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Abstract 
A combination of vectorial form of wave method (VWM) with 
Fourier expansion series is proposed as a new vehicle for free and 
forced vibration analysis of stepped cylindrical shells with multiple 
intermediate flexible supports. The flexible supports can include 
springs with arbitrary properties in the possible directions. Based 
on Flügge thin shell theory and VWM, the reflection, propagation, 
and transmission matrices for a circular cylindrical shell are de-
fined. Furthermore, contiguous vector-matrix relationships are 
established for free and forced vibration analysis of the issue in-
cluding an arbitrary number of the discontinuities in the shell 
thickness, or shell steps, and intermediate supports. Using these 
vector-matrix relations, the equations of motion as well as the 
system continuity are well satisfied. Dimension of these vectors 
and matrices are completely, independent of the number of the 
applied supports and geometrical steps in the shell. Hence, the 
present approach provides excellent computational advantages and 
modeling flexibility compared to the conventional vibration analy-
sis methods available in the literature. The results of the present 
study are compared with the results available in the literature as 
well as the results of finite element method (FEM) and found in 
excellence agreement. Furthermore, as a case study case, a cylin-
drical shell with three flexible intermediate supports and also 
three geometrical steps is considered. The natural frequency and 
mode shapes of the issue are derived, and the forced responses of 
the shell subject to point load excitation are reported. 
 
Keywords 
Intermediate flexible supports; stepped cylindrical shell; extended 
vectorial-wave method; free and forced vibration. 
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1 INTRODUCTION 

Using intermediate supports for long pipe uniform or non-uniform shells in many industries is a com-
mon way for protecting the system from the occurrence of resonance failure and improving the sys-
tem robustness. In this regard, rigidity consideration for the supports applied, called classical sup-
ports, is an over simplified assumption bring significant deviations between the theoretical and exper-
imental results. It is clear that as much as the characteristics of non-rigid supports can play a great 
rule on variation of the responses of the whole vibrating system. In addition, existence of discontinui-
ty in the shell thickness or shell steps is inevitable in many industrial elements such as accumulators, 
fluid tanks and pipes. Hence, following the importance of the support characteristics and the non-
uniform thickness of the shell in the practical application, the researchers have been encouraged to 
examine these effects on the vibration analysis of shells like in Zhou et al. (2012), Qu et al. (2013), 
Chen et al. (2015), Chen et al. (2013), and finally Wang et al. (1997). In this way, different numerical 
methods, e.g. finite element method (FEM) like in Salahifar and Mohareb (2012), weighted residual 
method as in Qu et al. (2013), generalized differential quadrature method (GDQ) as in Loy et al. 
(1997), and analytical solutions, e.g. close form solutions as those represented by Chen et al. (2013), 
wave based method (WBM) like in Chen et al. (2015), transfer function method (TFM) as in Zhou et 
al. (1995) and state space techniques (SST) like in Zhang and Xiang (2007), are proposed for analysis 
of such systems.  

Analytical modeling of vibrations of uniform shells with interior supports has been a critical issue 
in the recent analytical studies, perhaps due to requirement of satisfying the continuity and the sup-
port conditions simultaneously, like in Qatu (2002), Xiang et al. (2002), Zhang and Xiang (2006) and 
Loy and Lam (1997). Hence, a few researches been conducted in this area, and their proposed meth-
ods are numerated and contain several limitations. For example Xiang et al. (2002) solved the issue of 
free vibrations of a uniform shell with several intermediate ring-, or radial rigid-supports. They pro-
posed a state-space technique combined with domain decomposition method in order to satisfy conti-
nuity as well as support conditions of the issue. In this direction, Zhang and Xiang (2006) with the 
same methodology proposed in Xiang et al. (2002), solved the problem of free vibrations of a uniform 
open shell with multiple intermediate Ring Supports (RS). Although the results of the method pro-
posed in Xiang et al. (2002) are promising as an analytical method, the applied intermediate RS were 
not flexible and were only limited in the one direction, i.e. radial direction. The vibration analysis of 
stepped shells and modeling of the flexible supports are possible using the numerical methods, e.g. 
FEM where proposed in Qu et al. (2013). However, solving the problem demands several degrees of 
freedom for the issue and accordingly extensive memory resources and high computational resources 
(this important evaluated in Qu et al. (2013)). Moreover, in special applications such as designing 
with optimization, systems controls, inverse problems, and real time applications, accurate and fast 
system responses as well as low system memory are required simultaneously. Thus, in the mentioned 
applications, applying the conventional and efficient numerical methods like FEM may fail to capture 
the shell response within a reasonable computational time and accuracy.  

In contrast with the numerical methods that demand high memory and computational costs, the 
analytical approaches requires not only low memories but also low computational costs. However, as 
mentioned, the available analytical methods are deal with major limitation on introducing flexible 
intermediate supports. Hence, it is clear that developing new approaches which are capable of provid-
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ing robust, fast, and accurate results for vibration analysis of shells, is highly demanded to deal with 
the design problems with less limitations and more capabilities.  

Vectorial wave method (VWM) is a well-known method, which was first introduced by Mace 
(1984) and applied to free and forced vibration analysis in straight beams. Thereafter, VWM was 
applied in vibration analysis of several wave guide elements such as bars, Hagedorn and Das-Gupta 
(2007), straight-,Mase (2005), and curved-beams and frames in two,Lee et al. (2007), or three dimen-
sions, Mei (2016), rings, Huang et al. (2013), plates, Ma et al. (2015) and Renno and Mace (2011), 
and membranes, Bahrami et al. (2012). However, this method has not been extended for other me-
chanical elements such as shell like geometries. 

Review of the literature shows that there have been few attempts for extension of VWM to more 
complex issues such as existence of multiple geometrical steps or multiple intermediate supports in 
considered geometry. Nikkhah-Bahrami et al. (2011) have proposed a modified form of VWM for free 
vibration analysis of non-uniform mechanical elements (beams) with arbitrary numbers of discontinu-
ities. They demonstrated that by distinctive combinations of VWM matrices and their inversions, it 
is possible to provide a reduced order vector-matrix relationship, independent of number of disconti-
nuity of the considered issue. However, due to singularity of the reflection and transmission matrices 
in the vicinity of rigid intermediate supports, the proposed method in Nikkhah-Bahrami et al. (2011), 
cannot be extended to the issues with intermediate supports. To the authors’ best knowledge which is 
supported by a critical literature survey, the VWM has not yet been utilized for vibration analysis of 
shell elements or problems with interior supports perhabs due to lack of establishment of proper wave 
vectors and relevant matrices. 

The present study aims to extend VWM method to the case of stepped cylindrical shell elements 
with interior flexible supports, as barriers in the direction of the wave dispersion. Hence, proper wave 
vectors and relevant matrices relationships for these kinds of wave barrier are stablished. By intro-
ducing a canonical relationship between carrier waves and the displacement field, a general case 
study including possible barriers in the path of wave motion, flexible intermediate support types and 
geometrical steps, are considered. Base on carrier wave vector motion in each shell segment and 
communication between the waves in all the shell interfaces, extended VWM is utilized for free and 
forced vibration analysis of cylindrical shells with discontinuities in their thickness in the presence of 
several intermediate flexible supports. 
 
2 GOVERNING EQUATIONS 

Figure 1 shows a cylindrical shell with the length L, thickness h, Poisson ratio μ, Young's modulus E, 
density ρ and middle layer radius a. The governing equations of motion based on Flügge theory for a 
cylindrical shell as demonstrated in Figure 1 can be expressed as follows: 
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where, Lij (i,j=1,2,3) are differential operators as shown in appendix A. Furthermore, ux,θ,r are the 
spatial displacements of the shell middle layer in the axial, x, circumferential, θ, and radial, r, direc-
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tions, respectively. Using time harmonic functions and complex Fourier expansion in the circumferen-
tial direction, as to satisfy Eq. (1), the displacement fields can be represented in the respective direc-
tions as: 
 

 

Figure 1: Wave’s motion in a homogeneous cylindrical shell with flexible ended supports. 
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where, C is a constant;   and   are displacement ratios, which are respectively introduced as α=uθ

/ux  and β=ur/ux. In Eq. (2), λ is the wave number, n is the circumferential mode number (or integer 

constant of the Fourier terms) and ω is circular frequency. In fact, Eq. (2) consists of the displace-
ment field regarding to all possible real and imaginary excitation responses of the shell. To obtain 
real parts of the calculated results, a half-range expansions of the Fourier series is enough for the 
issue, i.e. n=0 to ∞. To establish the parameters of λ and ω, Eq. (2) is substituted in the equation of 
motion, Eq. (1), which yields: 
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where Λ is a dimensionless wave number as Λ=λa, and χij (i,j=1,2,3) are the matrix elements. The 

expressions (A,B,C,D)ij (i,j=1,2,3) are given in Appendix B. To achieve the non-trivial results and 

hence the non-zero displacement fields, the determinant of the coefficients matrix in Eq. (3) should be 
equal to zero, i.e. | χij |=0. 

