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Abstract 
The aim of this paper is to analyse two-dimensional linear elastic 
continuum containing multiple interacting cracks. Both the me-
chanical model and the numerical approach are addressed through-
out the text as key concepts for the computational framework, 
whose main characteristics will be described. The Splitting Method 
is a decomposition method considered for mechanical modeling of 
multiple interacting cracks. Accordingly, the original problem is 
divided into a set of global and local sub-problems. The General-
ized Finite Element Method (GFEM) is adopted aiming at finding 
accurate numerical solutions for local sub-problems. Such problems 
are conceived so as to consider the stress concentration and the 
effects of interaction on the cracks.  The main findings are related 
to the effectiveness of the proposed combination between the Split-
ting Method and the GFEM to provide accurate results, as well as 
the versatility of the conceived computational framework for ana-
lyzing different scenarios, including cracks of multilinear shapes and 
mixed mode fractures.Finally, it is possible to verify that the 
GFEM provides precise results using simpler meshes, in comparison 
with standard FEM used, for example in Franc2D®. 
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1 INTRODUCTION 

In a large class of engineering problems, structural analysis requires considering many cracks, 
sharps, notches and/or other defects. As well-known, cracks induce high stress concentrations, 
therefore characterizing the failure as a fracture-dominant process. Fracture Mechanics concepts 
such as the energy release rate and the stress intensity factor, as well as the fracture toughness play 
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an essential role in terms of modeling this kind of phenomenon. In fact, it can be said nowadays 
that failure analysis governed by unstable propagation from a single crack is common practice. 

However, failure analysis may become a more serious issue when many cracks which interact 
with each other must be considered. Furthermore, as well having many cracks, it is often necessary 
to predict and compute a large number of possible scenarios of multiple cracks. These requirements 
can make the analysis very complex or almost impracticable. Choosing an efficient numerical ap-
proach plays a crucial role in enabling computational analysis, and the Finite Element Method is 
the most commonly adopted option. Moreover, there is still a lack of studies with regards to estab-
lishing a computational framework that combines a representative mechanical model with an effi-
cient numerical approach to solve such problems. This issue is addressed in this work. 

Domain decomposition methods such as the overlapping and non-overlapping Schwarz alternat-
ing methods, Le Tallec (1994), Wang and Atluri (1996) were most successful in overcoming the 
above mentioned mechanical modeling difficulties. This class of methods has proven to be very effi-
cient and accurate in terms of analyzing multiple crack problems, despite requiring an iterative pro-
cedure to impose the restriction of stress vector nullity at the crack faces. 

The Splitting Method, proposed by Andersson and Babuska (1996), (2005), also belongs to the 
class of decomposition methods, and is hereby adopted for several reasons. Firstly, a very important 
characteristic of this method is that it was designed to efficiently search and identify the worst sce-
nario among a set of possible multisite crack scenarios. This means that each pattern of cracked 
domains can be analyzed without substantially increasing the computational effort. For each pat-
tern, the results can be obtained from the resolution of a single linear system. Moreover, it is im-
portant to stress that this method does not require an iterative procedure to impose the nullity re-
striction of stress vectors at the crack faces.  

On the other hand, regarding numerical approaches, the methods derived from the Partition of 
Unity Finite Element Method, introduced by Babuska and Melenk (1995), (1997), such as the Gen-
eralized Finite Element Method or the Extended Finite Element Method (GFEM/ XFEM) have 
been successfully used in linear fracture mechanics problems, Duarte et al.(2000), Sukumar et al. 
(2000), Belytschko et al. (2009), Kim et al.(2012) and Barros et al.(2004). Using the GFEM, for 
example, the approximation to the solution can be improved locally by exploring a priori known 
accurate solutions, and therefore avoiding costly mesh refinements. For instance, concerning crack 
problems, the Westergaard Complex Stress Function scan be explored in order to reproduce stress 
fields more accurately in the proximity of the crack tip. In fact, in Alves (2010), the referred en-
richment strategies were primarily used to improve accuracy to analyze fracture problems. 

In this paper, the main given contribution is related to the combination of the Splitting Method 
and the GFE Maiming at numerical modeling of the behavior of linear elastic domains with multi-
ple cracks. The resulting computational framework for the two-dimensional analysis, described here 
by its main features, enables us to consider different scenarios which have cracks with arbitrary 
polygonal shapes, cracks emanating from holes and internal cracks. Furthermore, mixed Modes I 
and II of crack openings can be considered. 

The original code in which the above mentioned computational framework was inserted is called 
SCIEnCE and was developed in Python® language, following an object oriented approach, as de-
scribed in Piedade Neto et al. (2013). 
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This paper is organized as follows. In Section 2, the general concept of the Splitting Method is 
presented, emphasizing the improvements proposed to extend its application, as well as the special 
procedures idealized when programming it. The main features of the Splitting Method mainly relat-
ed to each one of its sub-problems are described in the respective sub-sections. In addition, some of 
the main characteristics of the GFEM explored when solving the local sub-problems are also men-
tioned. In Section 3, two examples are presented to illustrate the efficiency of the computational 
framework. Finally, in Section 4, conclusions and suggestions for future research are presented. 
 
2 THE SPLITTING METHOD 

Figure 1 illustrates the problem to be analyzed using the Splitting Method. The two-dimensional 
linear elastic domain Vc has a boundary S divided into two non-intersecting complementary parts 
Su and St(S = StUSu and St∩Su = ø) on which restrictions over displacements and loading can be 
prescribed, respectively. The domain contains holes with cracks, an internal crack and a border 
crack and is submitted in its boundary St to a tensile load. 
 

 

Figure 1: Two-dimensional domain containing holes and cracks. 

 
Assuming that in Su the displacement vector u is prescribed, the equations governing the equi-

librium condition and the static boundary conditions of the problem are: 
 

ݑ∆ ൌ 0  on Vc (1)
 

ܶ݊ ൌ on St ̅ݐ (2)
 

ܶ݊ ൌ 0 on Sc1, Sc2, Sc3 and Sc4 (3)
 

where Δ(.) is the Laplacian operator. In fact, the first condition is a condensed form of representing 
Lamé’s equations, in which the geometrical characteristics of deformations and the elastic properties 
of the material are implicit. Equation (2) is a boundary condition making the stress tensor T and 
the applied loading compatible. In particular, Equation (3) means that the crack surfaces are trac-
tion free. 
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In the Splitting Method, the above problem is split into a fundamental global problem (ܲீሺ଴ሻ) 
and into additional global sub-problems (ܲீሺ௞ሻ) and local  sub-problems ( ௅ܲ

ሺ௞ሻ), whose number is equal 
to J, described in detail in the following part. The basic aim is to find a stress vector solution t at 
the crack faces such that: 
 

ݐ ൌ 	 ீݐ
ሺ଴ሻ ൅ ௅ݐ

ሺ௞ሻ ൅ ீݐ
ሺ௞ሻ ൌ 0  with 1൑k൑J (4)

 
where 	ீݐ

ሺ଴ሻand	ீݐ
ሺ௞ሻ are stress vector solutions at the crack lines obtained from the global sub-problems 

ܲீሺ଴ሻand ܲீሺ௞ሻ, respectively, and ݐ௅
ሺ௞ሻ is the stress vector prescribed at the crack faces in the local sub-

problem ௅ܲ
ሺ௞ሻ.  

 
2.1 The Global Sub-Problem	ࡳࡼ

ሺ૙ሻ 

The global sub-problem ܲீሺ଴ሻ is basically the original given problem domain, without cracks but un-
der the prescribed loading and boundary displacements. However, identification lines are placed in 
coincidence with the lines of the original cracks. From the results of the ܲீሺ଴ሻ analysis, traction vec-
tors ீݐ

ሺ଴ሻ will be computed corresponding to those lines. 
The governing equations of this type of sub-problems are: 

 
ீݑ∆

ሺ଴ሻ ൌ 0on V(uncracked domain) (5)
 

The main features of this sub-problem are: 
i. Prescribed displacement components: 

 

ீݑ
ሺ଴ሻ ൌ ݑ

ீ
ሺ଴ሻ on Su; (6)

 

ii. Prescribed external loading: 
 

ܶሺ଴ሻ݊ ൌ on St; (7) ̅ݐ
 

iii. Null traction vector along each one of the internal hole boundary Si: 
 

ܶሺ଴ሻ݊ ൌ 0onSi. (8)
 

Due to the simplicity of this sub-problem, a coarse mesh can be adopted. In fact, it is suitable 
to adopt a refinement in the mesh only to ensure some accuracy in stresses around the holes and 
identification lines corresponding to the original cracks. Therefore, local enrichment of the approxi-
mation may be exempt, by setting up a situation in which GFEM/XFEM coincides with FEM. 

