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Abstract 
In this work, a vibration-based method for damage detection at 
welded beams and rods is presented. The model of the structural 
element includes the effect of the added inertia due to the welding 
process. Two methods of solution,  analytically and by means of the 
Finite Element Method (FEM), are presented. From the results ob-
tained it can be asseverated that the method can be a useful tool to 
detect degradation of welded structures. In contrast to other exist-
ing methods for cracks detection, it is shown that several frequencies 
have to be taken into consideration to determine the wear charac-
teristics of the welded elements, since depending on the location of 
welding, some frequencies can be very little sensitive to the reduc-
tion of rigidity at the welded section.  The results presented show 
similar tendency to those obtained by other investigations for cracks 
detection when added inertia was not included. 
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1 INTRODUCTION 

Welded connections may have inelastic behavior due to failure, an incorrect welding procedure or the 
stresses supported on their working life (Gomaa et al., (2014); Shang et al., (2003)). To verify the 
wear of the welded element, non-destructive testing methods (NDT) have to be applied. Among 
others, some methods are: visual inspection, radio-logical methods, ultrasound scanning, thermo-
graphic methods and acoustic emission (Halmshaw, (1987)). With most of them the structure has to 
be scanned on the precise site where the welding has been executed which sometimes might be inac-
cessible. As examples, one can think of large structures like bridges, oil platforms, aircraft, ship struc-
tures, etc. 

Vibration-based methods (VBM) are a real alternative to classical NDT. In fact, VBM have 
certain advantages: the test equipment is relatively cheap, the vibration data can be collected from a 
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simple point or mostly on several points on the structural component, and having an access to the 
damaged section is not required. Therefore, a method able to measure global parameters of structures 
that could provide information on the structural integrity from a few selected measurement points is 
very attractive for non-destructive testing (Smart and Chandler, (1995); Sohn et al., (2001)). 

When a welding section fails, or starts to fail, on an elastic structural element, the damage intro-
duces local flexibility due to strain energy concentration. This effect has been already recognized and 
the idea of an equivalent spring has been used to quantify, in a macroscopic way, the relation between 
the applied load and the strain concentration around the welded section like in Adams et al. (1978). 

This model has also been used for fatigue damaged structural elements, and to simulate the 
presence of cracks. Dimarogonas, (1996) presents a review on this problem. In the case of crack 
detection by VBM, different approaches have been developed. In some cases, lumped models for elastic 
massless elements have been used (Adams et al, (1978); Chondros and Dimarogonas, (1980); Rizos 
and Aspragathos, (1990); Morassi, (2000); Loya et al, (2006); Kindova-Petrova, (2014)), in others, a 
modified rigidity matrix has been employed in the Finite Element Method (Kisa, (2000); Saavedra et 
al. (1996)) and also a model of distribution of rigidity on the beam based on fracture mechanics 
methods has been used (Chondros et al. (1998 a)) and Chondros et al. (1998 b)); Chondros and 
Labeas, (2007)). In the problem of crack detection, not only the determination of the presence and 
size of the crack is important but also its location. Abdel-Mooty (2014) used a different approach to 
treat the identification of cracks based on the computation of the higher derivatives of structural 
modes for detecting the precise location of damage. Recently, the method has been applied for more 
complex systems like for crack detection on fluid-conveying pipes by Eslami et al (2016) and to solve 
the inverse problem of crack size and location based on the natural frequencies for an Euler-Bernoulli 
beam by Mostafa and Tawfik (2016). However, we are only interested in determining the quality or 
degradation of the welded section, showing that the added mass by the welding process has to be 
incorporated when modelling the system in order to reproduce the welded element behavior accu-
rately. 

The purpose of this paper is then to develop a robust and cost effective monitoring system for 
welded structural elements. The concept has also been applied to other welded systems like the work 
by Yunnus et al. (2011). After extreme events, such as earthquakes or blast loading, or due to aging 
and degradation resulting from operational environments, a welded section may reduce its structural 
properties and NDT based on vibration measurements can be a rapid condition screening to provide, 
in near real time, reliable information regarding the integrity of the structure. In this investigation, it 
is assumed that the structural element has a linear dynamic behavior before and after damage, and 
the detected damage is only due to the failure of the welded section. In addition, other problems due 
to environmental or operational conditions are assumed to not produce changes in the system re-
sponse. 