By defining a dimensionless frequency Ω=ωa((1-μ2)ρ/E)0.5 (or frequency factor) as the matrix 
square eigenvalues [ χij], we can achieve a logical relationship among the dimensionless wave numbers 
Λ and frequency factor Ω with the aid of | χij |=0. These relations are established for all kind of ve-
locities of wave’s dispersion in the shell, i.e. the phase velocity and the group velocity of the waves 
(Lee et al. (2007) and Karczub (2006)) where this issue will not be discussed here. Mathematically, 
|χij |=0 leads to a polynomial of degree four in terms of square of dimensionless wave number Λ2 as 
follow: 
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in which Ai (i=0,2,4,6,8) are five coefficients represented in the appendix C. The eight possible roots 
of Eq. (4) are analytically derived and discussed in appendix D. According to the wave theory, dis-
placement fields, Eq. (2), can be expressed in the form of 


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n
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rθxU ,,

can be described as linear combinations of eight harmonic functions in the x, θ and r directions as 
follows: 
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where, expressions 
ja and 

ja ( 8..., ,1j ) are the positive and negative going wave amplitudes of kind of 

carrier waves where in fact, they are carring Lamb waves in the axial direction of the shell. These 
wave amplitudes show the contribution of each corresponding wave in the displacement fields of the 
vibrating shell. These waves can be of kind of pure harmonic (or propagating waves), or harmonic-
damping (or standing waves) or pure damping (or evanescent waves) waves depending on the corre-
sponding wave number values (see appendix D). For the above composition, based on the conjuga-
tion of roots of Eq. (4), the wave numbers are arranged as 0 , 4   mmm   where 4..., ,1m . 

 
3 MATRICES OF WAVE MOTION 

3.1 Force and Displacement Vectors 

For free vibration analysis of a cylindrical shell via VWM, the vectors of positive and negative going 
waves, governing the problem, are required to be defined. Thus, the following form is considered for 
wave amplitudes: 
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where, F are propagation matrices, a are vectors of wave amplitudes and 
xa  are waves vectors, that 

are all going in the right (+) or left (-) directions along with shell axis as depicted in Figure 1. By 
defining the vectors of amplitudes w  and f  for the displacement vector (w) and the force vector (f) 
both vectors of w and f are considered as follows: 
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where, in the above set of equations, 
xxN   and 

xxM   are the force and moment resultants expressions as 

represented in the Figure 2. On the other hand, the variables of 
xθT  and 

xrV   are known as Kirchhaff 
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parameters which are introduced in the Appendix E. In Eq. (7), prime symbol (') indicates that the 
term is divided by )exp(i t . 

 

 

Figure 2: Force and moment resultants in a circular cylindrical shell. 

 
To consider the impact of structural damping in cylindrical shell, the Young's modulus is adopted 

as )i1ˆ γ(EE  , where γ is the structural loss factor and Ê  is a real coefficient of Young's modulus 

related to the material used in the cylinder. 
 
3.2 Definition of Matrices ψ and φ 

By defining certain interface metrics, it is possible to express the displacement and force vectors by 
the positive and negative going wave vectors, respectively. Hence, by substituting Eqs. (5) in Eq. (7) 
yields following relationship: 
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where, ψ and  are matrices of displacement vectors and force vectors, respectively. These relations 

can be written as follows: 
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where, vectors of jφ  and jψ  (j=1,…,8) as elements of ψ  and  , as follows: 
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in which 12)1(  μEhk  and 123 ))1(12(  μEhD  are respectively membrane and bending stiffness of the 

shell. The relation between propagating wave vectors within the shell, e.g. a and b or b and a in 
the Figure 1, are made by the propagation matrices. The propagation matrix elements in the positive 
and negative direction, F , can be determined by the following relation: 
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where, F , introduced in Eq. (6), shows the propagation matrices in a cylinder with the length of 
x=L. 
 
3.3 Definition of Reflection and Transmission Matrices 

Taking into account the effects of flexible supports on the vibrations of cylindrical shell, it is neces-
sary to define the stiffness matrix. This matrix in location is defined as follows: 
 





















r

θ

rθ

x

K

K

K

K

000
000
000
000

K
 

(12)

 

The diagonal elements 
),,,()( rθθrxK are the stiffness coefficients of springs which are extended evenly 

in arbitrary position on the cylinder. The diagonal shape of the matrix in Eq. (12) is appropriate for 
the linear vibration analysis of continuous systems, such as cylindrical shells. 
 
3.3.1 Ended Supports 

The boundary conditions at the right and left supports, depicted in the Figure 1, should be satisfied. 
In order to satisfy these boundary conditions one can write: 
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According to Figure 1, the vectors of the incident wave amplitudes in the left and right bounda-
ries are a  and b , respectively. Moreover, the reflected waves vectors at these two boundaries are a  
and b , respectively. Now the reflection matrix is constructed by Eqs. (8) and (13). In this regard, 
these equations were set based on the incident ( a , b ) and reflected waves ( a , b ) vectors as fol-
lows: 
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where, 
BA,R are reflection matrices at the left and right borders of cylindrical shell, which can be de-

fined by the following equations: 
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It is clear that the set of equations of 
AR and 

BR  in Eqs. (15) can satisfy the flexible boundary 

conditions for the both ends of the cylinder.  
 
3.3.2 Wave Motion in Vicinity of Intermediate Supports and Shell Steps 

In the analytical and semi-analytical solutions provided for the free vibrations of cylindrical shells, 
rarely can we find references on the flexible intermediate supports in the literature. The present sub 
section is intended to consider the effect of interior supports and shell steps on the vibration analysis 
of the cylindrical shell. Hence, Figure 3 shows incidence of a wave with a barrier including of a flexi-
ble support and a shell step. 
 

 

Figure 3: Waves motion in the vicinity of intermediate wave barriers of kind of shell step  

and intermediate support at same position  
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ia . Thus, considering the continuity conditions and the 

balance of forces in the barrier between the ith and the (i+1)th segments of the shell, we have: 
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in which 
im)(K  is the rigidity matrix of the ith intermediate support of the ith barrier that is a diago-

nal matrix including of elements of spring stiffness coefficients in the relevant independent directions, 
i.e. x, rθ, θ and r in  Eq. (12). Using Eq. (8) in Eq. (16), and according to the equality of geometric 
and mechanical properties of the cylindrical shell in each segment, the following equality is concluded: 
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Reflection and transmission matrices that connect the incident wave vector to the barrier, 
ia , 

transmitted vector, 
ib , and reflected vector, 

ia , are defined as follows: 
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where, 
1, iit  is wave transmission matrix from left to right, i.e., from the ith to the (i+1)th segments, 

and ii ,1r is the reflection matrix of the incident wave between the two mentioned segments. Using 
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the results of Eq. (18) and rearranging Eq. (17), the reflection and transmission matrices can be ob-
tained as: 
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where, I is a four by four identity matrix. In a same manner, the reflection and transmission matrices 
in the opposite direction, i.e. right to left direction, can also be obtained. 
 
4 EXTENDED VECTORIAL WAVE METHOD 

In Figure 4, wave motion in a cylindrical shell with several elastic supports is shown. Accordingly, 
the relationship between the vectors of the output waves from the first intermediate support, i.e. 

1b

and 
1a , in terms of input waves vector to the support i.e. 