Since the length, position and direction of each crack is known, the traction vector can be com-
puted in the identification lines using the solution of this global sub-problem. Moreover, as the nu-
merical solution provides components of the traction vector at some arbitrary points along the line 
Sci, a continuous approximation of these components can be recovered by means of interpolation. 
More specifically, the continuous approximation is written as a linear combination of an adopted 
polynomial basis function described next. 
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2.2 The Local Sub-Problem ࡸࡼ
ሺ࢑ሻ 

The basic aim of this sub-problem is to compute the Stress Intensity Factors(SIFs) at each crack 
tip. As is shown later, in the context of the GFEM/XFEM, by using singular functions as local 
enrichments of the approximated solution, it becomes feasible to consider the effects of the singular-
ities without demanding an excessive mesh refinement. 

In each local sub-problem, only one crack is considered. This crack may be an internal crack or 
a hole with a crack, as depicted in Figure 2. Surrounding the crack or the crack and hole, an arbi-
trary rectangular contour should be made, hereby represented as Гሺ௜ሻ. It is important to mention 
that Гሺ௜ሻ cannot intercept other cracks. 

In each sub-problem, a set of internal pressure loads is applied to the crack surfaces, using the 
same normalized polynomial basis (i.e., each component has a maximum unitary value) used in the 
global problem ܲீሺ଴ሻ to identify the continuous traction vectors along the crack lines. Finally, for 
each component of the polynomial basis, the displacement field ݑ௝

ሺ௜ሻ and the traction vector t(i) along 

Гሺ௜ሻare also computed, as well as the SIFs at the crack tip. 
 

 

Figure 2: Local Sub-Problem ௅ܲ
ሺ௞ሻ. 

 
The governing equations of this type of sub-problem are: 

 

௅ݑ∆
ሺ௜ሻ ൌ 0  on ௅ܸ

ሺ௜ሻ(sub-domain containing the holewithcrack set or crack) (9)
 

i. Prescribed displacement field inܵ௨
ሺ௜ሻ, aiming to avoid rigid body movement of ௅ܸ

ሺ௜ሻ:   
 

ݑ ൌ on	ݑ ܵ୳
ሺ௜ሻ; (10)

 

ii. Null traction vector at the hole border: 
 

ܶ݊ ൌ 	0 on Si; (11)
 

iii. Traction vector applied at the faces ܵ௖௜ା and ܵ௖௜ି of the crack i of length ai: the components of 
this vector are polynomial functions of the natural coordinate ሺെܽ௜ ൑ ௜ߦ ൑ 0ሻ: 

 

௜ାݐ ൌ ∑ ܾ௜,௝
ା ܳ௝ሺߦ௜ ܽ௜⁄ ሻଶ

୨ୀଵ on ܵ௖௜
ା, (12)
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௜ିݐ ൌ෍ ܾ௜,௝
ି ܳ௝ሺߦ௜ ܽ௜⁄ ሻ

ଶ

୨ୀଵ
on ܵ௖௜

ି (13)

 
where: 
 

ܳ௝ሺߦ௜ ܽ௜⁄ ሻ ൌ ሺߦ௜ ܽ௜⁄ ሻ௝, ݆ ൌ 0,1,2 (14)
 

Polynomial basis with components of order 0, 1 or 2 were adopted. It is clear that any approx-
imation function will be represented as a linear combination using elements that belong to this set. 

Some comments about the boundary conditions are worthwhile. As observed by Andersson and 
Babuska (2005), any boundary conditions can be used, provided rigid body movements are avoided.  
As was mathematically proved by the same authors, although the Stress Intensity Factors and the 
results on the Г contour are affected in the local problems, the final result will not be changed after 
the superposition  
 
2.3 Additional Features of ࡸࡼ

ሺ࢑ሻ Sub-Problems 

Firstly, it is important to focus on how to apply internal pressure to the internal crack surfaces. 
Depending on its geometry, each internal crack can be divided into several line segments, which is 
convenient, particularly if the crack is not straight, therefore presenting a more complex geometry. 
For instance, in Figure 3, the crack is optionally composed by two equal segments of lengths ai. 
 

 

Figure 3: Crack i subdivided into two segments. 

 
Once the subdivision of the crack line is made, when defining the local problems, each segment 

is treated as a crack line, and hereafter will be indicated as Sci. As shown in Figure 4, an internal 
load must be applied to each Sci. Note that in addition to the conventional mode one, cases of load-
ing associated to the mixed mode crack opening can also be considered. 
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Figure 4: Applied load on the Sci line. 

 
2.4 On the Г Contour 

The Г contour is a rectangular polygon completely enclosing the crack. For each local sub-problem 
	 ௅ܲ
ሺ௞ሻ, the displacements and stress fields must be identified at each node of this contour. There must 

be a sufficient number of nodes in the Г contour in order to ensure the accuracy for the computed 
displacement and stress fields. However, an excessive number should be avoided in order to reduce 
the costs in terms of mesh refinement in the correspondent sub-problem ܲீሺ௞ሻ. 
 
2.5 The Global Sub-Problemࡳࡼ

ሺ࢑ሻ 

The Global Sub-Problem ܲீሺ௞ሻ is geometrically similar to ܲீሺ଴ሻ. Therefore, geometry is described with-
out cracks, but the same boundary conditions of the ܲீሺ଴ሻ are considered. However, only the dis-
placement fields and traction vectors identified in Гሺ௜ሻ of the correspondent local problem ௅ܲ

ሺ௞ሻ are 
imposed as jumps on ܲீሺ௞ሻ. It is important to note that the number of global sub-problems coincides 
with the number of local sub-problems.  

The governing equations of this type of sub-problems are: 
 

ீݑ∆
ሺ௜ሻ ൌ 0 on V(un-cracked domain) (15)

 

In addition, the main features of this type of sub-problem are: 
i. Prescribed displacements, which are the same ones as the sub-problem ܲீሺ଴ሻ: 

 

ீݑ
ሺ௜ሻ ൌ ݑ

ீ
ሺ௜ሻ ൌ ݑ

ீ
ሺ଴ሻ on Su (16)

 

ii. Prescribed null traction vector in St and in the hole borders: 
 

ܶ݊ ൌ 0on St, (17)

aiai aiai
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ܶ݊ ൌ 0 on Si (18)
 

Finally, it is very important to highlight the “jumps” that must be prescribed: 
iii. “Jump” in the traction vector on the Гሺ௜ሻ: 

 

ீݐൣ
ሺ௜ሻ൧ ൌ ௅ݐ

ሺ௜ሻon Гሺ୧ሻ (19)
 

iv.  “Jump” in the displacement field on the Гሺ௜ሻ: 
 

ீݑൣ
ሺ௜ሻ൧ ൌ ௅ݑ

ሺ௜ሻon Гሺ୧ሻ (20)
 

where ݑ௅
ሺ௜ሻ and ݐ௅

ሺ௜ሻ are obtained from the solutions of the local problems ௅ܲ
ሺ௞ሻ. The symbol [•] pre-

sented in Equations (19) and (20) denotes jumps in the ݊௰ሺ೔ሻ directions, shown in Figure 5. Accord-
ing to condition (20), the displacement field is then imposed in the correspondent sub-problem ܲீሺ௞ሻ 
as a local “jump” in displacements. Analogously, as indicated by Equation (19), the stress field is 
imposed as a “jump” in forces in the same sub-problem ܲீሺ௞ሻ. It is clear that nodes must be posi-
tioned in sub-problems ܲீሺ௞ሻ to allow the application of both results.  
 

 

Figure 5: Global Sub-Problem ܲீሺ௞ሻ: ݊௰ሺ೔ሻ-directions. 

 
The most important aim of this type of sub-problem is to evaluate the corrections in the solu-

tion of the global problemܲீሺ଴ሻ, by taking into account the influence of one crack on another. The 
solution to the original problem cannot be solved only by the superposition of solutions of the global 
problem ܲீሺ଴ሻand the local sub-problems. If so, there would be discontinuities along the lines corre-
sponding to the Г contours. 
 