The model to simulate the welded section uses lumped elements. The welded is modeled as an 
added mass connected to the structural element by massless springs, see Figures 1 and 3 for the rod 
and the Euler-Bernoulli beam elements, respectively. The model allows for discontinuities in vertical 
displacement and rotation for the bending case, which are proportional to shear force and bending 
moment transmitted at the welded section as used by Loya et al. (2006) for the crack identification. 
The same can be applied for rotation on the torsion case. 
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First, in section 2.1 the model is solved analytically for both structural elements. The nonlinear 
characteristic equation to determine the natural frequencies of the element can have, for some values 
of the parameters, a slow convergence. Thus, a FEM model has also been developed in section 2.2 
based on the same scheme as the analytical method. The main advantage of the FEM is the ability 
to treat more complex boundary conditions than the analytical solution. Both methods are compared 
to determine the minimum number of elements of the FEM to assure convergence. From then on, 
only the results of the FEM are considered in section 3. 

The results presented show that the method can be applied for damage detection of welded struc-
tural elements. Attention shall be drawn to two particular points: the number of natural frequencies 
used for the evaluation and the added inertia during the welding process. Conclusions are presented 
in section 4. 
 
2 ANALYTICAL AND FINITE ELEMENT MODEL 

As mentioned, two methods have been developed to determine the dynamic characteristics of a welded 
rod or beam. One is based on the analytical formulation, for the treatment of ideal boundary condi-
tions, and the other on the Finite Element Method (FEM). The first one ends up with a highly 
nonlinear characteristic equation that is to be solved for any value of the different parameters involved 
in the model definition. This can be sometimes difficult, when regular nonlinear methods may converge 
very slowly. Therefore, it is used as a test method to determine the number of elements to be used in 
the FEM model to ensure convergence for a fix set of  parameters and ideal boundary conditions. 
 

 
 
 
 
 
 
 
 

Figure 1: Model of the welding bond - torsion problem. 

 
2.1 Analytical Model 

For linear analysis, torsion and bending dynamics can be considered decoupled. Then, two elementary 
structures are considered in this work: a uniform rod and a uniform Euler-Bernoulli beam. The total 
length of the element is L and it is assumed that, at the location 1l , the element has been repaired 

by a welding connection.  
In the case of a rod (see Figure 1), the welding is modeled as a lumped inertia element of value 

wI  attached to the rod by two linear mass-less springs of rigidity 1k  and 2k . In this way, the failure 

or degradation of the soldering on either side of the welded section can be investigated. The differential 
equations and the boundary conditions for the system are then: 

L

k1 
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where wJ  is the generalized coordinate which determines the rotation of the lumped inertia term due 

to the welded material, 1q and 2q  are the dynamic deformation of the rod at 10 x l-£ £ and 	

1 ,l x L+ £ £ respectively, GJ  the torsion rigidity of the rod, and I  the polar moment of inertia per 

unit length of the rod. 
Equations (1a) to (1e) should be completed with the ideal boundary conditions at the rod ends. 

For the case of simple supported end conditions ( ( )1 00q = and ( )2 0Lq = ), equations (1a) to (1e) 

can be solved to obtain the characteristic equation: 
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where the different parameters are: 
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The roots of equation (2) can be obtained numerically for the unknown frequency parameter b  

(solving X ) as a function of the different parameters of the problem. However, this equation results 
to be too stiff so convergence may be sometimes tedious since the range of the parameters, like 1d , can 

be very extent. Therefore, as it will be presented at section 2.2, a finite element procedure based on 
the same model presented in Figure 1 has been developed. We remark that the main advantage of 
the FEM model is that other end boundary conditions can be considered such as non-ideal boundary 
conditions introducing flexible supports as sketched in Figure 2. 
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Figure 2: Non-ideal boundary conditions. 

 
To guaranty the convergence of the FEM model for specific values of the parameters, the results 

for the first four natural frequencies have been calculated as function of the number of elements NFE 
and compared with the results of the analytical solution. In this way, the analytical solution is used 
to validate the FEM model in both cases.  

For the case of an Euler-Bernoulli beam in bending vibration, the model considered is illustrated 
in Figure 3. The mass added by the welding process is represented by a lumped mass of value wm  

and a rotational moment of inertia wI . This mass is attached to both sides of the beam by two linear 

translational springs of value 1k  and 2k , and two linear rotational springs of values 1Tk  and 2Tk , all 

of them with zero inertia. The linear translational (torsion) springs oppose to vertical displacements 
(rotation) between both sides of the beam. 

For the uniform beam considered, the formulation of the vibration problem can be expressed as: 
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and the conditions at 1  x l=  are given by Equations (4a) to (4d). 
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Figure 3: Model of the welding bond - bending problem. 

 
where wz  and wq  are the generalized coordinates which determine the translation and rotation of the 

lumped inertia term due to the welded material, 1w  and 2w  are the dynamic deformation of the beam 

at 10 x l-£ £ and at 1 ,l x L+ £ £  respectively; EI  the flexural rigidity of the beam and m  the mass 

per unit length of the beam. 
These equations have to be completed with the boundary conditions at both ends of the beam. 