1b and 
1a , is as follows (it should be noted 

that for homogeneous materials like the present issue we have FFF   ): 
 

 

Figure 4: Waves motion in the vicinity of intermediate barriers of kind of intermediate supports and shell steps. 

 
  11,211,2112,112,11011      ,          ,)( bratbarbtaaFb L (20)

 

Moreover, by considering   0A0 aRa  and   110 )( bFa L  and using Eq. (20), we can write: 
 

  111 aa  (21)
 

where, 1 , as a positive going inductor matrix, is defined as follows:  
 

2,11,21A1
1

1,21A12,11 )()())()(( rtFRFrFRFIt   LLLL (22)
 

In a same manner, the following relation can be given between 
ia and 

ia  for the ith intermediate 

support, i=2…n-1, as:  
 

1,...,1
   ...,  ,222


 

ni
iii aaaa   (23)
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where, the same as those given in Eq. (24), 2  to 
 1n  are defined as: 
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)()())()((

...
)()())()((

1,,11
1

,111,

3,22,3212
1

2,32123,22
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
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
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



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LLLL

LLLL

iiiiiiiiiiiiiii rtFFrFFIt

rtFFrFFIt

 
(24)

 

Finally, in the nth segment of the shell, the following relations are established:  
 
















  1111B1    ,)(   ,   ,)( nnnnnnnnnnn LL aabFabRbaFb  (25)
 

The above equations consist of four equations with for unknown vectors, namely 
1na , 

1na , 
nb , 

and 
nb . Obviously, we can solve the sets of Eqs. (25) by each of these unknowns. For example, Eq. 

(25) can be solved by 
nb  as follows: 

 

0bRFFI  
 nnnn LL ))()(( B1  (26)

 

To achieve a non-trivial solution for free vibration analysis of the issue, using Eq. (26), the de-
terminant of the coefficient of 

nb should be equal by zero. It should be noted that Eq. (26) is not a 

unique way for calculating the natural frequencies of the shell and we are able to write the same rela-
tions by the other wave vectors depicted in Figure 4. For example, in a backward approach, for the 
waves that are moving in the vicinity of the (n-1)th intermediated support (or the last intermediate 
support) of the shell, we have: 
 

















  11,11,1,11,11       , nnnnnnnnnnnnnn bratbarbta  (27)

 

Furthermore, in the nth segment or the last segment of the shell, we can write: 
 







  nnnnnn LL bFaaFb )(      ,)( 11  (28)
 

considering   nn bRb B  and using Eq. (27) and (28), it gives a relation between 
1nb and 

1nb  as follows: 
 








  111 nnn bΓb  (29)

 

where, 
1nΓ  is a negative going inductor matrix, which is defined as: 

 

1,,1B,1B1,1 )()())()(( 

  nnnnnnnnnnnnn LLLL rtFRFrFRFItΓ (30)

 

It is possible to obtain a general relationship between 
ib and 

ib  for the ith intermediate support, 

i= 1, …, n-2 as follows: 
 

1,...,1
 ...,       ,222
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






ni
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where, 
1Γ  to 

2nΓ , are defined as follows: 
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(32)

 
Wave motion in the first shell segment where depicted in the Figure 4 is considered here. By con-

sidering the canonical relationships between these wave vectors the following relations are governed: 
 

  1111100A0011     ,)(   ,   ,)( bbbFaaRaaFb LL  (33)
 

The above set of equations consist of four equations with four unknowns, i.e. 
0a , 

0a , 
1b and 

1b . 

For example, solving the above set of equations by 
0a  gives the following relation: 

 
0aRFΓFI  

0A111 ))()(( LL (34)
 

For non-trivial results in the above equation, the determinant of the coefficient matrix of 
0a must 

be zero, so we have: 
 

0RFFI  
A111 )()( LL   (35)

 
Invoking Eq. (35), all of the natural frequencies can be determined for a stepped shell with sever-

al intermediate supports with individual arbitrary properties for the applied supports. It is interesting 
to notice that both determinations represented in Eq. (26) or (35) provide a unique result for the 
frequency analysis of the shell. To achieve the roots of Eq. (35), Wittrick-Williams stemming algo-
rithm can be used (Lee et al. (2007)). In addition, by normalizing the wave vector 

0a  and setting it 

from Eq. (34) in terms of the natural frequencies of the system, the mode shapes can be obtained. 
 
5 FORCED VIBRATION 

Concentrated actuating (or sensing) in the form of ring loading or point loading are applicable for 
several industrial tests, e.g. non-distractive tests and vibration control (Mei (2009), Hu et al. (2015), 
Jiang et al. (2012), Kim et al. (2013) and Popov (2005)). Ring excitation as a line loading 
(Achenbach (2003)) is a harmonic loading in arbitrary position along with the axial direction of the 
shell and distributed on a circle around the shell. Indeed, the mode shapes of the shell can be excited 
distinctly using the response of the shell to the ring excitation. In the other hand, point load excita-
tion enables us to excite all possible modes of the considered issue. In Figure 5, a stepped circular 
cylindrical shell is depicted with two ended- and several intermediate-supports and under a ring load 
excitation at middle of an arbitrary segment of the shell. 
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Figure 5: Waves motion in the vicinity of loading position. 

 
As a general case, it is possible to choose any arbitrary function, including concentration point 

loading, in the circumferential direction using Fourier expansions. Effects of the ring harmonic load-
ing on structural responses of the shell, can be obtained using the wave motion analysis within the 
shell in the vicinity of the loading position. Continuity and force balancing between ith and (i+1)th 
segments of the shell exactly at the loading position are satisfied by the following relations: 
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where, indices i and i+1 in the above equation are referred to the left and right sides of the loading 
positions, respectively. Furthermore, L is the ring loading vector consists of force and moment load-
ing in the relevant directions as follows: 
 

 Trθxxx θfθfθTθf )()()()(L  (37)
 

where, 
rθxf ,,  and 

xxT , are distributed forces and torque in the related directions, respectively. Substi-

tuting Eq. (8) in Eq. (36), it gives: 
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or in the vector-matrix form it can be written as: 
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where, 
ia and 

ib  are the opposite going wave vector amplitudes at both sides of loading position, 

Figure 5. Solving the above equation yields:  
 


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From the wave motion analysis in the both sides of the loading position we can find: 
 




  iiiiii aabb 1       ,  (41)
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where, matrices of 
i and 1 i

 are defined as: 
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By eliminating 

ib and 
ia from Eqs. (40) and (41) we can write:  

 















Πab

ΠIa

iii

iiiiii

1

11
1 ))(()(  (43)

 
Accordingly, for a certain load vector with arbitrary functions of θ, 

ia and 
ib can be calculated 

from Eq. (43). Using Fourier expansion, arbitrary functions of θ can be provided for load vector, L. 
Accordingly we can use of the following relation:  
 

  



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T
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where, nL is vector of Fourier parameters, and it can be obtained as follows: 
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For modeling the point load excitation in arbitrary position on the shell, e.g. x=0 and 0θθ  , in 

Figure 5, the point load can be expressed in terms of Dirac delta function: 
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where, rθxf ,,  and 

xxT , are amplitudes of distributed forces and torque in the relevant directions, re-

spectively. Hence the Fourier coefficient parameters in the presence of point loading, nL , can be 

obtained as follows: 
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 (47)

 

In the above equation, 0
,, rθxf  and 0

xxT , are the point forces and concentrated torques at 0θ , respec-

tively. Hence, for point loading, superposing of circumferential mode numbers from zero to infinity is 
required. However, it is practically impossible to adopt all of the mode numbers, and hence, only 
finite numbers of n, or truncated n can be used for superposition depending on the required engineer-
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ing accuracy. Using Eqs. (7), (8) and (10) and wave amplitudes obtained from Eq. (43), i.e. 
ia and 


ib , for arbitrary distance, x, in the left or right sides of loading position, the amplitudes of the dis-

placement fields in x, θ or r directions are obtained from the following relations: 
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(48)

 
Accordingly, using Eqs. (43) and (48), all of displacement responses for the ith and (i+1)th seg-

ments of the shell can be obtained for arbitrary positions on ith and (i+1)th segments of the shell. In a 
same manner and by using Eqs. (23) and (31),  similar relationships for the other segments of the 
shell can be founded easily. 
 