2.6 Assemblage of the Problems. Coefficients Provided by ࡳࡼ

ሺ૙ሻ and ࡳࡼ
ሺ࢑ሻ 

In the given problem ܲீ , the traction vector must be null in the crack surfaces. This can be ex-
pressed through a weighted residual form, using each component of the approximation basis accord-
ing to the following relation: 
 

׬ .ݐ
௔೔
଴ ܳ௝ଶሺߦ௜ ܽ௜⁄ ሻ݀ߦ ൌ 0  with j2= 1,…,J (21)

 

n

S

S1

S2

n

S

S1

S3

Sc1

Sc3

Sc2

Sc4

(1) (2)

(3)

(4)

n (1)

n (1)

n (1)

n (1)
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where t is given by Equation (4). In addition, ܳ௝ଶሺߦ௜ ܽ௜⁄ ሻ is the weight function, taken as one of the 

components of the polynomial basis functions, as shown in Equation (14). 
The traction vector contributions can be represented using	ܳ௜ሺߦ௜ ܽ௜⁄ ሻ  as follows: 

i. Global sub-problem ܲீሺ଴ሻ: 
 

ீݐ
ሺ଴ሻ ൎ ∑ ܾ௜,௝. ܳ௝ሺߦ௜ ܽ௜⁄ ሻ௃

௝ୀଵ , with 0 ൑ ௜ߦ ൑ ܽ௜ (22)
 

ii. Local sub-problem ௅ܲ
ሺ୩ሻ: 

 

௅ݐ
ሺ௞ሻ ൌ െ∑ .௝ାሺ௜ିଵሻ௃ߙ ܳ௝ሺߦ௜ ܽ௜⁄ ሻ௃

௝ୀଵ , with 0 ൑ ௜ߦ ൑ ܽ௜ (23)
 

iii. Global sub-problem ܲீሺ୩ሻ: 
 

ீݐ
ሺ௞ሻ ൌ ∑ ∑ .௞ߙ ܿ௜,௝

ሺ௞ሻ. ܳ௝ሺߦ௜ ܽ௜⁄ ሻெ
௞ୀଵ

௃
௝ୀଵ ,	with	0 ൑ ௜ߦ ൑ ܽ௜ (24)

 

where M is the number of local (or global) problems and J  is the number of terms of the approxi-
mation basis. 

It is worth mentioning that a single “α” coefficient for each local problem and the correspondent 
global problem as a result of the analysis will be computed. 

The “α” coefficients must be organized as a vector composing the unknown vector solution of 
the linear system.  The “b” and “c” coefficients can be previously identified using the results of the 
global sub-problems 	ܲீሺ଴ሻ and ܲீሺ௞ሻ, respectively, by means of the LSM. 

Remark: so far, in order to make it easier to understand the text, only Mode I has been consid-
ered. 

By substituting equations (22), (23) and (24) in Equation (21), the result is: 
 

න ቎෍ܾ௜,௝. ܳ௝ሺߦ௜ ܽ௜⁄ ሻ

௃

௝ୀଵ

െ෍ߙ௝ାሺ௜ିଵሻ௃. ܳ௝ሺߦ௜ ܽ௜⁄ ሻ ൅

௃

௝ୀଵ

෍෍ߙ௞. ܿ௜,௝
ሺ௞ሻ. ܳ௝ሺߦ௜ ܽ௜⁄ ሻ

ெ

௞ୀଵ

௃

௝ୀଵ

቏ .
௔೔

଴
ܳ௝ଶሺߦ௜ ܽ௜⁄ ሻ݀ߦ ൌ 0 (25a)

 

or: 
 

න ෍൥ܾ௜,௝ െ ௝ାሺ௜ିଵሻ௃ߙ ൅෍ߙ௞. ܿ௜,௝
ሺ௞ሻ

ெ

௞ୀଵ

൩

௃

௝ୀଵ

. ܳ௝ሺߦ௜ ܽ௜⁄ ሻ. ܳ௝ଶሺߦ௜ ܽ௜⁄ ሻ݀ߦ ൌ 0
௔೔

଴
 (25b)

 

Finally, the following system of equations can be assembled as a function of coefficients “α”: 
 

ሾܫܩሿ. ሼߙሽ ൌ ሼݎሽ (26)
 

where [GI] is the General Influence matrix. 
 
2.7 Assemblage of the Linear System on the “α” Coefficients Considering Multiple Cracks 

In this section, the assemblage of the linear system for many internal cracks is described. 
The variables and constants used in this section are: 
1. Number of cracks: I; 
2. Number of components in the approximation basis: J; 
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3. Number of segments of each crack: 2; 
4. Number of local sub-problems (and global sub-problems): 2 · 2 · I · J = 4IJ 
Remark: the number of local sub-problems must be multiplied by 2 in order to consider the two 

opening modes. Although two segments for each crack are considered here, the extension for more 
than two segments is straightforward. 

The following expressions are obtained by using Equation (25b): 
 

1. First tip, mode I: 
 

න ෍቎ܾଶ௜ିଵ,௝
ூ െ ସ௃ሺ௜ିଵሻା௝ߙ ൅෍ߙ௞. ܿଶ௜ିଵ,௝

ூ ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௬,௝൫ߦ௜,ଵ௦௧ ௧௜௣ ܽ௜⁄ ൯. ܳ௬,௝ଶ൫ߦ௜,ଵ௦௧	௧௜௣ ܽ௜⁄ ൯݀ߦ ൌ 0
௔೔

଴
 (27)

 

2. First tip, mode II: 
 

න ෍቎ܾଶ௜ିଵ,௝
ூூ െ ସ௃ሺ௜ିଵሻା௝ା௃ߙ ൅෍ߙ௞. ܿଶ௜ିଵ,௝

ூூ ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௫,௝൫ߦ௜,ଵ௦௧௧௜௣ ܽ௜⁄ ൯. ܳ௫,௝ଶ൫ߦ௜,ଵ௦௧௧௜௣ ܽ௜⁄ ൯݀ߦ ൌ 0
௔೔

଴
 (28)

 

3. Second tip, mode I: 
 

න ෍቎ܾଶ௜,௝
ூ െ ସ௃ሺ௜ିଵሻା௝ାଶ௃ߙ ൅෍ߙ௞. ܿଶ௜,௝

ூ ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௬,௝൫ߦ௜,ଶ௡ௗ ௧௜௣ ܽ௜⁄ ൯. ܳ௬,௝ଶ൫ߦ௜,ଶ௡ௗ	௧௜௣ ܽ௜⁄ ൯݀ߦ ൌ 0
௔೔

଴
 (29)

 

4. Second tip, mode II: 
 

න ෍቎ܾଶ௜,௝
ூூ െ ସ௃ሺ௜ିଵሻା௝ାଷ௃ߙ ൅෍ߙ௞. ܿଶ௜,௝

ூூ ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௫,௝൫ߦ௜,ଶ௡ௗ ௧௜௣ ܽ௜⁄ ൯. ܳ௫,௝ଶ൫ߦ௜,ଶ௡ௗ	௧௜௣ ܽ௜⁄ ൯݀ߦ ൌ 0
௔೔

଴
 (30)

 

with j2 = 1…J in all equations. 
Concerning internal cracks, some comments are worth mentioning with regards to Equations 

(27)-(30). As there are at most 2 crack tips, it does not matter which crack tip is chosen as the first 
or the second one. For each one, there is an associated segment, in which the load is applied (see 
Figure 4). Equations (27)-(30) show how to consider the influence of each generated sub-problem 
and its respective load system over both crack tips. 