In the case of a clamped beam at both ends, the characteristic equation to determine the natural 
frequencies can be obtained by expansion of a determinant of order 6 (two of the constants of inte-
gration can be eliminated from the boundary conditions) that depends on the following parameters: 
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Like in the previous case of the torsional rod, the resulting characteristic equation can be solved 
numerically to determine the natural frequencies of the system from the roots of the frequency pa-
rameter. However, for this case the numerical solution is even more cumbersome than for the rod 
vibration element. Therefore again, the above formulation is only used as a measure of the convergence 
with the number of elements of the developed FEM model, based on the system of Figure 3. Again, 
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the advantages of the FEM model are the ability to treat other type of end boundary conditions and 
to take any value of the different parameters defined before. 
 
2.2 Finite element model for rod and the beam structural elements 

Based on the classical formulation of the finite element method, see for example Petyt (1990), the 
dynamic problem is formulated as 
 

{ }
¨
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ì üï ïï ïï ïé ù é ù+ =í ýë û ë ûï ïï ïï ïî þ

 (5)

 

where Mé ùë û and Ké ùë û  corresponds to the mass and inertia matrix of the model, and { }u  is a vector 

containing the nodal displacements. This formulation is general for both cases -torsion and bending. 
Beginning with the torsion problem, the welded moment of inertia wI , and the stiffness’s of the 

junctions between welding and the rod 1k  and 2k , are included in the formulation through the ele-

ments in the mass matrix and stiffness matrix as 
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The same can be done for the bending problem, just taking into account that every node has then 
two degrees of freedom (vertical displacement and in-plane rotation). The resulting matrices for the 
bond are given by Equation (7). 
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The stiffness and mass matrices of the whole model are built by the assembly of the local matrices 
of every single element: rods/beams for the structural element, and the previous matrices to represent 
the welding connection. 
 

{ },   ;    beam / rod,  welding connection
i i

i i

M M K K ié ù é ù é ù é ù= = " Îë û ë û ë û ë û   (8)
 

After the assembly of matrices Equation (6) or (7) for the beam, the global mass and stiffness 
matrix, Mé ùë û and Ké ùë û  of the model for the torsion/beam problems are given by Equations (9a) and 

(9b), 
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where 
( )

11

n
Mé ùë û  is the component { }1,1  of the mass matrix corresponding to the n -th element (and 

n N= is the last element of the left side of the rod/beam). This procedure is also applied to the 
stiffness matrix. It can be observed that the resulting matrices are tridiagonal. 

Coming back to Equation (5), one can impose a harmonic movement in order to find the 
eigenmodes of the structure: 
 

{ } { } ,i tu q e w=  (10)
 

{ }{ }2[ ] [ ] 0.i tq eM K w- =w +  (11)
 

T his results in an eigenvalue problem for the natural frequencies like: 
 

{ } { } { }2 2det 0  ,M K K Mw F w Fé ù é ù é ù é ù- + =  = -ë û ë û ë û ë û  (12) 
 

where w is the natural frequency and { }F  is the eigenvector. 

The number of elements ிܰா has been determined by comparison of the FEM model to the 
analytical solution. It has been assured that the first four natural frequencies obtained by both means 
are close enough for a given set of parameters. 

In Table 1 the evolution of the first six non-dimensional natural frequencies for a simple supported 
rod are calculated as a function of the number of elements for the values of the parameters 1l = , 

0.001s =  and two cases of the welding stiffness’s: 1 2 100d d= =  and 1 2 10000d d= = . Also the 

results obtained numerically from Equation (2) are given. It can be observed that when the number 
of elements ிܰா is greater than 100 the difference between the FEM and the analytical solution is 
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negligible. Therefore, it is concluded that -with this number of elements- the results of the FEM model 
are accurate enough. 
 

 ࣓૚ ࣓૛ ࣓૜ ࣓૝ 

࢙  ൌ ૙. ૙૙૚, ૚ࢾ ൌ ૛ࢾ ൌ ૚૙૙ 

Analytic solution 3.1260 6.2212 9.3778 12.442 

FEM NFE=10 3.1260 6.2522 9.4834 12.692 

FEM NFE=100 3.1260 6.2212 9.3790 12.445 

FEM NFE=300 3.1260 6.2212 9.3784 12.443 

࢙  ൌ ૙. ૙૙૚, ૚ࢾ ൌ ૛ࢾ ൌ ૚૙૝ 

Analytic solution 3.1260 6.2828 9.3784 12.5658 

FEM NFE=10 3.1260 6.3148 9.4836 12.8222 

FEM NFE=100 3.1260 6.2830 9.3792 12.5678 

FEM NFE=300 3.1260 6.2828 9.3784 12.5658 

Table 1: Convergence of the torsion problem FEM model given masses (s)  

and stiffness’s ( 1 2d d= ) of the welded bond. 