6 NUMERICAL RESULTS 

In this section, free and forced vibrations of stepped circular cylindrical shells affected by their sup-
ports characteristics, will be examined using the defined vector-matrix relations of VWM in the pre-
vious sections. In some possible cases, the results of VWM will be compared with the numerical re-
sults of FEM and the results available in the literature. Here, the following common geometrical and 
mechanical properties are adopted for the cases studies: the shell mean radius a=1 m, density ρ=7800 
kg/m3, Young modulus E=210 GPa and Poisson’s ratio μ=0.3. Moreover, all results and charts are 
determined with the help of a self-written program in MATLAB. All of the obtained results are cal-
culated with a PC with a dual core CPU of type of Intel Pentium G3220 (3.00GHz) and 3.39GB use-
able ram. However, as the code was not optimized for parallel computing, practically only one CPU 
of the computer was utilized in calculations. 

To examine the effects of the support characteristics on natural frequencies and structural re-
sponses of the issue, certain types of flexible supports are utilized. The flexible supports are EI to EV, 
which are defined as follows: 

EI, EII, EIII: Indicates that the support is rigid in the all directions except one flexible direction, 
i.e. r or θ or rθ direction, respectively. 
EIV, EV: Indicates that the support is free in the all directions except one flexible direction, i.e. r 
or θ direction, respectively. 
Assuming very large stiffness for the springs at the supports (e.g. 1030) of the shell with flexible 

supports, the VWM with flexible supports reduces to VWM for a shell with rigid classical boundary 
conditions.  For example, for the boundary conditions of Shear Diaphragm (SD) all the radial and 

circumferential stiffness should be considered as Kr= Kθ≈∞ and the rotational and axial stiffness 

should be equal to zero, i.e. Kx=0 and Krθ=0, and so on. 
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6.1 Free Vibration Problem 

6.1.1 Frequency Analysis 

Tables 1 and 2 are regulated to compare the results of frequency analysis of a stepped shell with elas-
tic ended supports using the proposed method and those reported in Qu et al. (2013) and Chen et al. 
(2015). Qu et al. (2013) have solved the issue of free and forced vibration analysis in a stepped shell 
with flexible ended supports using a numerical approach, modified variational principle and least-
squares weighted residual method mixed by domain decomposition method (DDM). In a same man-
ner, Chen et al. (2015) have utilized Flügge thin shell theory and the wave based method or WBM, 
and they have analyzed the same issue, adopted by Qu et al. (2013), under a point load excitation. 
Hence, by considering the presence of only one step at the shell geometry and neglecting the interior 
supports, i.e. 0K im )(  in Eq. (19), as those in Qu et al. (2013) and Chen et al. (2015), a comparison 

between the results of VWM and the results reported by Qu et al. (2013) and Chen et al. (2015) is 
performed. The results of this comparison are summarized in Table 1. The symbol of m in Table 1 
denotes the axial mode number. As it can be seen in Table 1, there is a good agreement between the 
results of VWM and the results available in literature for the case of a stepped shell with flexible 
supports. 

Table 2 shows the frequency analysis in free vibrations of a three stepped cylindrical shell with 
different axial lengths and SD-SD ended supports obtained by using VWM and the results obtained 
based on DDM by Qu et al. (2013) and WBM by Chen et al. (2015), respectively. By neglecting all 
flexible intermediate supports, namely 0K im )(  in Eq. (19), the present work is comparable with 

those reported by Qu et al. (2013) and Chen et al. (2013). Despite of differences in shell theory used 
by Qu et al. (2013), table 2 indicates a good proximity between all results obtained by the proposed 
method and those given in the literature. 

To examine the accuracy of the VWM in the presence of intermediate supports, the results of 
present method are compared with the results of Xiang et al. (2002). In the study of Xiang et al. 
(2002) presented an exact solution, a state-space technique (SST), to solve the problem of vibrations 
of a uniform circular cylindrical shell based on the Goldenveizer–Novozhilov shell theory by using 
different classic ended supports e.g. clamped (CL), SD, and free (F) supports and different numbers 
of intermediate rigid supports. In order to a possible comparison with the study of Xiang et al. 
(2002), the thickness of the shell in the present study should be considered as uniform. Hence, the 
interface matrices of ψ and  are required to be equal for each segment, i.e.   nψψψ ...21 and 

  n...21  in Eq. (19). In fact, Eqs. (3) and (10) all are independent from the shell lengths in 

each segment, and the lengths of the shell segments only appear in the propagation matrix relations. 
Comparison of the frequency factor obtained for a uniform shell by VWM and SST for diverse cir-
cumferential and axial mode numbers, i.e. n=1, …, 3 and m=1,…,4, is made in tables 3 and 4 in the 
presence of two and three numbers of intermediate RS, respectively. Despite the differences in the 
applied theory in this study and those utilized in the reference Xiang et al. (2002), a very good prox-
imity of the given results with both methodologies can be seen, especially in the case of thinner shells.  
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a

L

 
n 

EI-EI EI-EII EII-EII 

Chen  
et al. 
(2015) 

Present Diff. % 
Chen  
et al. 
(2015) 

Present Diff. % 
Qu  

et al. 
(2013) 

Present 
Diff. 
% 

1 

1 0.596712 0.596719 0.0012 0.719461 0.719464 0.0004 0.377815 0.377816 0.0003 

2 0.627766 0.627791 0.0040 0.467940 0.467963 0.0049 0.353129 0.353136 0.0020 

3 0.467720 0.467728 0.0017 0.345921 0.345948 0.0078 0.330581 0.330589 0.0024 

4 0.351454 0.351451 0.0009 0.285703 0.285739 0.0126 0.306288 0.306313 0.0082 

5 0.275873 0.275865 0.0029 0.250598 0.250640 0.0168 0.282619 0.282650 0.0110 

6 0.233051 0.233050 0.0004 0.230591 0.230627 0.0156 0.263490 0.263528 0.0144 

7 0.216637 0.216641 0.0018 0.224561 0.224613 0.0232 0.252666 0.252711 0.0178 

8 0.220472 0.220491 0.0086 0.231966 0.232013 0.0203 0.252516 0.252569 0.0210 

5 

1 0.179718 0.179721 0.0017 0.146093 0.146092 0.0007 0.145988 0.145996 0.0055 

2 0.075177 0.075180 0.0040 0.085319 0.085330 0.0129 0.105754 0.105763 0.0085 

3 0.042625 0.042623 0.0047 0.053657 0.053662 0.0093 0.070464 0.070476 0.0170 

4 0.042376 0.042376 0.0000 0.049152 0.049158 0.0122 0.056729 0.056741 0.0212 

5 0.054185 0.054366 0.3340 0.061281 0.061278 0.0049 0.062286 0.062295 0.0144 

6 0.064989 0.064980 0.0138 0.072185 0.072352 0.2314 0.072185 0.072351 0.2300 

7 0.078500 0.078543 0.0548 0.083644 0.083742 0.1650 0.083655 0.083744 0.1064 

8 0.096959 0.096953 0.0062 0.100140 0.100140 0.0000 0.100140 0.100140 0.0000 

10 

1 0.059525 0.059532 0.0118 0.066987 0.066995 0.0119 0.080261 0.080261 0.0000 

2 0.022017 0.022019 0.0091 0.029133 0.029135 0.0069 0.040165 0.040169 0.0100 

3 0.020973 0.020969 0.0191 0.024247 0.024252 0.0206 0.027631 0.027644 0.0470 

4 0.029436 0.029460 0.0815 0.033615 0.033674 0.1755 0.033626 0.033682 0.1663 

5 0.038434 0.038432 0.0052 0.041343 0.041349 0.0145 0.041343 0.041350 0.0169 

6 0.052156 0.052155 0.0019 0.053587 0.053596 0.0168 0.053587 0.053596 0.0168 

7 0.069989 0.069990 0.0014 0.070660 0.070674 0.0198 0.070660 0.070674 0.0198 

8 0.091235 0.091235 0.0000 0.091569 0.091576 0.0076 0.091569 0.091576 0.0076 

Table 1: Natural frequency factor (Ω) and EI-EI, EII-EII or EIII-EIII ended supports for a shell with one step (L1/L=0.5  
and h1/a=0.01, h2/h1=2; elastic support stiffness: Kr = 5 × 107 N m-1 and Kθ = 1.5 × 108 N m-1 and m=1). 
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a