For example, if we consider the first segment of the first crack, Equations (27)-(30) become: 
 

න ෍቎ܾଵ,௝
ூ െ ௝ߙ ൅෍ߙ௞. ܿଵ,௝

ூ	ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௬,௝൫ߦଵ,ଵ௦௧	௧௜௣ ܽଵ⁄ ൯. ܳ௬,ଵ൫ߦଵ,ଵ௦௧	௧௜௣ ܽଵ⁄ ൯݀ߦ ൌ 0
௔భ

଴

න ෍቎ܾଵ,௝
ூ െ ௝ߙ ൅෍ߙ௞. ܿଵ,௝

ூ	ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௬,௝൫ߦଵ,ଵ௦௧	௧௜௣ ܽଵ⁄ ൯. ܳ௬,ଶ൫ߦଵ,ଵ௦௧	௧௜௣ ܽଵ⁄ ൯݀ߦ ൌ 0
௔భ

଴

⋮

න ෍቎ܾଵ,௝
ூ െ ௝ߙ ൅෍ߙ௞. ܿଵ,௝

ூ	ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௬,௝൫ߦଵ,ଵ௦௧ ௧௜௣ ܽଵ⁄ ൯. ܳ௬,௃൫ߦଵ,ଵ௦௧ ௧௜௣ ܽଵ⁄ ൯݀ߦ ൌ 0
௔భ

଴

 (31a)
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and, for Mode II: 
 

න ෍቎ܾଵ,௝
ூூ െ ௝ା௃ߙ ൅෍ߙ௞. ܿଵ,௝

ூூ	ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௫,௝൫ߦଵ,ଵ௦௧	௧௜௣ ܽଵ⁄ ൯. ܳ௫,ଵ൫ߦଵ,ଵ௦௧	௧௜௣ ܽଵ⁄ ൯݀ߦ ൌ 0
௔భ

଴

න ෍቎ܾଵ,௝
ூூ െ ௝ା௃ߙ ൅෍ߙ௞. ܿଵ,௝

ூூ	ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௫,௝൫ߦଵ,ଵ௦௧	௧௜௣ ܽଵ⁄ ൯. ܳ௫,ଶ൫ߦଵ,ଵ௦௧	௧௜௣ ܽଵ⁄ ൯݀ߦ ൌ 0
௔భ

଴

⋮

න ෍቎ܾଵ,௝
ூூ െ ௝ା௃ߙ ൅෍ߙ௞. ܿଵ,௝

ூூ	ሺ௞ሻ

ସூ௃

௞ୀଵ

቏

௃

௝ୀଵ

. ܳ௫,௝൫ߦଵ,ଵ௦௧ ௧௜௣ ܽଵ⁄ ൯. ܳ௫,௃൫ߦଵ,ଵ௦௧ ௧௜௣ ܽଵ⁄ ൯݀ߦ ൌ 0
௔భ

଴

 (31b) 

 

The General Influence matrix [GI] can be divided into two sub-matrices: 
 

ሾܫܩሿ ൌ ሾܫܩሿ௅ ൅ ሾܫܩሿீ (32)
 

where: 
1. ሾܫܩሿ௅ contains the terms related to the local sub-problems; 
2. ሾܫܩሿீ contains the terms related to the global sub-problems. 
The ሾܫܩሿ௅ matrix, considering all cracks, is presented in the sequel:  

 

ሾܫܩሿ௅ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ூ,ଵ௧ܳൣۍ

ሺଵሻ ൧ ሾ0ሿ

ሾ0ሿ ൣܳூூ,ଵ௧
ሺଵሻ ൧

ሾ0ሿ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

ൣܳூ,ଶ௧
ሺଵሻ ൧ ሾ0ሿ

ሾ0ሿ ൣܳூூ,ଶ௧
ሺଵሻ ൧

ሾ0ሿ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

⋯ ሾ0ሿ

⋯ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

⋯ ሾ0ሿ

⋯ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

ሾ0ሿ ሾ0ሿ

ሾ0ሿ ሾ0ሿ
⋮ ⋮

ሾ0ሿ ሾ0ሿ

⋮ ⋮

ሾ0ሿ ሾ0ሿ

⋱ ሾ0ሿ

ሾ0ሿ ൣܳூூ,ଵ௧
ሺூሻ ൧

⋯ ሾ0ሿ

⋯ ሾ0ሿ

⋮ ⋮

ሾ0ሿ ሾ0ሿ

ൣܳூ,ଶ௧
ሺூሻ ൧ ⋮

⋯ ൣܳூூ,ଶ௧
ሺூሻ ൧ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ସூ௃௫ସூ௃

 (33) 

 

where: 
1. ሾ0ሿ is a null matrix of order J x J; 

2. ቂܳூ,ଵ௧
ሺ௜ሻ ቃ is the matrix of order J x J, related to the first crack tip of crack i in Mode I. 

The ൣܳூ,ଵ௧
ሺ௜ሻ ൧ and ൣܳூூ,ଵ௧

ሺ௜ሻ ൧	component matrices are described in detail in the sequel: 
 

ൣܳூ,ଵ௧
ሺ௜ሻ ൧ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
න ܳ௬,ଵܳ௬,ଵ߲ߦ

௔೔

଴

න ܳ௬,ଶܳ௬,ଵ߲ߦ

௔೔

଴

න ܳ௬,ଵܳ௬,ଶ߲ߦ

௔೔

଴

න ܳ௬,ଶܳ௬,ଶ߲ߦ

௔೔

଴

⋯ න ܳ௬,௃ܳ௬,ଵ߲ߦ

௔೔

଴

⋯ න ܳ௬,௃ܳ௬,ଶ߲ߦ

௔೔

଴
⋮ ⋮

න ܳ௬,ଵܳ௬,௃߲ߦ

௔೔

଴

න ܳ௬,ଶܳ௬,௃߲ߦ

௔೔

଴

⋱ ⋮

⋯ න ܳ௬,௃ܳ௬,௃߲ߦ

௔೔

଴ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (34a)
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ቂܳூூ,ଵ௧
ሺ௜ሻ ቃ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
න ܳ௫,ଵܳ௫,ଵ߲ߦ

௔೔

଴

න ܳ௫,ଶܳ௫,ଵ߲ߦ

௔೔

଴

න ܳ௫,ଵܳ௫,ଶ߲ߦ

௔೔

଴

න ܳ௫,ଶܳ௫,ଶ߲ߦ

௔೔

଴

⋯ න ܳ௫,௃ܳ௫,ଵ߲ߦ

௔೔

଴

⋯ න ܳ௫,௃ܳ௫,ଶ߲ߦ

௔೔

଴
⋮ ⋮

න ܳ௫,ଵܳ௫,௃߲ߦ

௔೔

଴

න ܳ௫,ଶܳ௫,௃߲ߦ

௔೔

଴

⋱ ⋮

⋯ න ܳ௫,௃ܳ௫,௃߲ߦ

௔೔

଴ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (34b)

 
The matrix ሾܫܩሿீ takes into account the effects of each crack on the other cracks. For example, 

ൣܿܳூ,ଵ௧
ሺூ,ଵሻ൧ refers to the effects of the load applied to the first segment of the first crack, normal to 

crack surface, related to Mode I (superior index), over the traction in the same segment, related to 
Mode I. ൣܿܳூ,ଵ௧

ሺூூ,ଵሻ൧ refers to the effects of the load applied on the first segment of the first crack, tan-

gential to the crack surface, related to Mode II (superior index), over the traction in the same seg-
ment. ൣܿܳூ,ଵ௧

ሺூ,ଶሻ൧ refers to the effects of the load applied on the second segment of the first crack, nor-

mal to crack surface, related to Mode I (superior index), over the traction in the first segment of the 
first crack tip, related to Mode I, and so forth. 

ቂܿܳூ,ଵ௧
ሺூ,ଵሻቃ is described in detail in Equation (35): 

 

ቂܿܳூ,ଵ௧
ሺூ,ଵሻቃ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
න ቀܿଵ,ଵ

ூሺଵሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃
ூሺଵሻܳ௬,௃ቁ ܳ௬,ଵ߲ߦ

௔భ

଴

න ቀܿଵ,ଵ
ூሺଶሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃

ூሺଶሻܳ௬,௃ቁܳ௬,ଵ߲ߦ

௔భ

଴

න ቀܿଵ,ଵ
ூሺଵሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃

ூሺଵሻܳ௬,௃ቁ ܳ௬,ଶ߲ߦ

௔భ

଴

න ቀܿଵ,ଵ
ூሺଶሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃

ூሺଶሻܳ௬,௃ቁܳ௬,ଶ߲ߦ

௔భ

଴

⋯ න ቀܿଵ,ଵ
ூሺ௃ሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃

ூሺ௃ሻܳ௬,௃ቁܳ௬,ଵ߲ߦ

௔భ

଴

⋯ න ቀܿଵ,ଵ
ூሺ௃ሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃

ூሺ௃ሻܳ௬,௃ቁܳ௬,ଶ߲ߦ

௔భ

଴
⋮ ⋮

න ቀܿଵ,ଵ
ூሺଵሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃

ூሺଵሻܳ௬,௃ቁ ܳ௬,௃߲ߦ

௔భ

଴

න ቀܿଵ,ଵ
ூሺଶሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃

ூሺଶሻܳ௬,௃ቁܳ௬,௃߲ߦ

௔భ

଴

⋱ ⋮

⋯ න ቀܿଵ,ଵ
ூሺ௃ሻ ∙ ܳ௬,ଵ ൅ ⋯൅ ܿଵ,௃

ூሺ௃ሻܳ௬,௃ቁܳ௬,௃߲ߦ

௔భ

଴ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (35)

 
ሾܫܩሿீ is presented in the sequel, in Equation (36). 

