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Abstract 
Using GDQ method, the radial and circumferential stresses in an 
annular FGM plate with a uniform thickness under a transverse 
axisymmetric load is investigated. It is assumed that a uniform 
radial magnetic field acts on the top surface of the plate. The mod-
ulus of elasticity E and the magnetic permeability coefficient 
 of the plate along its thickness are assumed to vary according to 

the volume distribution function. The Poisson’s ratio is consid-
ered to be constant. Based on the classical plate theory (CPT), 
equilibrium equations are deduced and the displacement fields are 
determined. The radial and circumferential stresses as well as 
transverse and radial displacements are obtained accordingly. The 
effect of volume fraction function power m on the maximum deflec-
tion in the absence and presence of the magnetic field is also inves-
tigated. Moreover, the effect of t/a and b/a ratios on displacements, 
stresses, induction magnetic field intensity and the resulting Lo-
rentz force are also investigated. According to the results, for dif-
ferent points along the radial direction, the application of radial 
magnetic field to the top surface of the plate completely changes 
the state of stress in both tangential and radial directions, resulting 
in tensile and compressive stresses in these two directions. The 
results also indicate that in presence of magnetic field, the plate 
displacement and stress components are lowered considerably. 
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1 INTRODUCTION 

Functionally graded materials (FGM) are heterogeneous composites which are usually a com-
bination of ceramic and metal, or a combination of two or more different metals. Properties of 
FG materials change uniformly and continuously across the thickness, from point to point, 
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according to a function. These materials can be used when good thermal and mechanical re-
sistances are required simultaneously. For example, in a FGM plate made of ceramic and 
metal, the ceramic sector is a good insulator against heat and thermal shocks while the metal-
lic sector acts as a good resistance against mechanical loads. The unique properties of these 
materials are due to their composite nature and their physical properties which gradually 
change across the thickness of the specimen. This in effect reduces the hysteresis stresses, as 
well as the stress concentration, with a significant improvement in mechanical properties of 
the overall material, especially at the ceramic and metallic junction. 

In recent years, considerable research has been oriented toward FGM plates to better un-
derstand their behavior under various loading conditions. Bayat et al. (2014) investigated the 
magneto-thermo-mechanical response of a FGM annular rotating disc with variable thickness 
and observed that unlike the positive radial stresses developed in a mechanically loaded FGM 
disk, in a FGMM (functionally graded magneto-elastic material) disk, the radial stresses due 
to magneto - thermal load can be both tensile and compressive. Behravan Rad and Shariyat 
(2015) analyzed a porous circular FG plate with variable thickness subjected to non-
axisymmetric and non-uniform shear along with a normal traction and a magnetic actuation. 
The plate was supported on a non-uniform Kerr elastic foundation. They evaluated the effect 
of material, loading, boundary and elastic foundation on the resulting displacement, stress, 
Lorentz force, electromagnetic stress and magnetic perturbation quantities. Chi and Chung 
(2006) studied the mechanical behavior of FGM plates under transverse load using a numeri-
cal method. Ma and Wang (2003) studied nonlinear buckling and bending behavior of FGM 
circular plates under mechanical and thermal loads based on the classical nonlinear von Kar-
man plate theory. They discussed the effects of material power distribution function and 
boundary conditions on the temperature distribution, nonlinear bending, critical buckling 
temperature and thermal post-buckling behavior of the plate in details. Najafizadeh and Hey-
dari (2004) analyzed thermal buckling of FGM circular plates under various thermal loads 
based on higher order shear deformation theory (HSDT) and compared their results with 
those obtained using first order shear deformation theory (FSDT) and classical plate theory 
(CPT). They showed that HSDT theory predicts the behavior of FGM circular plates with 
higher precision compared to FSD and CP theories. Praveen and Reddy (1998) studied the 
thermo elastostatic and thermo-elastodynamic response of FGM plates subjected to varying 
pressure and temperature loading. They showed that the combination proportion of materials 
in FGM plates plays an important role on determining their response. Reddy et al. (1999) 
analyzed axisymmetric bending and stretching of FGM annular plates using the first-order 
shear deformation Mindlin plate theory and concluded that this theory gives good results on 
FGM annular plates whenever the Kirchhoff solution is not applicable. 