 
In Table 2 the first four non-dimensional natural frequencies for a beam clamped at both ends 

are presented as function of the number of elements. The values of the parameters are 1l = , 
0.001s = , 0.0001rq =  and different sets of the translational and torsional rigidities. The results of 

the characteristic equation are also given for comparison. Now, it can be observed that the number 
of elements to achieve a negligible difference has to be between 10 and 100. From now on, the number 
of elements used for the analysis of this structure will be  ிܰா ൌ 100. The rigidity at both sides of 
the lumped mass was kept for this validation case equal, i.e., 1 2d d=  and 1 2T Td d= . 

 
 ࣓૚ ࣓૛ ࣓૜ ࣓૝ ࣓૚ ࣓૛ ࣓૜ ࣓૝ 

 Free beams:  [ࢾ૚ ൌ ૚૙ି૟, ૚ࢀࢾ ൌ ૚૙ି૟] Rigid bond:  [ࢾ૚ ൌ ૚૙૟, ૚ࢀࢾ ൌ ૚૙૛] 

Analytic solution 0.0142 0.1414 14.349 14.349 22.373 61.671 119.68 199.83 

FEM NFE=10 0.0142 0.1276 14.350 14.350 22.216 62.498 119.74 199.48 

FEM NFE=100 0.0140 0.1415 14.350 14.350 22.212 62.497 119.73 199.44 

FEM NFE=300 0.0091 0.0906 14.350 14.350 22.212 62.497 119.73 199.44 

 Damaged bond:  [ࢾ૚ ൌ ૚૙૝, ૚ࢀࢾ ൌ ૚]  [ࢾ૚ ൌ ૚૙૛, ૚ࢀࢾ ൌ ૙. ૙૚] 

Analytic solution 15.768 64.016 91.930 141.37 14.086 14.142 30.335 87.310 

FEM NFE=10 15.774 61.693 91.935 137.52 14.087 14.127 30.338 87.315 

FEM NFE=100 15.774 61.692 91.930 137.52 14.087 14.128 30.338 87.312 

FEM NFE=300 15.774 61.690 91.929 137.52 14.087 14.127 30.338 87.312 

Table 2: Convergence of the bending problem FEM model for a given mass ( 0.01, s =  0.0001rq = )  

and various parameters of stiffness of the welded bond. 

 
From then on, only the results of the FEM model for different values of the parameters are 

evaluated. 
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3 RESULTS AND DISCUSSION 

Next, based on the FEM results, a study of the influence of the different parameters on the natural 
frequencies of the two problems considered -the welded rod and beam structural element- will be 
presented. The objective is to determine how a degraded welded joint can influence on the natural 
frequencies of the system. Thus, by means of a vibration test, be able to estimate the degradation of 
the element. 
 
3.1 Rod Structural Element: Torsional Vibrations 

The parameters considered for the torsion vibrating rod are the mass parameter	ݏ, the position of the 
welded section l , the non-dimensional left-side spring rigidity 1d , and the non-dimensional right-side 

spring rigidity 2,d  as defined in section 2.1. The initial values of all the parameters are such that the 

rod natural frequencies when welded are similar to those of the rod before damaged. Certainly, it 
could happen that the welded structural element has better dynamic properties (more rigidity) than 
the undamaged rod. This case, however, will not be considered in this paper. 

The parameters can be estimated as follows: 
 

( )
,   ~ .

( )
s s s

s

IL L GJ IL L
s

IL L GJ IL L
d~ ~ ~



  
 

 

Figure 4: Evolution of the first four natural frequencies ߱௜ (percentage respect to the frequencies of the  

undamaged rod, ,i uw ), for 1l =  (solid), 2l =  (circles) and 3l =  (cross), with the variation of 1d   

and three fixed values of 2d . A value of 2 250d = , 2 10d =  and 2 0.001d =  represents,  

respectively, a rigid, a damaged and a broken bond. 
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In the first part of the study the mass parameter is kept to a constant value of 0.01s =  (the 
welding is performed using a material with a similar density to the rod and its length is about a 1% 
of the rod’s length), meaning that the amount of welded material remains the same with respect to 
the mass of the rod. The influence of the change of this parameter will be taken into consideration 
afterwards. 

In Figure 4, the degradation of only one side of the welding -via reducing only one non-dimensional 
stiffness- is investigated, while keeping the other side stiffness constant. The plots show the evolution 
of the first four natural frequencies with the degradation of the left-side spring ߜଵ for different values 
of the stiffness of the right-side spring. Note that, as expected, the variation of the natural frequencies 
is bigger when both sides of the welding are affected. 