 

ሾܫܩሿீ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ൣܿܳூ,ଵ௧

ሺூ,ଵሻ൧ ൣܿܳூ,ଵ௧
ሺூூ,ଵሻ൧

ൣܿܳூூ,ଵ௧
ሺூ,ଵሻ൧ ൣܿܳூூ,ଵ௧

ሺூூ,ଵሻ൧

ൣܿܳூ,ଵ௧
ሺூ,ଶሻ൧ ൣܿܳூ,ଵ௧

ሺூூ,ଶሻ൧

ൣܿܳூூ,ଵ௧
ሺூ,ଶሻ൧ ൣܿܳூூ,ଵ௧

ሺூூ,ଶሻ൧

ൣܿܳூ,ଶ௧
ሺூ,ଵሻ൧ ൣܿܳூ,ଶ௧

ሺூூ,ଵሻ൧

ൣܿܳூூ,ଶ௧
ሺூ,ଵሻ൧ ൣܿܳூூ,ଶ௧

ሺூூ,ଵሻ൧

ൣܿܳூ,ଶ௧
ሺூ,ଶሻ൧ ൣܿܳூ,ଶ௧

ሺூூ,ଶሻ൧

ൣܿܳூூ,ଶ௧
ሺூ,ଶሻ൧ ൣܿܳூூ,ଶ௧

ሺூூ,ଶሻ൧

ൣܿܳூ,ଵ௧
ሺூ,ଷሻ൧ ൣܿܳூ,ଵ௧

ሺூூ,ଷሻ൧

ൣܿܳூூ,ଵ௧
ሺூ,ଷሻ൧ ൣܿܳூூ,ଵ௧

ሺூூ,ଷሻ൧

⋯ ൣܿܳூ,ଵ௧
ሺூூ,ଶூሻ൧

⋯ ൣܿܳூூ,ଵ௧
ሺூூ,ଶூሻ൧

ൣܿܳூ,ଶ௧
ሺூ,ଷሻ൧ ൣܿܳூ,ଶ௧

ሺூூ,ଷሻ൧

ൣܿܳூூ,ଶ௧
ሺூ,ଷሻ൧ ൣܿܳூூ,ଶ௧

ሺூூ,ଷሻ൧

⋯ ൣܿܳூ,ଶ௧
ሺூூ,ଶூሻ൧

⋯ ൣܿܳூூ,ଶ௧
ሺூூ,ଶூሻ൧

ൣܿܳூ,ଷ௧
ሺூ,ଵሻ൧ ൣܿܳூ,ଷ௧

ሺூூ,ଵሻ൧

ൣܿܳூூ,ଷ௧
ሺூ,ଵሻ൧ ൣܿܳூூ,ଷ௧

ሺூூ,ଵሻ൧

ൣܿܳூ,ଷ௧
ሺூ,ଶሻ൧ ൣܿܳூ,ଷ௧

ሺூூ,ଶሻ൧

ൣܿܳூூ,ଷ௧
ሺூ,ଶሻ൧ ൣܿܳூூ,ଷ௧

ሺூூ,ଶሻ൧
⋮ ⋮

ൣܿܳூூ,ଶூ௧
ሺூ,ଵሻ ൧ ൣܿܳூூ,ଶூ௧

ሺூூ,ଵሻ൧

⋮ ⋮

ൣܿܳூூ,ଶூ௧
ሺூ,ଶሻ ൧ ൣܿܳூூ,ଶூ௧

ሺூூ,ଵሻ൧

ൣܿܳூ,ଷ௧
ሺூ,ଷሻ൧ ൣܿܳூ,ଷ௧

ሺூூ,ଷሻ൧

ൣܿܳூூ,ଷ௧
ሺூ,ଷሻ൧ ൣܿܳூூ,ଷ௧

ሺூூ,ଷሻ൧

⋯ ൣܿܳூ,ଷ௧
ሺூூ,ଶூሻ൧

⋯ ൣܿܳூூ,ଷ௧
ሺூூ,ଶூሻ൧

⋮ ⋮

ൣܿܳூூ,ଶூ௧
ሺூ,ଷሻ ൧ ൣܿܳூூ,ଶூ௧

ሺூூ,ଷሻ൧

⋱ ⋮

⋯ ൣܿܳூூ,ଶூ௧
ሺூூ,ଶூሻ൧ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (36)

 
The assemblage of the {r} vector is more direct as indicated in Equation (37). Therefore, more 

details about it will be omitted. 
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ሼݎሽ ൌ

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ
න ൫ܾଵ,ଵ

ூ ∙ ܳ௬,ଵ ൅ ⋯൅ ܾଵ,௃
ூ ܳ௬,௃൯ܳ௬,ଵ߲ߦ

௔భ

଴

න ൫ܾଵ,ଵ
ூ ∙ ܳ௬,ଵ ൅ ⋯൅ ܾଵ,௃

ூ ܳ௬,௃൯ܳ௬,ଶ߲ߦ

௔భ

଴
⋮

න ൫ܾଵ,ଵ
ூூ ∙ ܳ௫,ଵ ൅ ⋯൅ ܾଵ,௃

ூூ ܳ௫,௃൯ܳ௫,௃߲ߦ

௔భ

଴

න ൫ܾଵ,ଵ
ூூ ∙ ܳ௫,ଵ ൅ ⋯൅ ܾଵ,௃

ூூ ܳ௫,௃൯ܳ௫,ଶ߲ߦ

௔భ

଴
⋮

න ൫ܾଵ,ଵ
ூூ ∙ ܳ௫,ଵ ൅ ⋯൅ ܾଵ,௃

ூூ ܳ௫,௃൯ܳ௫,௃߲ߦ

௔భ

଴

න ൫ܾଶ,ଵ
ூ ∙ ܳ௬,ଵ ൅ ⋯൅ ܾଶ,௃

ூ ܳ௬,௃൯ܳ௬,ଵ߲ߦ

௔భ

଴

න ൫ܾଶ,ଵ
ூ ∙ ܳ௬,ଵ ൅ ⋯൅ ܾଶ,௃

ூ ܳ௬,௃൯ܳ௬,ଶ߲ߦ

௔భ

଴
⋮

න ൫ܾଶ,ଵ
ூ ∙ ܳ௬,ଵ ൅ ⋯൅ ܾଶ,௃

ூ ܳ௬,௃൯ܳ௬,௃߲ߦ

௔భ

଴
⋮

න൫ܾଶூ,ଵ
ூூ ∙ ܳ௫,ଵ ൅ ⋯൅ ܾଶூ,௃

ூூ ܳ௫,௃൯ܳ௫,ଵ߲ߦ

௔಺

଴

න൫ܾଶூ,ଵ
ூூ ∙ ܳ௫,ଵ ൅ ⋯൅ ܾଶூ,௃

ூூ ܳ௫,௃൯ܳ௫,ଶ߲ߦ

௔಺

଴
⋮

න൫ܾଶூ,ଵ
ூூ ∙ ܳ௫,ଵ ൅ ⋯൅ ܾଶூ,௃

ூூ ܳ௫,௃൯ܳ௫,௃߲ߦ
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3 COMPUTATIONAL ASPECTS 

In order to construct a computational framework to test the combination of the Splitting Method 
with the GFEM/ XFEM, a complete code had to be created from the mesh generation to the solu-
tion of the linear system of equations providing the “α” coefficients of the Splitting Method. A brief 
review of the GFEM/ XFEM followed by the main idealized and implemented procedures of the 
computational code is described in this section.  
 