L

 
n 

m=1 m=2 m=3 

Chen 
 et al. 
(2015) 

Present Diff. % 
Chen  
et al. 
(2015) 

Present Diff. % 
Chen  
et al. 
(2015) 

Present Diff. % 

1 

1 0.501092 0.501204 0.0224 0.856104 0.856225 0.0141 0.959583 0.959592 0.0009 

2 0.574525 0.574533 0.0014 0.904124 0.904130 0.0007 1.078516 1.078552 0.0033 

3 0.442307 0.442352 0.0102 0.832516 0.832495 0.0025 1.060335 1.060306 0.0023 

4 0.363086 0.363054 0.0088 0.766211 0.766182 0.0038 1.045075 1.045096 0.0020 

5 0.342987 0.343022 0.0102 0.722130 0.722091 0.0054 1.038734 1.038750 0.0015 

6 0.368631 0.368970 0.0920 0.710717 0.710677 0.0566 1.046612 1.046620 0.0008 

7 0.420474 0.421037 0.1339 0.735853 0.735823 0.0041 1.074990 1.072490 0.2326 

8 0.484320 0.485189 0.1794 0.794408 0.794401 0.0009 1.118762 1.118737 0.0022 

5 

1 0.165706 0.165716 0.0060 0.452726 0.452729 0.0007 0.597709 0.597761 0.0087 

2 0.074669 0.074697 0.0169 0.239231 0.239234 0.0013 0.414398 0.414390 0.0019 

3 0.070903 0.070946 0.0606 0.151117 0.151121 0.0026 0.271622 0.271615 0.0026 

4 0.100498 0.100499 0.0010 0.154813 0.155045 0.1499 0.222932 0.222935 0.0013 

5 0.129492 0.129713 0.1707 0.192725 0.193471 0.3871 0.245631 0.246001 0.1504 

6 0.157112 0.156971 0.0897 0.230857 0.230751 0.0459 0.295707 0.295779 0.0243 

7 0.182849 0.183335 0.2658 0.280436 0.280538 0.0364 0.337292 0.337922 0.1868 

8 0.216163 0.216550 0.1790 0.325036 0.324711 0.1000 0.392208 0.392461 0.0645 

  m=4  m=5 m=6 

1 

1 1.093741 1.093775 0.0031 1.322022 1.322022 0.0000 1.776712 1.776780 0.0038 

2 1.140363 1.140394 0.0027 1.320220 1.320209 0.0034 1.787502 1.787536 0.0019 

3 1.319585 1.319573 0.0009 1.699006 1.698611 0.0232 1.806746 1.806743 0.0002 

4 1.324182 1.324159 0.0017 1.835798 1.835823 0.0014 2.281062 2.281091 0.0013 

5 1.338102 1.338060 0.0031 1.875974 1.875977 0.0002 2.471073 2.471093 0.0008 

6 1.366103 1.366039 0.0047 1.928314 1.928344 0.0016 2.528311 2.528325 0.0005 

7 1.412887 1.412816 0.0050 1.993592 1.993605 0.0007 2.596915 2.596917 0.0000 

8 1.482473 1.482412 0.0041 2.072350 2.072340 0.0005 2.677197 2.677184 0.0005 

5 

1 0.668242 0.668246 0.0006 0.783457 0.783470 0.0017 0.838534 0.838570 0.0043 

2 0.552335 0.552339 0.0007 0.654958 0.654961 0.0005 0.735680 0.735678 0.0002 

3 0.388569 0.388549 0.0051 0.494704 0.494710 0.0012 0.590247 0.590250 0.0005 

4 0.302984 0.302938 0.0152 0.396655 0.396669 0.0035 0.488247 0.488243 0.0008 

5 0.300154 0.300131 0.0077 0.366748 0.366726 0.0060 0.442549 0.442551 0.0005 

6 0.347988 0.347888 0.0287 0.403597 0.403602 0.0012 0.453350 0.453314 0.0079 

7 0.408022 0.408051 0.0071 0.454933 0.455132 0.0437 0.510842 0.510870 0.0055 

8 0.454055 0.454539 0.1066 0.532581 0.532608 0.0051 0.581063 0.580949 0.0196 

Table 2: Comparison of frequency factors for a three-stepped cylindrical shell with SD–SD ended supports  
(L1/L= L2/L= L3/L= L4/L=0.25 and h1/a=0.01, h2/h1=2, h3/h1=3, h4/h1=4). 
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a

h

 
m 

n=1 n=2 n=3 

Xiang  
et al. 
(2002) 

Present Diff.% 
Xiang  
et al. 
(2002) 

Present Diff.% 
Xiang 
et al. 
(2002) 

Present Diff.% 

SD-SD ended supports: 

0.
00

5 

1 0.130008 0.129997 0.0085 0.132434 0.132425 0.0068 0.0817846 0.0817907 0.0075 

2 0.216851 0.216845 0.0028 0.139345 0.139341 0.0029 0.090776 0.090780 0.0044 

3 0.327090 0.327091 0.0003 0.153293 0.153296 0.0020 0.106105 0.106104 0.0009 

4 0.474651 0.474648 0.0006 0.289228 0.289220 0.0028 0.217507 0.217501 0.0028 

0.
05

 

1 0.204520 0.204384 0.0665 0.160475 0.160759 0.1770 0.144682 0.145056 0.2585 

2 0.259187 0.259133 0.0208 0.169728 0.169955 0.1337 0.153609 0.153971 0.2357 

3 0.327216 0.327314 0.0299 0.188408 0.188529 0.0642 0.172214 0.172537 0.1876 

4 0.511623 0.511620 0.0006 0.375113 0.375292 0.0477 0.298856 0.299616 0.2543 

CL-CL ended supports: 

0.
00

5 

1 0.154336 0.154327 0.0058 0.136457 0.136449 0.0059 0.0933758 0.0933801 0.0046 

2 0.241012 0.241016 0.0017 0.167033 0.167028 0.0030 0.115563 0.115565 0.0017 

3 0.338453 0.338454 0.0003 0.179008 0.179009 0.0006 0.119640 0.119640 0.0000 

4 0.476570 0.476568 0.0004 0.295883 0.295877 0.0020 0.221095 0.221091 0.0018 

0.
05

 

1 0.223084 0.222963 0.0427 0.173642 0.173884 0.1394 0.153883 0.154251 0.2391 

2 0.283979 0.283930 0.0173 0.201442 0.201634 0.0953 0.173379 0.173727 0.2007 

3 0.340111 0.340211 0.0294 0.207148 0.207303 0.0748 0.183228 0.183538 0.1692 

4 0.512793 0.512791 0.0004 0.378227 0.378412 0.0489 0.306910 0.307603 0.2258 

F-F ended supports: 

0.
00

5 

1 0.0497717 0.0497667 0.0100 0.0364021 0.0363968 0.0146 0.0209389 0.0209242 0.0702 

2 0.0803789 0.0803745 0.0055 0.0388606 0.0388548 0.0149 0.0247300 0.0247157 0.0578 

3 0.149512 0.149505 0.0047 0.134440 0.134432 0.0060 0.0973975 0.0973995 0.0021 

4 0.287551 0.287546 0.0017 0.185029 0.185020 0.0049 0.126344 0.126340 0.0032 

0.
05

 

1 0.0732860 0.0732042 0.1116 0.0551522 0.0547287 0.7679 0.113302 0.112977 0.2868 

2 0.0962236 0.0962061 0.0182 0.0594661 0.0590527 0.6952 0.114218 0.113873 0.3021 

3 0.211456 0.211316 0.0662 0.180577 0.180752 0.0969 0.158907 0.159146 0.1504 

4 0.331141 0.331067 0.0223 0.230678 0.230608 0.0303 0.189382 0.189292 0.0475 

Table 3: Comparison of frequency factor, Ω , for a shell with two intermediate ring supports and different  
thicknesses and ended supports conditions. 