Reddy (2000) presented a theoretical solution and finite element model of FGM rectangu-
lar plates based on third order shear deformation theory (TSDT) and studied the effect of 
material distribution on deflections and stresses. Saidi et al. (2009), investigated the bending 
and buckling behavior of FGM circular plates, based on the third-order shear deformation 
theory and compared their results with those of first order shear deformation theory. Apply-
ing finite Hankel integral transforms, Wang and Dai (2004) obtained analytical expressions 
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for magneto dynamic stress and perturbation response of an axial magnetic field vector in an 
orthotropic cylinder under thermal and mechanical shock loads. They deduced the response 
histories of dynamic stresses and the perturbation of the field vector.  Yuda and Jing (2009) 
obtained the electrodynamic equations and electromagnetic force expressions of a current-
conducting thin plate in an electromagnetic field, based on Maxwell equations. They investi-
gated the nonlinear sub-harmonic resonance of the thin plate with two simply supports on 
opposite sides under a mechanical live load. In their analysis, an inconstant transverse mag-
netic field load was applied as well.  

Ghorbanpour Arani et al. (2010) presented a semi-analytical solution for magneto-
thermo-elastic problem in a functionally graded (FG) hollow rotating disks with variable 
thickness under uniform magnetic and thermal fields. They showed that imposing a magnetic 
field on the disk significantly decreases tensile circumferential stresses. Using GDQ method, 
Lal and Saini (2015) analyzed the effect of two-dimensional non-homogeneity on transverse 
vibration of orthotropic rectangular plates of bidirectional thickness variation on the basis of 
Kirchhoff’s plate theory. They investigated the effect of non-homogeneity parameters, density 
parameters, thickness parameter and the aspect ratio on natural frequencies, for the first 
three modes of vibration. In another paper which was published in the same year, they also 
investigated the effect of uniform tensile in-plane forces on the radially symmetric vibratory 
characteristics of functionally graded circular plates with linearly varying thickness along 
radial direction. The plate was resting on a Winkler foundation. 

In this research, the effect of a radial magnetic field on a FGM annular plate is analyzed. 
The plate is subjected to a transverse mechanical load as well as a transverse load fz deduced 
from the radial magnetic field applied to the top surface of the plate. Due to complexity of 
the problem, the deduced differential equations are solved using DQM method. This is a nu-
merical scheme which can be accurately applied to problems with or without a close form 
solution. Applying the classical plate theory, the effect of volume fraction function power m 
and the perturbation of magnetic field vector are studied on the induced displacement and 
stress components. Moreover, the effect of t/a and b/a ratios on the displacement and stress 
fields are studied.  
 
2 BASIC FORMULATIONS 

Consider a radial magnetic field vector H

 as shown in Figure 1. The resulting Lorentz force 

(fz) and the perturbation of electric field vector e


 act along z and   directions respectively. 
Now assume an annular circular plate with a uniform transverse load Po acting on its top 
surface (see Fig. 2) is exposed to this magnetic field. As a result, the total transverse load 
acting on the plate, along z direction, would be qz (qz=Po+ fz). This will induces a displace-
ment field vector U


 in the plate.  
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Figure 1: Radial magnetic field vector. 

 

 

Figure 2: Geometry, loading and coordinate system of the annular plate. 

 
Assuming the magnetic permeability )(z of the plate is equal to the magnetic permeabil-

ity of its surrounding, neglecting the displacement electric currents, the Maxwell’s electrody-
namics equations for the plate may be written as (Wang and Dai, 2004); 
 

j h  

,  )()( HUcurlHUh


 ,  0h div


 (1)
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where j


 is the surface density vector of the electric current, e
  is the perturbation of the 

electric field vector, h


 is the perturbation of the magnetic field vector and to  is the time. 
On using cylindrical coordinates ),,( zr  , application of the magnetic field vector )0,0,( rHH


to 

Eqs. (1) and (2), results in; 
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To deduce the equilibrium equations, it is assumed that the plate properties are distrib-
uted along the thickness according to equations (8) - (10).  
 

m

t

z
zg )

2
1()(   (8)

 

21 ))(1()()( EzgEzgzE   (9)
 

21 ))(1()()(  zgzgz   (10)
 

Here, m is the volume fraction function power, t is the plate thickness which is assumed 
to be uniform and 1E , 2E , 1 and 2 are the elastic moduli and magnetic permeability coeffi-

cients of phases 1 and 2 of the FG material, respectively (see Table 1, Ghorbanpour Arani et 
al. 2010). Moreover, the Poisson’s ratio  of the plate is considered to be constant. 
 