3.1 A Brief Review of GFEM/ XFEM 

It is well known that FEM is not very accurate in the proximity of the crack tips, especially regard-
ing the stress field results. An excessive refinement of the mesh combined with the Quarter Point 
element can be adopted in order to deal with this problem. However, in this paper we focus on the 
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enrichment strategies of the GFEM/ XFEM to improve the results, therefore avoiding excessive 
mesh refinement. Hence, close to the crack tips accurate results for the Stress Intensity Factors can 
be obtained, which are intrinsically derived from the good precision of the stress and displacement 
fields in its proximity. 
The main difference between the standard FEM and the GFEM/ XFEM is in the definition of the 
shape functions. In GFEM/ XFEM, the shape functions ϕαi are defined locally in a domain ωα 
called a cloud or patch (the set of elements that have a common vertex node). Inside each cloud, 
the shape functions are constructed by the product between the so-called enrichment functions Lαi 
and the linear Partition of Unity (PU) functions belonging to the elements in the cloud and at-
tached to the vertex α(φα). Therefore: 
 

i iL    (38)
 

where α identifies the nodal cloud and i = 1,…,nl  and nl is the total number of enrichment func-
tions adopted for each cloud. 

Figure 6 illustrates the construction of a GFEM/ XFEM shape function in a two-dimensional 
domain. 
 

 

Figure 6: Representation of a GFEM/ XFEM shape function. Here the FEM shape function,  

φα is the function at the top and the enrichment function, Lαi is the function in the middle.  

The picture on the left depicts a polynomial enrichment function and the picture on the  

right shows a non-polynomial enrichment function. The GFEM/ XFEM shape function,  

ϕαi is the resulting shape function shown at the bottom. 

Adapted: Kim, Duarte and Proença, (2009) 

 
The partition of unity concept can paste together the cloud approximations to build a continu-

ous global one. The GFEM/ XFEM approximation for each component of the displacement field, 
restricted only to 2-D problems, is given by the following relations: 
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where uα and vα are parameters associated with usual degrees of freedom of finite elements, bα and 
cαare additional nodal parameters introduced by enrichment. 

In particular, aiming to improve the results in the crack tip neighborhood, the set of enrichment 
functions hereby adopted is defined as follows: 
 

 

 

This set of functions can reproduce the Westergaard Complex Stress Functions. The main bene-
fit of using GFEM/ XFEM is illustrated in Figure 7. 
 

 

a) b) c) 

Figure 7: Comparison between the σyy components in the proximity of a crack tip  

obtained from: a) Standard FEM; b) GFEM/ XFEM; c) Analytical solution. 

 
Figure 7 depicts the σyy stress component obtained from the analysis of a Local Sub-Problem 

defined in the proximity of a crack tip. Both standard FEM and GFEM/ XFEM results are com-
pared. The benefit of using the GFEM/ XFEM is clear. Obviously, the same mesh was adopted in 
both analyses. 

More information about the GFEM/ XFEM are available in recent reviews found in Belytschko 
et al (2009) and Fries and Belytschko (2010). 
 
3.2 Procedures Associated to ࡳࡼ

ሺ૙ሻ 

This is the simplest among the problems concerning the Splitting Method. However, two idealized 
computational procedures are related to it. The first one aims to generate an unstructured mesh 
composed by triangular elements. For this mesh generation, the available package for Python® 
named MeshPy® was used. This package can generate an efficient triangular or tetrahedral mesh. 
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However, only a triangular mesh generation was used in this work. To better explore the MeshPy®, 
some restrictions must be provided to the program before starting the analysis and mesh genera-
tion. The most important is to insert additional nodes: it may be necessary to indicate the regions 
where additional nodes must be concentrated, especially at the boundary of the plate or at the edg-
es of the holes. It is important to mention that it is sometimes necessary to refine the mesh close to 
the crack lines Sci, even in ܲீሺ଴ሻ problems, especially when the stress distribution is irregular. 

In the developed program, optionally the mesh can be defined manually when global problems 
ܲீሺ଴ሻ are considered. This option is advisable when there are no holes in the problem and the geome-
try is relatively simple and, therefore, the adopted mesh is also simple. 

It is very important to stress that the MeshPy® generates a mesh with a Constant Stress Tri-
angle (CST), therefore with only 3 nodes. However, in the developed program, the created CST to 
the Linear Stress Triangle (LST) can also be transformed by adding intermediate nodes at the sides 
of the triangle. In this paper, the LST is optimally indicated for global problems ܲீሺ଴ሻ	and ܲீሺ௞ሻ. Con-
sidering the local problems ௅ܲ

ሺ௞ሻ, only CST must be used due to the use of enrichment strategies of 
the Generalized Finite Element Method. 

The second idealized procedure aims to approximate the traction vector taking local values as a 
reference computed at some points placed along the crack line Sci. In fact, this procedure consists of 
a collection of simple functionalities. The most important functionality is responsible for finding out 
the stress vector components. 

In short, after determining the element to which the point belongs, the next step is to recover 
the stress tensor components (σx, σy, τxy) associated to the reference Cartesian axis. Figure 8 depicts 
a small region of the mesh where the crack is inserted, as well as points distributed on the crack 
line. 
 

 

 

 

Figure 8: Evaluation of the stress tensor at a given point of the mesh. 

 
The squares on the crack line depicted in Figure 8 are points where the stress tensor will be 

evaluated. The stress components σθ and τθ, respectively normal and tangential to the crack line at 
the point, are easily evaluated using the well-known relation: 
 

ቄ
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߬ఏ
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It is clear that angle θ refers to the crack angle, as shown in Figure 8. 
For each point placed in the crack line Sci, this process is repeated computing the two stress 

components. Finally, by using the Least Square Method, an approximation function for σθ and an-
other for τθ is determined. Each approximation function is expressed as a linear combination of 
monomials of order m.  
 

 

Figure 9: Approximation of the components σθ and τθ along the crack by means of a polynomial function. 

 
In Figure 9, the crack in Figure 8 and its values of components σθ and τθ in six points are re-

produced. As also exemplified in the same figure, the approximation functions are constructed by 
using a polynomial basis of order 2, for example. The coefficients β1,I, β2,I , β3,I , β1,II , β2,II and β3,II 
are obtained using the Least Square Method. 

This method is also used in global problems ܲீሺ௞ሻ. 
 
3.3 Procedures Associated to the Local Sub-Problems	ࡸࡼ

ሺ࢑ሻ 

Fracture mechanics concepts are involved in this sub-problem. Therefore, all the most important 
procedures hereby idealized are related to modeling the crack and calculating the J Integral. In 
particular, it is important to note that the J Integral includes the crack surfaces in its paths. 
 
3.3.1 Mesh Generation for Local Problems ࡸࡼ

ሺ࢑ሻ 

The mesh generation in the ௅ܲ
ሺ௞ሻ problems includes the creation of nodes at the external boundary, 

as well as at the Г contour and along the crack faces. In addition to the creation of the nodes, the 
procedure includes routines for mesh refinement close to the crack tips and the Г contour.  

The shapes of the internal Г contour and external boundary of the problem can be chosen arbi-
trarily. However, in order to make the computational development easier, the rectangular geometry 
was chosen, as shown in Figure 10. 

As discussed before, the Г contour must enclose the crack totally and, once existent, the hole 
with the crack as well. Nevertheless, the respective lengths are arbitrary. In the developed proce-
dure, the length of the contour can be defined a priori on the basis of the length of the crack.  

It is important to stress that the crack position and its length are the same as proposed in the 
original problem, but the external boundary and Г contour are defined by the code during the anal-
ysis. Particularly over the Г contours, there must be a sufficient number of nodes in order to ensure 
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that the results are accurate for the vector stress and displacement fields (these results will be pre-
scribed in the ܲீሺ௞ሻ problems as jumps in stress and displacements, respectively). 
 

 

Figure 10: Automatic generation of the nodes at the external boundary and Г contour. 

 
To distribute the nodes at the crack faces, the process may be more complex, considering that 

the geometry of the crack can be polygonal. Figure 11 illustrates the main steps for the creation of 
the nodes in a crack with 3 segments, for instance. 
 

  

Step 1: Initial and final nodes Step 2: Nodes at intersections  

of the incision lines 

Step 3: Intermediatenodes 

Figure 11: Steps of the automatic generation of the nodes at crack surfaces. 

 
In the first step, two nodes are inserted at the ends of the crack. In the second step, pairs of 

nodes are created at the ends of the line segments defined by the bisectors of the corner angles 
formed by two consecutive crack lines. Finally, in the third step, the additional nodes are distribut-
ed along the crack faces described by joining the nodes defined in the previous steps. 