From this figure the following conclusions can be obtained. For 1l = , welded at the center of 
the rod, the odd frequencies are barely affected by the degradation. Thus, methods for crack detection 
based on the evolution of the first natural frequency may be unreliable for these cases. Higher order 
frequencies are more sensitive to rigidity losses than lower order, thus while the second frequency 
almost remains unchanged for 1l =  and 2 250d =  in the range of 1d  between [250-50], the fourth 

frequency has a constant value in the reduced range of [250-100], concluding then that if the vibration 
method is used to determine the damage of a structural element several frequencies should be taken 
into consideration. 

For 2l = , the odd frequencies are more affected by the rigidity variation. When the order of the 
frequency is increased the range of rigidity at which the frequency remains constant is also reduced. 
Thus, 1 1, ~ 1uw w  for 1 [250 50]d Ì -  and 4 4,uw w  for 1 [250 100]d Ì - , although the change is 

less significant. For example, for 1 1d = , 1 1,/ 0.8uw w =  and 4 4,/ 0.9uw w = . Then, it can be con-

cluded that higher order frequencies are more sensitive to damage of the welded rod but lower order 
frequencies show biggest decrease when welding fails.  

From the results shown in Figure 4, also the dynamic characteristics of the system as function of 
the different values of the parameters can be described. Thus, when the rigidity of the welded element 
is very small, the system behaves like two independent rod elements with a frequency close to the 
smaller frequency of a rod simply supported at one end and free at the other. This behavior is repre-
sented -in a schematic way- as a function of the parameter l  for the first modes in Figure 5. 

The frequency parameter n , defined as ( ) ( )IL GJn w=  , is used. For the undamaged rod it 

is named as ,i un  and for the damaged rod ,
,
s l
i jn . The first subscript means the mode order, the second 

the value of the parameter l and the superscript refers to the shorter ‘’s’’ or larger ‘’l’’ uniform rod 
element for the damaged rod when 1l ¹ . When the rod is undamaged the frequency parameter has 
the values π, 2π, 3π… If the rod is welded at the middle point 1l = and the section is broken, both 
parts of the rod have the same frequencies and the values are π, 3π, 5π… so the first two frequency 
parameters of the undamaged rod π and 2π collapse to a single frequency parameter of the broken 
rod π, the third and fourth frequency parameters collapse to the second frequency parameter of the 
broken rod 3π, and so on. 

If the rod is welded at 2l =  (welding section at 1/3 of the total length) and the welding is totally 
broken then, two sets of frequencies parameters are obtained one for each element. For the shorter 
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one, the frequency parameter ,2
s
in  has the values 3π/2, 9π/2, 15π/2 for the first three frequencies and 

for the larger part ,2
l
in  the values 3π/4, 9π/4, and 15π/4. Now, the undamaged frequencies move in 

the following way, 1,un  moves from π to 3π/4, 2,un  from 2π to 3π/2, and 3,4n  from 3π to 9π/4, and 

so on. 
Similar reasoning can be made to explain the evolution of the natural frequencies for the other 

locations of the welding, for example 3l = . In this way, it can be concluded that when one of the 
torsional rigidities is negligible and the other is such that the system prefers vibrating like two inde-
pendent elements, the mode selected by the structure is the nearest one with smaller frequency of the 
cantilevered rod. Note that the relation between the frequencies ߭ of the undamaged rod and the 
broken one (cantilevered) matches with the plots given in Figure 4. 
 

 

Figure 5: First non-dimensional frequencies of the rod in different conditions: with no damage on the  

welding ,i un  and without being welded ,i jn . First subindex ‘’i’’ denotes the i-th mode of vibration  

(i.e., 1, 2, 3...), the second denotes the values of the parameter l , and the letter ‘’s’’ or ‘’l’’ if the side  

under consideration is the shorter or the larger one when 1l ¹ , respectively. Finally, the different  

curved arrows are related to the value of l  considered: 1 (thick) and 2 (thin). 

 

 

Figure 6: Evolution of the first four natural frequencies ߱௜ (percentage respect to the frequencies of the  

undamaged rod, ,i uw ), for 1l = (solid), 2l = (circles) and 3l = (cross), with the variation of 1d   

(both springs have the same rigidity, 1 2d d= ). 
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Now, in Figure 6 the general damage of the welding is considered. For 1 2d d= , both sides of the 

welding with equal rigidity, the first four natural frequencies divided by the natural frequency of the 
undamaged rod are presented as function of the parameter 1d  for  1, 2, 3l =  (welded section at 50%, 

33% and 25% of the total length, respectively). In the figure it can be observed that the analysis of 
several frequencies has to be used to detect the damage of the welded section. When the welding is 
close to a node, there is a large concentration of stresses at the point and therefore the dynamic 
response is more sensitive to small changes in rigidity. This can be observed in the second and fourth 
frequencies for 1l = , and in the third frequency for 3l = . When damage on the welding is investi-
gated, one is interested in detecting this damage as early as possible and, as Figure 6 suggests, the 
higher order of the frequency the more sensitive to decrease on rigidity. However, on real structures 
higher order frequencies can also be influenced by other parameters i.e., aging of the structure. There-
fore, a careful analysis of all the frequencies should be made to asseverate the quality of the welding. 