FGM plate properties 

Phase Material E (GPa) µ (H / m) ν 

1 ( Ceramic ) Zirconia 151 2.63225901 E-6 0.3 

2 ( Metal ) Aluminum 70 1.256665081 E-6 0.3 

Table 1: Mechanical properties of  the individual constituents used for the  

annular FGM plate (Ghorbanpour Arani et al. 2010). 
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In axisymmetric problems, deflection w, stresses and strains are independent of the cir-
cumferential direction and hence, their derivatives with respect to   are equal to zero. Con-
sequently, in the present study, due to axisymmetric loading, deflection w becomes only a 
function of r and one may write; 
 

dr

rdw
zruzru rr

)()(),( 0   (11a)

 

0),( zru (11b)
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Additionally: 
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0 zrz    (12c)
 

where 0u  is the displacement of the middle surface of the FGM plate. Using Hooke's law, the 
radial and circumferential stresses are;  
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Expressing the total potential energy as fU V   , then the strain energy U and the 

potential energy of the external forces fV are equal to; 
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Application of minimum total potential energy ( 0 ) to the plate, results in equation 

(15). 
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In Eq. (15), rQ  and zq (qz=Po+fz) are the shear force resultant and transverse load, iN  

and, iM  ,ri  , are the resultant forces and moments, and is the small transverse nor-

mal rotation about  axis, respectively. Using equation (15), the equilibrium equations may 
be written as follow: 
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Simplifying Eqs. (16), one may write; 
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On using Eq. (12), Eq. (13) may be written as; 
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where; 
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Based on Eqs. (17a) and (20a), one may write; 
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On using Eqs. (17b) and (20b) and substituting o zP f for )(rqz , one can obtain: 
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To solve the above equilibrium equations, four types of boundary conditions are consid-
ered as follow;  

1. Clamped-Clamped (C-C) supports; Here, the outer and inner edges of the plate are 
clamped. In this case, the boundary conditions are;  

 

0)(,0)(,0)(,0)( 
dr

adw
aw

dr

bdw
      b w   

 

2. Simply supported-Clamped (SS-C); Here, the outer edge of the plate is clamped while 
the inner edge is simply supported. In this case, the boundary conditions are;  

 

( )( ) 0 ( ) 0 , ( ) 0 0r
dw a

 w b    ,  M b  w a    ,    
dr
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3. Free-Clamped (F-C); Here, the outer edge of the plate is clamped while the inner edge 
is free. In this case, the boundary conditions are; 

 

0)(,0)(,0)(,0)( 
dr

adw
      aw b    M  bN rr  

 

4. Simply supported-simply supported (SS-SS): Base on this type of boundary condition, 
the outer and inner edges of the plate are simply supported. In this case, the boundary 
conditions are; 

 

( ) 0 ( ) 0 , ( ) 0 ( ) 0r r w b    , M b  w a    ,    M a     
 

To solve the equilibrium equations (22) and (23), generalized differential quadrature 
(GDQ) is used, as will be described next. 
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3 GENERALIZED DIFFERENTIAL QUADRATURE (GDQ) 

GDQ is a numerical method that approximates the derivative of a function with respect to a 
variable as the sum of weighted linear function values at all domain points. This may be 
written as;  
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where n is the number of grid points in r direction. In this work, for interval b ≤ r ≤ a,  Che-
byshev polynomials are used to identify the grid points. These point are defined by Eq. (25).  
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Additionally, the Lagrange interpolating polynomials are used for the test functions as: 
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In Eqs. (28) and (29), the terms Cij and Cii are defined as; 
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Based on these notations, application of GDQ method to Eqs. (22) and (23), results in 
Eqs. (32) and (33), which may be written as; 
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For simplicity, we define each term in Eq. (32) as a separate parameter defined in Eqs. 
(34)- (38). 
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   1 0F   (38)
 

Similarly, the terms in Eq. (33) are defined in Eqs. (39)- (44). 
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   1 0F P  (44)
 

According to Eqs. (32) to (44), equilibrium Eqs. (32) and (33) may be written in a matrix 
form as;  
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 (45)

 

Here, n and nn are the total number of grid points in r and z directions respectvely. In 
Eqs. (45), the determinant of matrix [K] is equal to zero. Application of the previously de-
scribed boundary conditions to Eq. (45) results in values of wi (i = 1, n) and ui (i = 1, n). 
Using these values, one can calculate the radial and tangential stresses in each case.. 
 