To create the set of nodes at crack faces, each face should be subdivided according to the sub-
division rate defined a priori by the user. In the subdivision process hereby adopted, the distribu-
tion of nodes along a segment of a crack face follows a geometric rate. More details about this as-
pect can be found in Cotta (2016). 

After creating the nodes at the crack surface, the refinement around the crack tip is made by 
inserting nodes along circumferences centered at the crack tip. The number of nodes in the circum-
ference and the number of levels (or circumferences) of refinement can be chosen. However, the 
radii of the levels are attached to the distance between a node at the crack face and the crack tip. 
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Figure 12: Refinement at the crack tip. 

 
The exemplified refinement at the left crack tip is shown in Figure 12. It can be observed that 

at each level of refinement, 9 nodes were created including the ones already positioned at the crack 
faces. However, as already mentioned, the number of nodes and levels are arbitrary. 

The final result of the node generation is illustrated in Figure 13. 
 

 

Figure 13: Final result after generating initial nodes. 

 
It should be mentioned that the procedure is also valid to create nodes around the right crack 

tip. 
The remaining nodes needed to generate the mesh are automatically created by the MeshPy®.  
It is also important to address some comments about the creation of nodes when holes with 

cracks are considered. Although the cracks do not appear in the global problems, the holes associat-
ed to them must be modeled in these problems. It is well known that the stress fields experience 
perturbation at the edges of the holes. To take this perturbation into consideration, the cracks asso-
ciated to the holes are modeled using at least two “incision lines” or Sci segments. To exemplify, 
consider the crack associated to a hole shown in Figure 14a. The hole is centered at the initial point 
of the first segment, and its radius is smaller than the length of the referred segment, as shown in 
Figure 14b. It is important to note that the second segment can be dealt with as a segment pertain-
ing a crack without associated holes. 
 

1st level

2nd level

3rd level
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a. Hole with crack to be modeled b. Model of nodes from the cracks associated to the holes generated 

Figure 14: Modeled crack and associated hole. 

 
Remark: to make it easier to understand, the opening of the crack has been amplified, as shown 

in Figure 14b. In the developed code, the opening is very small and thus, the discrepancy between 
the crack and the adopted model is not so significant. 

Obviously, the length of the first segment is greater than the radius of the associated hole. It is 
also important to stress that the load in this segment must be applied only at the region that corre-
sponds to the crack surface, as indicated in Figure 14b. 

It seems clear that the Stress Intensity Factors must be calculated only at the tip of the second 
segment. 
 
3.3.2 Crack Face Loading 

The last procedure refers to loading at the crack surfaces of the local sub-problems. For an explana-
tion of this procedure, let us consider Figure 15. 
 

 

 
 
 

 

a. Generated Mesh b. Amplified region around the upper  

crack surface of the first segment 

Figure 15: General aspects of the procedure to apply the loads at the crack surface. 

 
In Figure 15a, the unstructured generated mesh is shown. It is worth noting that the resulting 

mesh refinement around the left and right crack tips may have different results.  

first segment Sci second segment Sci

region of the first segment where the loading must be applied

1st. Crack tip 2nd. Crack tip  
(not shown) 
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The procedure for applying the loads to the crack faces consists of the following steps: 
1. Selecting the nodes positioned at the crack faces, in the segment referred to the crack line 

where the load must be applied. In Figure 15b, only the upper crack surface of the first seg-
ment is shown. It is clear that the procedure is analogous on the opposite surface; 

2. For each pair of subsequent nodes that are on the same side of the crack face, the element 
containing these nodes must be identified, as exemplified in Figures 16a and 16b. 

 

 

 

 

a. Load applied in the first segment  

of the upper crack surface 

b. Detail of the applied pressure load in the  

element highlighted in Figure 16a 

Figure 16: Details of the procedure to apply the loads to the crack surface. 

 
3. A distributed load must be applied. In Figure 16b, the element highlighted in Figure 16a is 

shown. The values of pyi and pyf are defined considering the proportion of the node distances 
to the crack tips, as follows: 

 

݅ݕ݌ ൌ ቀ
௟೔
௟೅
ቁ
௝
݂ݕ݌; ൌ ቀ

௟೑
௟೅
ቁ
௝
 (42)

 

where: 
1. li: distance between the initial node (i) up to the first crack tip; 
2. lf: distance between the final node (f) up to the first crack tip; 
3. lT: total length of the first segment; 
4. j: degree of polynomial. In the developed program, j can assume the values 0, 1 or 2. 

 
3.4 Procedures Associated to Global Sub-Problem ࡳࡼ

ሺ࢑ሻ: Imposition of the Boundary Conditions 

Related to the global sub-problem ܲீሺ௞ሻ, there are two important procedures idealized in the compu-
tational framework. The first one is the same cited in Section 3.2, aiming to evaluate the stress field 
in the points positioned along the crack line prescribed in the original problem. The second proce-
dure is related to the imposition of the “jumps” in displacements and tractions in the Г contour. 

In order to do this, first of all, the option hereby adopted was to set node pairs as close as pos-
sible following the whole Г contour. Each pair of nodes must be very close to each other in order to 
ensure the accuracy of the results as depicted in Figure 17.  However, if such a relative distance δ is 
set excessively small, MeshPy® cannot identify the strip between the two contours and, therefore, 

i f
pyf

pyi

1
1st. Crack tip 
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does not generate a mesh inside that region. In fact, for each problem to be solved, the distance δ 
should be set. As a rule of thumb, a reasonable value for δ must be of the order 10-1 of the dis-
placements to be prescribed as “jumps”. This rule was set after several numerical experiments aim-
ing to reach a reasonable value that was feasible for mesh generation and maintaining accuracy in 
the results. 
 

  

Г contour in the ܲீሺ௞ሻ Pair of nodes and Δ distance 

Figure 17: Region close to the Г contour in the ܲீሺ௞ሻ. 

 
Once the pairs of nodes are defined along the Г contour, the traction vector must be imposed 

only in one line of nodes of each pair. In the analysis hereby performed, it was chosen to impose this 
condition in the internal node, but this is arbitrary. To impose the jump in displacements, the pen-
alty method can be used. 
 
3.5 J Integral 

Aiming to evaluate the Stress Intensity Factors (SIFs), Rice (1968) formulated the J Integral con-
cept. It addresses a path-independent line integral whose value corresponds to the decrease in po-
tential energy when an increment of crack extension occurs. The J Integral applies either linear or 
nonlinear elastic materials. The J Integral can be represented by: 
 

ܬ ൌ න ቆܹ݀ݕ െ ܶ ∙
ሬԦݑ߲
ݔ߲

ቇݏ݀
Г

 (43)

 

or, in an alternative expression, conveniently using indicial notation, as: 
 

ܬ ൌ න ൬ܹnଵ െ ௜ܶ ∙
߲u௜
ଵݔ߲

൰
Г

(44) ݏ݀

 

where: 
1. W is the strain energy density: 

 

ܹ ൌ ܹሺݔ, ሻݕ ൌ
1
2
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2. The traction vector T is a force per unit area acting at a point with respect to a plane defined 
by a normal versor n, as shown in Figure 18. 

 

ܶ ൌ ൜ ௫ܶ

௬ܶ
ൠ ൌ ቂ

௫ߪ ߬௫௬
߬௫௬ ௬ߪ ቃ ቄ

݊௫
݊௬ቅ (46)

 

 

Figure 18: Arbitrary path Г enclosing a crack tip. Traction vector T and normal vector n to the segment ds. 

 
It is important to note, as shown in Figure 18, that the path of integration Г is not necessarily 

circular. However, in this work a circular path was adopted in order to take advantage of some 
characteristics of the polar co-ordinates. Therefore: 
 

ܬ ൌ න ቆܹ cosሺߠሻ െ ௫ܶ
௫ݑ߲
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The J Integral can be viewed as a measure of an amount of energy comparable to the energy re-
lease rate G, or else, G=J.  It is also important to remember the relations between J Integral and 
the Stress Intensity Factors: 
 

ூܭ
ଶ ൅ ூூܭ

ଶ ൌ (48a) (Plane Stress) ܬܧ
 

ூܭ
ଶ ൅ ூூܭ

ଶ ൌ
ா௃

ሺଵିఔమሻ
 (Plane Strain) (48b)

 

To evaluate the J Integral numerically, a particular procedure is hereby proposed. First of all, 
consider a circular path of integration around the crack tip.  This path is divided into 4 segments. 
Next, each segment is further subdivided into 3 segments. Therefore, there are 4 segments, each one 
with 2 intermediate points.  The reason is due to the option of mapping an arc of circumference 
through a polynomial of order 3. In Figure 19a, the following segments can be observed: i) 0-1-2-3; 
ii) 3-4-5-6; iii) 6-7-8-9; iv) 9-10-11-12.  