In addition, note that there is a critical value of 1d  and 2d  where the system prefers to respond 

as a single vibrating lumped mass when the smaller frequency of the cantilevered rod coincides with 

( )1 2 sd d+  , written in non-dimensional parameters. 

In this way, one can see that starting with high values of 1d  and 2d  the behavior of the model 

will be similar as the clamped-clamped rod (undamaged). Decreasing the stiffness of the rod will lead 
to a change of the natural frequencies, which will tend to the corresponding frequencies of the 
clamped-free (cantilever) rods, as shown in Figure 5. Moreover, when the smaller frequency of the 

cantilever rods (corresponding to the longer structural element) is greater than ( )1 2 sd d+   lower 

frequencies will be found, but these frequencies will be associated to the motion of the lumped mass. 
This behavior can be observed in Figure 6 when both sides are really damaged. These values of id  

demonstrate the model's consistency. 
This result is very interesting, as it opens a further study: while at least one of the two sides of 

the bonds remains undamaged the lumped mass will vibrate attached to one of the structural element. 
If a frequency close to that of the cantilever rod is found, then one can asseverate that at least one of 
the two sides of the welding is highly damaged and the bond is very close to failure. 

For damage detection the most important parameter is the change in frequency, independently 
to the damage occurring at one or both sides of the welding connection. When welding fails the 
natural frequencies of the system are those of the cantilever rod (slightly modified by the influence of 
the attached lumped mass). Therefore, no further results will be presented varying independently the 
two sides of the welding connection. 

Next, the influence of the welding mass on the dynamic characteristics of the rod will be investi-
gated. The mass parameter has been changed from a 0.1% of the total mass of the rod to a 1.5%. 
These values can be considered to cover the full possibilities of a welding connection. In Table 3, for 
two different values of the welding location, the influence of the added mass parameter ݏ is presented. 
On the table, the values of the nondimensional rigidities ߜ௜ to keep the natural frequency parameter 
equal to the values of the undamaged rod are given. Note that the increase of the welding mass (with 
no variation of the welding length) yields to smaller values of the natural frequencies for a fixed value 
of the welding rigidities. For example, to recover the first natural frequency with 2l =  and 
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0.0125s = , the rigidities should be modified up to a value of 725. So, a 25% increase from the value 
0.01s =  in the welding mass leads to a 382% increase in both rigidities. Even more, there is a critical 

mass value when no rigidity is enough to recover the natural frequency of the undamaged rod. 
 

 s ࣅ
 ૚ࢾ

 ૝࣏ ૜࣏ ૛࣏ ૚࣏

2 

0.0010 53 55 196 48 

0.0050 78 81 196 72 

0.0100 190 192 196 180 

0.0125 725 600 196 690 

0.0150 - - 196 - 

3 

0.0010 103 0.023 107 193 

0.0050 130 0.23 134 193 

0.0100 196 18 193 193 

0.0125 265 - 246 193 

0.0150 400 - 340 193 

Table 3: Value of the nondimensional rigiditiy 1d  to recover the i-th frequency of the first four  

natural modes with the variation of the nondimensional welding massݏ. It was taken 1 2d d= . 

 
Some interesting cases can be observed in the table. For 2l = , in the mass interval of interest, 

no stiffness changes are needed to keep constant the frequency of the third mode. This effect can be 
explained in terms of the eigenmodes. The third mode presents a node where the welding is placed, 
so there is no displacement during the vibrations in this section and therefore, the mass does not 
affect. The same reasoning could be applied to the fourth frequency with 3l = . In addition, the effect 
of the strains/stresses concentration could be considered (via the derivative of the rotation). For 

3l = , the second frequency seems to be, for small values of		ݏ, less affected than the others and 
negligible rigidities are needed. In this case, the welding is placed in a zero-strain section (maximum 
displacement) so the relative rotation of the mass respect to the nearer regions is negligible, therefore 
small values of rigidity are needed to keep the mass attached when it is small. In opposition, if the 
mass increases, this location yields to a bigger effect and then the critical mass value commented 
before appears more rapidly. Thus, in a vibration test to qualify the grade of a welded structure the 
added mass can mislead to a wrong result. If the mass is too large, the decrease of the natural 
frequencies can be due to the mass effect and not to a loss of rigidity. The added mass has never been 
included in previous models used to study this problem. In contrast to the crack case, which treats a 
similar problem with no lumped mass included, we demonstrate that the present model is justified 
since it yields to different frequency values depending on the damage distribution on each side. A 
deeper study on how the mass affects the welding performances should be done with experimental 
results in subsequent investigations. However, this is beyond the scope of this paper and will be 
undertaken elsewhere.  
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3.2 Beam Structural Element: Bending Vibrations 

Next, the dynamic characteristics of an Euler-Bernoulli beam element are investigated as function of 
the different parameters. 
 