 
In this direction, fundamental frequency factors, 

f , are represented in table 5, given by VWM 

and SST applied in Xiang et al. (2002) for different uniform shell lengths and thicknesses and in the 



R. Poultangari and M. Nikkhah-Bahrami / Free and Forced Vibration Analysis of Stepped Circular Cylindrical Shells with Several…     2045 

Latin American Journal of Solids and Structures 13 (2016) 2027-2058 

presence of different numbers of intermediate RS. Again, a good proximity can be seen in the ob-
tained results by the two methods applied. 
 

a

h

 
m 

n=1 n=2 n=3 

Xiang  
et al. 
(2002) 

Present Diff. % 
Xiang  
et al. 
(2002) 

Present Diff. % 
Xiang  
et al.  
(2002) 

Present 
Diff. 
% 

SD-SD ended supports: 

0.
00

5 

1 0.147770 0.147757 0.0088 0.162737 0.162724 0.0080 0.134914 0.134921 0.0052 

2 0.227950 0.227942 0.0035 0.173548 0.173538 0.0058 0.135846 0.135851 0.0037 

3 0.351538 0.351534 0.0011 0.208487 0.208483 0.0019 0.140023 0.140020 0.0021 

4 0.459145 0.459147 0.0004 0.240001 0.240005 0.0017 0.145940 0.145933 0.0048 

0.
05

 

1 0.242711 0.242524 0.0770 0.244196 0.244290 0.0385 0.185962 0.186491 0.2845 

2 0.292333 0.292201 0.0452 0.244797 0.244921 0.0507 0.193517 0.194019 0.2594 

3 0.389215 0.389211 0.0010 0.246433 0.246789 0.1445 0.211419 0.211851 0.2043 

4 0.459485 0.459628 0.0311 0.252335 0.252379 0.0174 0.229126 0.229482 0.1554 

CL-CL ended supports: 

0.
00

5 

1 0.169789 0.169777 0.0071 0.166640 0.166627 0.0078 0.137466 0.137469 0.0022 

2 0.250029 0.250021 0.0032 0.187483 0.187473 0.0053 0.144225 0.144221 0.0028 

3 0.362918 0.362913 0.0014 0.234480 0.234475 0.0021 0.286240 0.286231 0.0031 

4 0.462252 0.462253 0.0002 0.257749 0.257752 0.0012 0.321199 0.321197 0.0006 

0.
05

 

1 0.259515 0.259345 0.0655 0.245659 0.245952 0.1193 0.194048 0.194557 0.2623 

2 0.312401 0.312280 0.0387 0.250704 0.250788 0.0335 0.213306 0.213764 0.2147 

3 0.402246 0.402241 0.0012 0.488655 0.488771 0.0237 0.232937 0.233348 0.1764 

4 0.463692 0.463833 0.0304 0.523353 0.523612 0.0495 0.238944 0.239305 0.1511 

F-F ended supports: 

0.
00

5 

1 0.0761948 0.0761868 0.0105 0.0575612 0.0575533 0.0137 0.0351610 0.0351455 0.0441 

2 0.100945 0.100940 0.0050 0.0595595 0.0595546 0.0082 0.0354686 0.0354549 0.0386 

3 0.159942 0.159932 0.0063 0.163971 0.163958 0.0079 0.138140 0.138141 0.0007 

4 0.283432 0.283427 0.0018 0.186719 0.186710 0.0048 0.145137 0.145131 0.0041 

0.
05

 

1 0.113566 0.113417 0.1312 0.0774877 0.0769266 0.7241 0.118967 0.118431 0.4505 

2 0.126055 0.126078 0.0182 0.0779980 0.0776629 0.4296 0.119283 0.118829 0.3806 

3 0.244977 0.244770 0.0845 0.245378 0.245625 0.1007 0.197987 0.198437 0.2273 

4 0.327697 0.327613 0.0256 0.251777 0.251835 0.0230 0.221807 0.222157 0.1578 

Table 4: Comparison of frequency factor, Ω , for a shell with three intermediate ring supports and  
different thicknesses and ended supports conditions  
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a

L  
 

a

h  

SD-SD CL-CL F-F 

Xiang et 
al. (2002) Present 

Xiang et 
al. (2002) 

Present  
Xiang et  
al. (2002) 

Present 

Two numbers of RS at L1/a= L2/a=1/3 

5 0.005 
0.0973341 

(n=7) 
0.0973576 

0.106083 
(n=7) 

0.106105 
0.0437255 

(n=5) 
0.0436924 

5 0.05 
0.306629 
(n=4) 

0.307444 
0.313202 
(n=3) 

0.313855 
0.115637 
(n=1) 

0.115475 

10 0.005 
0.04757610 

(n=5) 
0.04758732 

0.0529403 
(n=5) 

0.0529510 
0.0209389 

(n=3) 
0.0209224 

10 0.05 
0.14468164 

(n=3) 
0.14505607 

0.153883 
(n=3) 

0.154251 
0.0551522 

(n=2) 
0.0551473 

Three numbers of RS at L1/a= L2/a= L3/a =1/4 

1 0.005 
0.130529 
(n=8) 

0.130560 
0.136550 
(n=8) 

0.136581 
0.0602356 

(n=5) 
0.0601946 

1 0.05 
0.393468 
(n=1) 

0.393128 
0.405710 
(n=4) 

0.406755 
0.176555 
(n=1) 

0.176349 

5 0.005 
0.0652931 

(n=6) 
0.0653081 

0.0686462 
(n=6) 

0.0686610 
0.0293818 

(n=4) 
0.0293592 

5 0.05 
0.185962 
(n=3) 

0.186491 
0.194048 
(n=3) 

0.194557 
0.113566 
(n=1) 

0.113417 

Table 5: Comparison of fundamental frequency factor, 
f , in the presence of various numbers of intermediate RS. 

 
Figures 6 show the effect of the wave barriers location on the natural frequencies of circular cy-

lindrical shells. Here, the examined barriers are of type of shell step and intermediate radial supports 
(RS). In order to make a fair comparison, all conditions are considered the same as those given in 
Chen et al. (2015). Hence, the geometrical and mechanical considerations in the presence and the 
absence of the intermediate support are as follows: the thickness ratio h1/a=0.01, the step thickness 
ratio h1/h2=0.25, 0.5, 2, and 4, the length to radius ratio L/a=5, and 10 and finally step location 
(and intermediate support location) is at L1/L=0.5. Figures 6 show that the obtained results in the 
absence of the intermediate support have good agreement with those reported in the literature (Chen 
et al. (2015)).  

Great impact of the existence of interior support on increasing of both beam mode- and funda-
mental-frequency factors is clearly visible in the all cases considered for Figures 6. It is a very logical 
phenomena where happened due to the increase of the whole system rigidity, affected by the applied 
interior support. Hence, depending on the thickness ratio h2/h1, the greatest variation of all frequen-
cies approximately, occurs for the intermediate type of RS, applied in an interval of 0.4<L1/L<0.6. 
As it can be seen in these figures, the maximum fundamental frequency factor for all of the shell 
length ratios, i.e. L/a=5 and 10, in the presence of intermediate RS, happened in thickness ratio of 
h2/h1=0.25 and in the position ratio of L1/L=0.4. However, in the case of maximum beam mode fre-
quency factor, depending on the shell length ratio, it happens in thickness ratio of h2/h1=0.25 for 
L/a=10 or thickness ratio of h2/h1=0.5 for L/a=5. 
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a) b) 

 
c) d) 

Figure 6: Beam mode- (a,c) and fundamental-frequency parameters (b,d) versus the location of the wave barrier,  

L1/L, for a SD–SD shell with (------) and without (____) intermediate support —□—  h1/h2=2, —○— h1/h2=0.5, — 

Δ— h1/h2=4, and—◊— h1/h2=0.25 including geometrical characteristics of: (a,b) L/a=5 and (c,d) L/a=10. 

