 0 2% +2
3hoh% + 6h2h + 4h3 3 2h n?
Egr:Ec h’? + 2 + h2 . h’Z + h’? 4 h’Z :
12 ks +3 kg +2 4k, +4
p=lp PPy PPl ] Pl |4
k41 k, +1 )d, k +1 )N

in which n_, n_is the number of stringer and ring stiffener; h’l and q are the thickness and width

of stringer (a-direction); h2 and b2 are the thickness and width of ring (@-direction). Also,
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dl = dl( ) and d2 are the distance between two stringers and two rings, respectively. The quanti-
ties 21, %2 represent the eccentricities of stiffeners with respect to the middle surface of shell (Fig.

1).

APPENDIX Il
2 L) — x5 322 L 27t Eb L)} —
HIU1 —_nr A sina (z + 1) %o + ( :1:3 —; ) - ;T Ll sin o x —(xo + 1) %o
4 Adm*m L )\0 3
3 272 LY —a5 302 L
L T A L2z, + L) — n2712p2§22 sin v (z + L) — % + 2oy + 1)
om?n? 2 sina 4 Am2r?

(z, + L)* — =z} I

r

] sina x L(2x, + L) + 5 A11

—n’m’p, Q0% sina ; i :
SinO‘L(on +L);

Hj, = 7°p,sina (2o + I;1)4 — % 3L3$;:§ _;L) +2p, sina (zy + I;)) -z} 275;;2 7

’ nmI?

+LP -2y I
+
3 2m>m

Ay +

+ M7 cota (B, +2By)(2x, + L) +

2 2m

mnm
H102 = T (A12 + AGG)

L It P82
Hl, =2rp,Qsin’ a |——[23 —(z, + L)}]+ 5 =5 Gn2 o I?(2z, + L);
12 2 o 0 0 4m37r3 m 0
370 L —zy 32 L b Ly — ?
Hlo3 T B, sina (2, + L) %o + (2, + 1) m7 Clo sin o (# + L) %o L
I3 4 Am2m? 3 2m2m?
’m B 2B 3 L) _ 3 3 3
mn27r 12 + 86 (22, + L) + m—ﬁA12 cosa Rt L2 |t i (Byy, +C,)
sin « 3 2m*m 2
3 L 5 _ .5 L2 3 _ L 3 5 3
sina(2z, + L) — m_7rp292 sin? a cosa (2 + L) — 2y — 2y — (3 + 1) ]— 3L mr
L 5 m2m? omiad L
L)' —zy 302z, + L § 7
p.S2sin? a cosa (#y + L) — % + (2, + 1) ~MT B sina(2z, + L) + ﬂcos.a
3 11 0
4 4m27r2 2m

Eler .
[“‘zﬁﬂ

(g, + L)' —a5 302z, + L)

4 4Am>r?

3
T (B, + By) cota

mnm
Hgl = T(Am + AGG)
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2703
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