4 NUMERICAL RESULTS AND DISCUSSION  

To investigate the effect of plate geometric parameters on the induced displacements and 
stresses, it is assumed that the annular FGM plate is experiencing a uniform mechanical load 

4
0 210 ( )N

P
m

  and a magnetic field of 
m

A
H r

6103 . The bottom and top surfaces of the 

plate are made from pure metal and pure ceramic, respectively. The material properties used 
to extract the results are given in Table 1. Also, the dimensionless parameters used in the 
upcoming figures are defined as; 
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Figures 3 shows the variation in midplane deflection in terms of r

a
 , based on four differ-

ent types of boundary conditions given in section 2. In all cases, the transverse load zq  is the 

sum of mechanical and magnetic loads. According to this figure, for all values of m, the plate 

deflection is maximum at 0.66r

a
  for case (a), while for case (b), it occurs at 0.52r

a
 . For 

cases (c), and (d), this value occurs at 0.60r

a
 , and free inner edge of the plate, respectively.  

 

 

(a) (C-C) supports (b) (SS-C) supports 

 
(c) (SS-SS) supports (d) (F-C) supports 

Figure 3: The effect of parameter m on transverse deflection of the plate for  

three different support conditions. 
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As expected, the (C-C) condition experiences the least deflection among all cases. In all 
cases, a pure ceramic plate with m = 0, experiences the least deflection compared to other 
values of m. This is due to an increase in flexural rigidity of the plate which is caused by a 
decrease in m.  

To investigate the effect of parameter m on radial deflection, a typical (C-C) plate with 
similar loads and dimensions was selected. According to the results shown in Fig. 4, any in-
crease in power ratio m has a similar effect on midplane radial displacement. According to 
these results, for a homogeneous plate with m = 0, the radial displacement of the midplane is 
equal to zero. This is due to symmetry in mechanical properties of the plate which makes 11B  

equal to zero. In addition, it is realized that zero radial deflection occurs at a point where 

transverse deflection w is maximum ( 0.66r

a
 ). 

 

 
Figure 4: The effect of parameter m on the midplane radial displacements, (C-C) supports. 

 
 

Further examination of the results revealed that as long as a

b
 ratio remained equal to 5, 

zero radial displacement occurred at 0.66r

a
 , regardless of the value for m (see Fig. 5). 

Figures 6-9  show the variation in radial and tangential stresses in midplane due to a 
combination of transverse load Po and a radial magnetic field H


. The plate dimensions for 

different values of m are given in each figure. According to these figures, for all types of 
boundary conditions discussed before, higher values of m ( 20  m ) result in higher abso-

lute magnitude of both stress components. For m = 0 (a homogeneous plate with 11 0B  ), 

both midplane stress components are equal to zero. 
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Figure 5: The effect of variation in plate dimensions on radial displacement, (C-C) supports. 

 

 

(a) Radial stress distribution (b) Tangential stress distribution 

Figure 6:  The effect of parameter m on the mid-plane radial stresses based on (C-C) supports. 

 
Additionally, the nature of variation in both stress components appears to be highly de-

pendent on the type of boundary conditions imposed on the plate. The results indicate that 
(SS-C) boundary conditions produce the least radial stress, while a plate with (F-C) bounda-
ry conditions experiences the highest tangential stress in the midplane.  
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(a) Radial stress Distribution (b) Tangential stress distribution 

Figure 7: The effect of parameter m on the mid-plane radial stresses based on (SS-C) supports. 

 

 

(a) Radial stress distribution (b) Tangential stress distribution 

Figure 8: The effect of parameter m on the mid-plane radial stress based on (SS-SS) supports. 

 
The effect of magnetic field variation on displacement and stress components are shown 

in Figs. 10-13, for a typical plate with clamped supports. These results are based on the value 
of m = 1. Although not shown, similar behaviors were observed for other values of m. 