 
6.1.2 Mode Shapes 

Using Eq. (26) or (34), it is possible to obtain all mode shapes of the cylindrical shell. In this section, 
radial mode shapes for beam modes, i.e. n=m=1, in the axial directions of a shell with different num-
bers of intermediate RS and SD-SD ended supports are plotted in Figures 7 to 9 (By these considera-
tions we are able to tracing satisfaction of the support conditions and continuity, simultaneously). 
Two cases for examination their mode shapes are considered here. In the first case a uniform shell 
and in the next case a stepped shell with different numbers of intermediate ring supports are consid-
ered here. 

In the case of a uniform shell, the effects of shell thickness on mode shapes corresponding with 
beam mode frequencies are depicted in Figures 7 for two shell lengths, i.e. L/a=10 and 5, respective-
ly. In this figure, the normalized radial displacement are plotted for h/a=0.01, 0.05 and 0.1 in the 
presence of three numbers of intermediate RS. Due to the geometry and support condition chosen for 
the issue, symmetrical mode shapes are expected. As can be seen in these figures, the slope of the 
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radial displacement fields, i.e. dUr/dx, at all support positions decreases in the thicker and shorter 
cylindrical shells. Also, the shorter cylinders have higher sensitivity to the shell thickness. 
 

 
a) b) 

Figure 7: Mode shapes of a homogeneous SD-SD shell with three intermediate ring supports for m=n=1  

(beam mode) and in different conditions as: h/a=0.01, 0.05, 0.1 a) L/a=10 b) L/a=5. 

 
The mode shapes of the shell with different numbers of intermediate RS corresponding with beam 

mode frequencies are plotted in Figures 8 for two shell lengths, i.e. L/a=10 and 5, respectively. 
Hence, three cases are considered in these figures. Case 1-1: one intermediate RS at L1/L =0.25, Case 
2-1: two numbers of intermediate RS at L1/L = L2/L =0.25, and Case 3-1: three numbers of inter-
mediate RS at L1/L = L2/L = L3/L =0.25. In these figures, satisfying of continuity and all the sup-
port conditions applied to such unsymmetrical conditions can be seen obviously in the all given re-
sults.  

In Figures 9a to 9f, radial mode shapes are depicted in the axial direction of a stepped shell with 
different combinations of intermediate ring supports. Hence, three cases of shell thickness and steppes 
are considered as: Case 1-2: uniform Shell, Case 2-2: three steppes in the shell; L1/L= L2/L 
=L3/L=0.25 and h1/a=0.01, h2/h1=2, h3/h2=3 and h4/h3=4 and finally Case 3-2: with same condition 
by case 2-2 except thicknesses of h2/h1=3, h3/h2=5 and h4/h3=7. In Figures 9a, 9c and 9e total shell 
length is L/a=5 and shell length that considered in Figures 9b, 9d and 9f is L/a=5. Number of the 
interior supports used in these figures is respectively as one interior support at L1/L=0.5 in Figures 
9a and 9b, two interior ring supports at L1/L=L3/L=0.25 in Figures 9c and 9d and three interior 
supports at L1/L= L2/L= L3/L=0.25 in Figures 9e and 9f. These figures indicate that continuity and 
support conditions of the issue are completely satisfied by the proposed method, simultaneously. 
However by changing the shell thickness from case 1-2 to case 3-2, radial deformations in normalized 
modes are graded and mostly tended to the thinner sides of the shell.   
 
6.2 Forced Vibration 

In this section a stepped circular cylindrical shell with SD-SD ended supports and three intermediate 
supports of different types is considered. Other considerations are: Length ratio, L/a=5, thickness 
ratios h1/a=0.01 and h2/h1=2, h3/h2=2, h4/h3=2. In all of the following figures, the amplitude of the 
point load excitation is considered 100 N. The point loading are applied on the shell at 00 θ and 
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x/L=1/8 imposed at thinnest segments of the shell. In all graphs of frequency responses, frequency 
ranges are considered from 100 to 500 Hz and their steps are 2 Hz. 
 

 
a) b) 

Figure 8: Mode shapes corresponding with beam mode of the shell with h/a=0.05 and SD-SD ended supports  

in three cases of numbers of applied intermediate RS and two shell lengths of a) L/a=10 b) L/a=5. 

 
6.2.1 Verification of VWM Results 

To achieve accurate results with low calculation time, minimum numbers of truncation of circumfer-
ential mode number, n, which was described in Sec. 6, is required to be determined. Figures 10 de-
picts the radial and circumferential displacement responses due to excitation of a point load 
( N 1000 rf ) exactly at the middle of the first segments of the shell (x1=L1/2 in Figure 5) in the ra-

dial direction. The results of these figures are plotted for some different truncation of n. In these fig-
ures, a good convergent results for all truncations, i.e. n=20, 30 and 40, is clearly visible. However, 
the differences between results of n=30 and 40 are negligible, and hence, n=30 is chosen for evaluat-
ing and plotting the Frequency Response Functions (FRF). Using VWM and with the non-optimized 
self-writing code, the mean elapsed time for calculation when n=30 was about 12.09 seconds. 

Due to lack of proper comparison results in the literature to evaluate the required VWM solution 
time and its numerical performance, we have utilized the finite element method provided by ANSYS 
for validation and evalution of the results. The forced vibration analysis given by VWM for classical 
ended and intermediate supports, i.e. SD and RS is considered. Then, utilizing ANSYS, an excited 
shell with a point load at the middle of the first segment as the thinnest segment of the stepped shell 
is modeled using the four node elements of shell 63. 

Among several compositions of mapped meshing, three different meshing styles are chosen for 
evaluation of FEM convergence. These cases are: Case 1-3: 60ൈ100, Case 2-3:80ൈ120 and Case 3-3: 
100ൈ140 nodes in the θ and x directions, respectively. The results of ANSYS for different grid sizes of 
cases 1-3 to 3-3 are plotted in Figures 10c and 10d. As it can be seen from Figures 10c and 10d, cases 
2-3 and 3-3 are convergent and approximately can cover all possible peaks correspond with all the 
natural frequencies. In an overall comparison between the results of VWM and the results of ANSYS 
as a FEM, the results of both methods are in good agreement in the case 2-3 for both of the radial 
and axial displacement responses. These comparisons between VWM and FEM are made in the Fig-
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urfes 10e and 10f. The computational time for calculations of case 2-3 was about 32 minutes using 
two CPU cores where is approximately 159 times greater than those given by VWM, utilizing only 
one CPU core. 
 

 
a) b) 

c) d) 

 
e) f) 

Figure 9: Mode shapes of a shell corresponding with beam mode (n=m=1) and shell lengths of a,c,e)  

L/a=10 and b,d,f) L/a=5: a,b) One (at L1/L=0.5) c,d) two (at L1/L= L3/L=0.25) and e,f) three  

(at L1/L= L2/L= L3/L=0.25) intermediate supports in three different cases of stepped shells. 
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6.2.2 Point Loading and Flexibility Intermediate Supports 

Stepped shell response to the radial and axial point load excitations at x1/L1=0.5 is evaluated in Fig-
ures 11 in the presence of three flexible intermediate supports of kind of EIV, illustrated in Figure 5. 
Hence, in the Figures 11, different stiffness values Kr=109, 1010 and 1030 N/m are considered for the 
applied intermediate supports and radial and axial responses to the excitations are plotted. One of 
these values, i.e. 1030 N/m, are corresponds to the radial rigid support (or RS), respectively, and 
hence, it is possible to trace the FRF changes in line with changes of the support characteristics. 
From these figures, depends of radial or axial excitations the following results can be concluded: as 
the stiffness of the intermediate supports  decreased, axial amplitude, Ux, is more sensitive to the 
radial excitation and vice versa radial amplitudes, Ur, is more affected by the axial excitation. From 
these figures, reduction of both radial and axial amplitudes concluded. However, the obtained results 
for most of peaks show infinitesimal changes in the peak positions. Figures 11a-11d depict that some 
of the peaks in both radial and axial directions are vanished or reduced strongly in the case of 
Kr=107 N/m. It is a promising outcome as it indicates that the external excitation can be imposed 
safely in a certain limited range of frequency changes (without any resonance problem) by proper 
setting of the support stiffness. However, it should be noted that the problem of instability in the 
shell vibrations with the flexible supports could be an important issue that is not considered in the 
present study. 