 

Figure 7: Evolution of the first four natural frequencies ߱௜(percentage respect to the frequencies of the  

undamaged beam, ,i uw ), for 1l = (solid), 2l = (circles) and 3l = (cross), with the variation  

of 1d  and three fixed values of 2d . A value of 2 250d = , 2 10d =  and 2 0.001d =  represents,  

respectively, a rigid, a damaged and a broken bond. 

 
Now, the parameters to modify are the nondimensional inertia properties  ݏ and rq , the position 

of the welded section l , the nondimensional translational rigidities 1d  and 2d , and the nondimensional 

torsional rigidities 1Td  and 2Td  of the left and right-side springs, respectively. Note that, each side of 

the welding is affected by both translational and torsional rigidities and it has no physical sense to 
consider the isolated effect of one of them. Therefore, the study will be focused on damage either the 
right or the left-side on the welding bond via decreasing both rigidities. 

In this way, we estimate   , ,  s rq d  and Td  to be 
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where sL  is the welding length, and  the beam slenderness. Again, a welding material similar to the 

structural one is considered. From this analysis we could also infer the ratio between nondimensional 
translational and torsional stiffness’s of each side given by ~ 10000Td d . From now on, the rela-

tionship 10000i Tid d =  will be always used. Like for the rod in torsional vibration, we consider a 

welding length of a 1% of the total length and 10=  to be consistent with the applicability of the 
Euler-Bernuilli beam theory. 

The mass parameters 0.01s =  and 0.0001rq =  will be kept constant like in the prior study. The 

effect of damaging one side of the welding section will be considered first. In Figure 7 the first four 
natural frequencies are given for different values of the right-side stiffness’s with the variation of the 
left-side rigidities. 

In this figure it can be observed the following: for the case of 1l = , in contrast with the case of 
torsional vibration, now all the frequencies, odd and even, are reduced when decreasing rigidity and 
the reduction can be quite large (closer to 80% for the second frequency when rigidity is low). These 
results were also observed for a similar model but without lumped mass by Loya et al (2006) and 
Priyadarshini (2013). Also, for the same frequencies (see 3 3,uw w ) there are two transitions as 

function of the rigidity, one when the rigidity decrease to a value of 104 and a second one when the 
reduction is closer to a value of 102. The evolution of the frequency in this case can serve as a measure 
of the grade of the structure. 

Now for the bending vibration case, it seems that the influence of the location of welding, values 
of   1,2, 3l =  in Figure 7, seems to be not as important as in the torsion case since now, for all the 

locations and frequencies, there is a reduction in frequency when rigidity is decreased. 
From this figure, similar conclusions to the rod structural element could be drawn. Defining a 

new nondimensional frequency parameter ( )3( )mL EIn w=  , the first four natural frequencies of 

a double-clamped undamaged beam ,i uu  (where the subscript ‘’i’’ denotes the i-th mode) are given 

by 22.37, 61.67, 120.90 and 199.86. In addition, following a similar nomenclature we call  ( )
,
s l
i jn  to the 

i-th frequency of the shorter (larger) cantilevered beam for a value of jl = . When the beam is 

undamaged the frequency parameter coincides with the double-clamped beam natural frequencies in 
each mode.  

Considering the case of 1l =  with no welded connection, the frequency parameters for each side 
of the beam are identical to the cantilevered beam and takes the following values: 14.06, 88.13... given 
by the analytical solution of the problem. Similarly to the torsional vibrations of the rod, here we also 
find various frequency changes in some modes. Again, it depends on how many frequencies of the 
cantilevered beam are smaller than the natural frequency of the undamaged beam. The simplest case 
is considering a mode with only one frequency below where the system evolves from the undamaged 
natural frequency to this smaller frequency. In the general case, where several frequencies are below 
the natural frequency of the mode under consideration, the system evolves from the natural frequency 
of the undamaged beam to the nearest frequency of the cantilevered system and then, to the next one 
and so on until no other smaller frequency for the cantilevered beam exists. Then, reducing the 
stiffness’s yields to the vibrations as a lumped mass attached to two springs. 
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Moreover, one can estimate the threshold where the lumped mass vibrations appears. The trans-
lational and rotational frequencies for the lumped mass -written in a dimensionless nomenclature- are 

given by ( )1 2 sd d+   and ( )1 2T T rqd d+  , respectively. The ratio could by written as 
 

1 2

' 1 2

~ ~ ~w

w T T T s

r r L

s s L
q qu d d d

u d d d
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that, for the welding length considered, is 10. Therefore, for a really damaged -practically broken- 
soldering, the system will vibrate first as a translating lumped mass. 
 