According to Fig. 10, exposure of the plate to a radial magnetic field has a substantial ef-
fect on its deflection. Any increase in magnetic field H


 causes a decrease in plate deflection in 

presence of a transverse load Po. The location of maximum displacement seems to barely 
depend on the magnitude of H


. 
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(a) Radial stress distribution (b) Tangential stress distribution 

Figure 9: The effect of parameter m on the midplane radial stresses based on (F-C) supports. 

 

 

Figure 10: The effect of radial magnetic field variation H

 on plate transverse deflection w, (C-C) supports. 

 

Similar effect was observed for radial deflection ru

a
, in presence and absence of the mag-

netic field H

 (see Fig. 11). In either case, the magnitude of the transverse mechanical load is 

Po. These results are extracted for m = 1. According to this figure, the presence of the radial 

magnetic field shifts the location of zero radial displacement ru  from 0.57r

a
  to 66.0

a

r
, 

while substantially decreasing its extrema.  
Figures 12 and 13 show the additional effect of magnetic field H


 on radial and tangential 

stress components induced in the plate, based on m = 1. The introduction of magnetic field 
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vector substantially affects the location and values of both stresses at the inner and outer 
edges of the plate, as well as other locations. Additionally, any change from positive to nega-
tive stresses in both directions seems to be highly affected by the presence of magnetic field. 
 
 

 

Figure 11: The effect of radial magnetic field variation H

 on plate radial deflection, (C-C) supports. 

 
 

 

Figure 12: The effect of radial magnetic field variation H

 on plate radial stress, (C-C) supports. 
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Figure 13: The effect of radial magnetic field variation H

 on plate tangential stress, (C-C) supports. 

 
Figures 14-17 show the variation in Lorentz force and the induction magnetic field inten-

sity along the plate radius, for the four types of boundary conditions discussed before. The 

results are given for the plate midplane. Unlike the Lorentz force, distribution of zh  along the 

plate radius appears to be a function of m. Higher values of m result in higher values of zh .  

 

  

(a) Lorentz force distribution (b) Induction magnetic field intensity distribution 

Figure 14: The effect of variation in power m on (a) Lorentz force fz  and  

(b) induction magnetic field intensity for (C-C) supports. 
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(a) Lorentz force distribution (b) Induction magnetic field intensity distribution 

Figure 15: The effect of variation in power m on (a) Lorentz force fz  and  

(b) induction magnetic field intensity for (SS-C) supports. 

 

 

(a) Lorentz force distribution (b) Induction magnetic field intensity distribution 

Figure 16: The effect of variation in power m on (a) Lorentz force fz  and  

(b) induction magnetic field intensity for (SS-SS) supports. 

 
According to these figures, the (SS-SS) boundary conditions appear to exhibit less com-

plex distribution for both Lorentz force and the induction magnetic field intensity along the 
plate radius. 
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(a) Lorentz force distribution (b) Induction magnetic field intensity distribution 

Figure 17: The effect of variation in power m on (a) Lorentz force fz  and  

(b) induction magnetic field intensity for (F-C) supports. 

 
Figures 18-21 show the effect of variation in plate geometry on the resulting stress and 

displacement components for a plate with a typical (C-C) boundary conditions. Here, the 
three geometric parameters a, b and t are changed in the same proportion. Other parameters 
are kept the same as before. According to Figs. 18 and 19, location of maximum w and zero 
radial displacement barely depends on the plate dimensions. 
 

 

Figure 18: The effect of variations in plate dimensions on transverse deflection, (C-C) supports. 
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Additionally, reducing the plate dimensions will lower the magnitude of displacement 
components, and hence relevant stresses are reduced, as shown in Figs. 20 and 21. This is due 
to plate stiffening as a result of lower dimensions and lower plate’s inner radius. 
 

 

Figure 19: The effect of variation in plate dimensions on radial displacement, (C-C) supports. 

 

 

Figure 20: The effect of variation in plate dimensions on radial stress distribution, (C-C) supports. 
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Figure 21: The effect of variation in plate dimensions on tangential stress distribution , (C-C) supports. 

 
The effect plate dimensions on Lorentz force and the induction magnetic field intensity 

are shown in Figs. 22 and 23, for a typical plate with (C-C) supports. According to Fig. 22, in 

contrast with zh , the Lorentz force distribution along the plate radius does not seem to de-

pend much on the plate dimensions. Figure 23 indicates that any change in the plate dimen-

sions barely affects the location of zero value for zh . 