In Figures 12, the effect of the position of EIV flexible supports on the structural response of the 
shell is depicted when Kr=108 N/m. Here, in order to examine the effect of the support positions, four 
different cases are considered. In the cases examined, all of the interior supports are RS, except: Case 
1-4: without flexible support, Case 2-4: the left side interior support is flexible, Case 3-4: the middle 
interior support is flexible, and Case 4-4: the right side interior support is flexible. 

Figures 12a and 12b illustrate radial and axial responses of the shell under radial excitation, re-
spectively. In a same manner, the radial and axial responses of the shell under axial excitation are 
illustrated in Figures 12c and 12d, respectively. In an overall conclusion from these figures the follow-
ing results can be concluded: the effect of the support characteristics on the structural radial and 
axial responses of the shell is directly related to the distance of the support position to the excitation 
position. It is interesting that the axial shell responses are more sensitive to the characteristics of 
remote supports in the presence of the radial excitations. Vice versa, in the presence of axial excita-
tions, the radially shell response is more sensitive to the characteristics of the remote supports from 
the loading location, i.e. the supports that are positioned far from the loading location. This conclu-
sion is important for non-destructive tests (NDT) purposes and fault detection of the applied sup-
ports. 
 
6.2.3 Distributed Damping Effects 

The effect of the structural damping, in the form of distributed damping type, on the radial and axial 
displacement response is depicted in Figures 13a and 13b. From these figures, it is clear that the am-
plitudes of peaks decreases proportional to the magnitude of the structural loss factor γ. However, the 
corresponding frequencies of the peaks do not show any significant dependency on γ and almost the 
peaks are independent of γ. However, in elsewhere except peak positions, the shell amplitudes, ap-



2052     R. Poultangari and M. Nikkhah-Bahrami / Free and Forced Vibration Analysis of Stepped Circular Cylindrical Shells with Several… 

Latin American Journal of Solids and Structures 13 (2016) 2027-2058 

proximately, are independent of the structural loss factors, and they are not under significant influ-
ence of γ in forced vibration of the shell. 
 

 
a) b) 

 
c) d) 

 
e) f) 

Figure 10: Convergency examination of structural radial and axial responses of a stepped shell with three  

intermediate ring supports at L1/L= L2/L= L3/L=0.25 and shell thickness h1/a=0.01 and h2/h1=2, h3/h2=2,  

h4/h3=2 and shell length of L/a=5 using VWM (a,b) and FEM (c,d) and comparing them (e,f). 
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a) b) 

 
c) d) 

Figure 11: Structural responses of a stepped shell with three flexible intermediate supports and SD-SD ended  

supports for a)radial and b) axial displacement amplitudes for radial excitation and c) radial and  

d)axial displacement amplitudes for axial excitation at the point load position. 

 
7 CONCLUSION 

The main objective of this paper was proposing an extensible method for analysis of free and force 
vibration of shells with arbitrary numbers of steps and flexible intermediate supports. To model the 
issue and based on Flügge thin shell theory, a stepped circular cylindrical shell was considered with 
two ended- and many intermediate-supports, which all of them are flexible with independent charac-
teristics. The support conditions as well as the continuity of the stepped shell were satisfied accurate-
ly by introducing wave vectors going in the positive-negative direction along with the shell axis and 
determining relevant reflection and propagation matrices.  

Based on VWM, contiguous and extensible matrix-kind relations were proposed for free and 
forced vibration analysis of the issue where contained of 14   vectors and 44   matrices independent 
of the number of steps and intermediate supports utilized. For free vibration analysis of the shell, the 
proposed method was successfully employed to obtain the respective natural frequencies of the sys-
tem. Furthermore, the shell structural responses were investigated under point load excitations. The 
obtained results were successfully verified against those available in the literature and those obtained 
by FEM. The results of the present study in free and forced vibrations of the shell can be summa-
rized as follows: 
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a. Structural responses of a vibrating shell are highly affected by the properties of its intermediate 
supports, and ignoring this important finding by using simplifying assumptions (classical sup-
ports) can lead to significant errors in prediction of vibrational behavior of the issue.   

b. According to the obtained results, the proposed method, as an analytical method, provides ac-
curate results in both free and forced vibrations of the shell without any limitation in proper-
ties and numbers of the steps or the flexible intermediate supports which were applied. 

c. In an overall comparison, the proposed method shows a great numerical performance versus 
FEM especially in the case of point load excitations of the issue. In this case, although a great 
numbers of truncated modes is needed to be superposed, the required computational time by 
VWM was about 159 times less than that given by FEM ANSYS.   

d. The obtained results show that the axial (radial) shell responses are more sensitive to the char-
acteristics of remote supports in the presence of radial (axial) excitations. This could be an im-
portant conclusion for fault detection of the applied supports. 

 

a) b) 

c) d) 

Figure 12: Structural responses of a stepped shell with three flexible intermediate supports and SD-SD ended  

supports for a) radial and b) axial displacement amplitudes for radial excitation and c) radial and  

d) axial displacement amplitudes for axial excitation at the point load positions. 
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a) b) 

Figure 13: Structural responses of a stepped shell with three flexible intermediate supports in the (a) radial and  

(b) axial directions of the shell and for different structural damping considerations. 

 
It should be noted at this end that the proposed method is fully capable for applying to accurate 

design of several flexible supports with arbitrary properties for a certain stepped cylindrical shell 
along with the shell axis. We believe that the proposed method can be extended and tackles compli-
cated issues such as non-homogeneous shells and shells made of composite layers or functionally grad-
ed materials. The present method also seems capable of being applied as a powerful basis for control 
of the shell vibration problems and predicting and verifying the NDT results which can be subject of 
future studies. 
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APPENDIX A 

Differential operators of the equation of motion: 
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where in the above equations, cL=(E/ρ(1-μ2))0.5 is the speed of dispersion of longitudinal waves and 
η=h/a(12)0.5 is a dimensionless coefficient. 
 
APPENDIX B. COEFFICIENTS OF ELEMENTS OF THE MATRIX [ ] 

The coefficients of Eq. (3) are as follows: 
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APPENDIX C. COEFFICIENTS OF THE POLYNOMIAL EQUATION 

Coefficients Ai (i=0,2,4,6,8) presented in Eq. (4) are given as bellow 
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APPENDIX D. THE WAVE NUMBER AND FREQUENCY ANALYSIS 

The roots of the Eq. (4) represent the behavior of the elastodynamic wave propagation in the shell to 
the frequency changes. In this regard, four out of eight possible roots of wave numbers obtained are 
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related to positive going waves and in contrast four other remaining roots are associated with nega-
tive going waves. From these roots, four different types of waves can be detected, depending on the 
combination of the real and imaginary values of roots as  (Zhou wt al. (2012) and Karczub (2006)): 

Type 1: 
1ζΛ  (Propagating waves),          Type 2:  

2ζΛ  (evanescent waves) 

Type 3:   43 iζζΛ  (Standing waves),     Type 4:   43 iζζΛ   (Standing waves) 

Where 
iζ  (i = 1, ..., 4) are real values. All eight dimensionless wave number are defined as the 

roots of the Eq. (4) independently as follows: 
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where the coefficients 
iG  (i=1,… ,21) are provided in the follows. Generally, in the absence of damp-

ing in vibration of the cylindrical shells, all the four types of waves, i.e., propagating, decaying and 
standing type 3 and 4, can be created in different frequency ranges. The parameters used in the Eqs. 
(D.1) are defined as: 
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APPENDIX E 

Force and momentum resultants:  
 

xθxθxθ M
a

NT  1
,    





















θ

M

θ

M

ax

M
V xθθxxx
xr

1

, 

2

2

x

U

a

D
U

θ

U

a

μ

x

U
kN r

r
θx

xx 
















 








,  










































θx

U

x

U

a

D

θ

U

ax

U
k

μ
N rθxθ
xθ

2

2
1

2
1  





































x

U

aθ

U

θ

U

a

μ

x

U
DM xrθr

xx

1
2

2

22

2

,    
















θx

U

x

U

a

μ
DM rθ

xθ

21  





















x

U

θx

U

θ

U

aa

μ
DM θrx

θx

2

211  

(E.1)

 