 

Figure 8: Evolution of the first four natural frequencies ߱௜ (percentage respect to the frequencies of the  

undamaged beam, ,i uw ), for 1l = (solid), 2l = (circles) and 3l = (cross), with the variation of 1d   

(both springs have the same rigidity, 1 2d d= , 1 2T Td d=  and 4
1 110Td d-= ). 

 
Now, in Figure 8 the evolution of the first four frequencies of the damaged beam referred to the 

value of the frequency of the undamaged beam are represented as function of the nondimensional 
rigidity 1d . For this figure it was set 1 2d d=  and 1 2T Td d= . Three positions of the welding are consid-

ered defined by the values of the parameter   1, 2 and 3l = . 

From the figure it is observed that the first frequency is the one that changes more rapidly for
1l =  and the second frequency for 2, 3l = . With a reduction of rigidity from 106 to 105 the fre-

quency already changes to a value of 80% for the first frequency (referred to the frequency of the 
undamaged structure) and 1l = ; and a similar reduction is observed for the second frequency when

 2, 3l = . Thus, the method can serve as a good prediction method of damage detection when the 

reduction of stiffness is still very low. 
Finally, the effect of welding inertia is considered. The results are presented in Table 4 and it can 

be observed again that when the added mass is large (a 2% of the total beam mass) it is no longer 
possible to recover the dynamic properties of the undamaged beam for all cases (in fact it is only 
possible for the first frequency, with 2l = ). The amount of added mass that limit the go back to the 
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undamaged beam depends on the welded position, thus, for 3l = the fourth frequency cannot be 
recovered for a value of added mass of 1%. This is a very interesting result for the evaluation of 
damage of welded structural elements since depending on the added mass, somehow it is needed the 
starting state of the welded structural element before it can be evaluated if the bond is damaged or 
not. 
 

 s ࣅ
 ૚ [E6]ࢾ

 ૝࣏ ૜࣏ ૛࣏ ૚࣏

2 

0.0010 0.2608 0.8425 0.0305 0.5150 

0.0050 0.3275 1.1200 0.0535 0.8235 

0.0100 0.4650 1.8250 0.1460 2.4050 

0.0125 0.5775 2.5425 0.3200 16.375 

0.0150 0.7475 4.1725 2.8750 - 

0.02 1.6980 - - - 

3 

0.0010 0.0069 0.6925 0.7440 0.0830 

0.0050 0.0089 0.9270 1.0325 0.2085 

0.0100 0.1280 1.5245 1.8010 - 

0.0125 0.0157 2.1760 2.7560 - 

0.0150 0.0193 3.6740 5.5495 - 

 0.02 0.0305 - - - 

Table 4: Value of the nondimensional rigidities 1d  to recover the i-th frequency of the first  

four natural modes with the variation of the nondimensional welding mass ݏ andrq .  

We take 100r sq =   and 1 2 1 210000 10000T Td d d d= = = . 

 
4 CONCLUSIONS 

A method for the evaluation of the dynamic properties of welded structural elements has been pre-
sented. The method can consider any real boundary condition of the element and applications to 
simpler boundary conditions have been presented. 

For the simplest boundary conditions, the analytical approach can be used, leading to a non-
linear equation. However, even in these cases, the convergence of numerical methods is arduous. On 
the other hand, the FEM model can treat different boundary conditions and the eigenvalue method 
is accurate and fast. 

The impact of the welding characteristics in the system response has been presented and dis-
cussed. The main conclusion that can be inferred is that soon when rigidity at either side of the 
welding is decreased the dynamic characteristics of the structural element change enough to be de-
tected. Section 3 presents the most part of the results, where one can see the evolution of the first 
natural frequencies for different values of the welding stiffness. In fact, this change of the natural 
frequencies allows to determine the damage of the welding bond. It might be interesting to quantify 
this damage experimentally to fully validate the proposed method in this work.  

The model that we have presented includes the added mass due to the welding process. It has 
been shown that there exist values of the mass for which the dynamic properties of the undamaged 
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structural element cannot be recovered. This is a very interesting result since if the method of vibra-
tion test is used to detect the damage of a welded element, a reduction of the natural frequencies 
could already exist from the moment when the element was repaired, due to the added mass. Thus, 
the dynamic properties of the welded element should be the base to compare with and not the dynamic 
properties of the undamaged structural element. 

Another conclusion that can be drawn from the results presented is that, in general, several 
frequencies should be considered when evaluating if a welded structural element is damaged. Depend-
ing on the welding location the first frequency may not be affected by the loss of rigidity at the bond 
connection. This result is in contrast to other investigations that used a vibration based method to 
determine the damage of a beam due to cracks and considered only the change of the first natural 
frequency. 
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