 

 

Figure 22: The effect of plate dimensions on Lorentz force distribution, (C-C) supports. 
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Figure 23: The effect of plate dimensions on the induction magnetic field  

intensity distribution, (C-C) supports. 

 
Figure 24 shows the transverse displacement of different points across the plate thickness  

at 0.66r

a
  (location of maximum transverse deflection). The results are plotted for different 

values of m in Fig. 24(a) and different values of Hr in Fig. 24(b). The applied loads and 

boundary conditions, as well as the plate dimensions are as shown. According to Fig. 24(a), 
for an isotropic plate with m=0, all points across the plate thickness have the same deflec-
tion. For higher values of m, the transverse deflection becomes more gradual across the plate 
thickness. According to Fig. 24(b), any variation in Hr does not seem to highly affect the 

transverse deflection across the plate thickness. 
Figures 25 and 26 show the variation in Lorentz force and the induction of magnetic field 

intensity across the plate thickness. According to these Figures, for m=0, zf and zh  are con-

stant along the plate thickness. For other values of m, the distribution of Lorentz force and 
the induced magnetic field intensity across the plate thickness appear to highly depend on m. 

The results on these figures are based on 66.0
a

r  (location of maximum transverse deflec-

tion). According to figure 25, the magnitude of zh  is the highest on the top surface of the 

plate while Fig. 26 indicates that the peak value of the Lorentz force appears to be at the 
bottom. 
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(a) Variation in m (b) variation in rH  

Figure 24: The effect of parameter m and Hr on transverse deflection of the  

plate along z direction, (C-C) supports. 

 

 

Figure 25: The effect of power m on distribution of the induction magnetic  

field intensity across the plate thickness, (C-C) supports. 
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Figure 26: The effect of power m on Lorentz force distribution along the plate thickness, (C-C) supports. 

 
Variations in radial and tangential stress components along the plate thickness are shown 

in Figs. 27 and 28, respectively. The results are for a typical plate with clamped supports. It 

is assumed that m = 1 and 66.0
a

r  (location of maximum transverse deflection). For small 

values of Hr both stress components seem to change almost linearly across the plate thickness. 

The maximum values of both stress components appear to be at top surface of the plate. 
 

 

Figure 27: The effect of radial magnetic field on radial stress component  

accros the plate thickness, (C-C) supports. 
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Figure 28: The effect of radial magnetic field on tangential stress component  

across the plate thickness, (C-C) supports. 

 
It is worth to mention that based on the values given in Figs. 12-13 and 27-28, for all 

values of Hr, zero radial and tangential stresses occur both in radial and transverse directions. 

The locations of zero stress components across the plate thickness appear to be on a surface 
which is slightly above the z =0 plane. 
 
5 CONCLUSIONS 

In this work, the radial and transverse displacements, as well as the radial and circumferen-
tial stress components in an annular FGM plate subjected to a combination of transverse 
load Po and Lorentz force fz, were calculated based on four types of boundary conditions. The 
elastic modulus of the plate as well as the magnetic permeability coefficient across the plate 
thickness were assumed to vary according to the volume distribution function, while the Pois-
son’s ratio was taken to be constant. Classical plate theory was applied to analyze the prob-
lem. The deduced equilibrium equations were solved using generalized differential quadrature 
method. According to the results, the effect of additional load fz induced by the radial mag-
netic field H


 seems to be substantial on plate radial and transverse deflections. Additionally, 

in presence of a transverse load Po, application of a radial magnetic field to the plate top 
surface, completely changes the state of tangential and radial stresses along its radius, 
resulting in positive and negative stresses in these two directions. The effect of additional 
transverse load fz induced by the magnetic field vector H


on both stress components across 

the plate thickness seems to be more on bottom surface (pure metal). Moreover, the 

magnitude of the Lorentz force and the induced magnetic field intensity zh  across the plate 

thickness appear to highly depend on the volume fraction function power m. Introduction of a 
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magnetic field Hr to a plate which is already loaded by a transverse load Po reduces the plate 

displacement and stress components, and hence, resulting in a higher factor of safety in the 
plate. 
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