Remark: The finite element mesh adopted to discretize the neighborhood of the crack tip is 
omitted in the figure to focus only on the integration path. The axes depicted in the figure are local 
axes. 

Next, each segment is mapped onto a dimensionless straight line segment, as shown in Figure 
19b. It is important to follow the integration direction, as depicted in Figure 18. Thus, for the first 
segment (0-1-2-3), the point labeled “0” is attached to co-ordinate ξ = -1.0, the point labeled “1” is 

x

y

o

ds

n
T
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attached to co-ordinate ξ = -1/3, the point labeled “2” is attached to co-ordinate ξ = +1/3, and the 
point labeled “3” is attached to co-ordinate ξ = +1.0, and so on for the other segments. 
 

 

a. Circular path subdivided into segments b. Natural coordinates 

Figure 19: Path of integration. 

 
In the sequel, the integration along path Г is substituted by a sum of integrals along each seg-

ment, as shown in Equation (49): 
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where nseg is the number of segments in which path Г is divided. In the example shown in Figure 
19, nseg is equal to 4. Afterwards, each integral on the right hand side of Equation (49) is made 
using the natural co-ordinate system defined above and shown in Figure 19b: 
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where Jac is the Jacobian operator relating the natural co-ordinates to the local co-ordinates. 
Finally, the right hand side of Equation (50) can be substituted by a numerical integration: 
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where: 
1. ngp is the number of sampling points of the Gauss quadrature;  
2. xi is the ith sampling point;  
3. W(xi) is the weight function evaluated in xi. 
The sampling points of the Gauss quadrature ngp coincide with the points shown in Figure 19b. 

In order to calculate Equation (51), the required displacements and stress fields must be obtained 
only at the points shown in Figure 19a, owing to the correspondence between them and the points 
of the mapping shown in Figure 19b.  
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However, instead of computing Equation (51) directly, it is necessary to divide J in order to ob-
tain KI and KII separately. This procedure was presented by Ishikawa et al (1980) and used by 
Kzam (2009). According to Equation (52), the J Integral can be separated into two parts: 
 

J = JI + JII (52)
 

where: 
1. JI refers to Mode I of opening; 
2. JII refers to Mode II of opening. 
To calculate JI, the displacements and stress fields are replaced by auxiliary fields uI and σI, re-

spectively, according to Equations (53) and (54): 
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In Equation (53), ݑᇱ ൌ ሺݑଵ
ᇱ , ଶݑ

ᇱ ሻ is the displacement field at a symmetric point of the point that 
was analyzed in relation to the local x-axis. Similarly, in Equation (54), ߪଵ ൌ ሺߪଵ

ᇱ, ଶߪ
ᇱሻ is the stress 

field at the samepoint. For example, in Figure 19a, point “12” is the symmetric of point “0”, point 
“11” is the symmetric of point “1” and so on. Obviously, the reciprocal is also true. 

Furthermore, to evaluate JII, the auxiliary fields are given by: 
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In Figures 20 and 21, the results of the operations correspondent to Equations (53)-(56) are pre-
sented for an arbitrary point P and its symmetrical point P’.  
 

Mode I 

 

Figure 20: Symmetric and anti-symmetric components of the displacement field for Mode I. 
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Mode II 

 

Figure 21: Symmetric and anti-symmetric components of the displacement field for Mode II. 

 
Analyzing Equations (53)-(56), and by observing Figures 20 and 21, it can be concluded that for 

Mode I: 
ଵ,௉ூݑ .1 ൌ ´ଵ,௉ݑ

ூ  
ଶ,௉ூݑ .2 ൌ െݑଶ,௉´

ூ  
ଵଵ,௉ூߪ .3 ൌ ´ଵଵ,௉ߪ

ூ  
ଶଶ,௉ூߪ .4 ൌ ´ଶଶ,௉ߪ

ூ  
ଵଶ,௉ூߪ .5 ൌ െߪଵଶ,௉´

ூ  
And, for Mode II: 

6. uଵ,୔୍୍ ൌ െuଵ,୔´
୍୍  

7. uଶ,୔୍୍ ൌ uଶ,୔´
୍୍  

8. σଵଵ,୔୍୍ ൌ െσଵଵ,୔´
୍୍  

9. σଶଶ,୔୍୍ ൌ െσଶଶ,୔´
୍୍  

10. σଵଶ,୔୍୍ ൌ σଵଶ,୔´
୍୍  

An important aspect that must be mentioned is that loads are applied to the crack surfaces and 
their contribution must be considered in the calculus of the J Integral. To address this issue, the 
solution proposed by Karlsson and Bäcklund (1978) was hereby adopted. Accordingly, a decomposi-
tion of the J Integral is assumed as:  
 

J = Jcp + Jscs + Jics (57)
 

where Jcp is the contribution of the circular path to the J Integral and Jscs, Jics are the contributions 
of the upper and lower crack surfaces, respectively. 

The procedure to compute the values of Jscs and Jics is identical to that described above for the 
calculus of the J Integral in the circular path, and each crack surface is analogously divided into 3 
segments and then mapped into a linear segment.  

The procedure to evaluate the contribution of the crack surfaces for the JIntegral was treated 
separately in this paper in order to emphasize some important features: 

1. Most of the programs containing routines for calculating J require a specification of an inte-
gration path around the crack tip from the user, assuming that the crack surface is traction 
free; 
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2. The error in the calculus of the JIntegral considering the crack surfaces can be strongly af-
fected by the accuracy of the stress field very close to the crack tip. Therefore, special care 
must be taken aiming to improve the accuracy in that region, for example, by refining the 
mesh or, as hereby adopted, by using enrichment strategies.  

It is worthwhile to mention that the code using the J Integral was implemented in order to 
evaluate the referred value in local problems PLKs. After solving these problems, the developed 
program assembles the path, calculates the J Integral and stores its value as another output of the 
respective local problem. Thus, the analysis can be done without interruptions in order to evaluate 
the J Integral using another program. Further, a future improvement of the program to consider 
propagation issues demands an automatic calculus of a parameter that indicates the direction and 
rate of propagation. 
 
4 NUMERICAL EXAMPLES 

Two examples are presented to illustrate the Splitting Method. The first example is a domain em-
bedded one with a slanted crack and a hole with a crack. In the second example, there are two 
cracks: the first one has an arbitrary shape and the second one has a horizontal straight crack. 

For both examples, the Poisson’s ratio is 0.3 and the Young modulus is 1000. 
 
4.1 Example 1: Domain Containing a Slanted Crack and a Hole with a Crack 

This example aims to demonstrate the ability of the developed framework to account for mixed 
opening mode and cracks associated to holes. 

The geometry of the problem is depicted in Figure 22a. The tips of the cracks are labeled with 
the capital letters A, B and C. The reference values were obtained by using the Franc2D®	program, 
and the mesh adopted to assess the reference solution is shown in Figure 22b. 
 

  

a. Geometry b. Mesh used in Franc2D® 

Figure 22: Domain with embedded slanted crack and hole with crack. 
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Regarding the local problems, the meshes adopted can be seen in Figures 23a and 23b. Some 
stress fields of interest obtained in the analysis of the local problems are also shown in Figures 23c 
and 23d. 
 

a. Used mesh to analyze the crack attached to a hole b. Used mesh to analyze the slanted crack 

c. Stress component σyy d. Stress component σyy 

Figure 23: Adopted meshes and stress fields of interest. 

 
It is important to mention that in the local sub-problem shown in Figure 23, the normal load 

was applied only at the crack surface of the lower segment, referred to in the lower tip. Therefore, 
the stress concentration was more evident for this crack tip. Only a small stress concentration was 
captured for the upper tip. The same case occurred in the local sub-problem shown in Figure 
26(Example 2). 
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A polynomial basis up to the quadratic approximation was used to analyze the local problems 

௅ܲ
ሺ௞ሻ’s (as well as to recover the stress vector at the crack lines of the global problems ܲீሺ௞ሻ’s). Thus, 

the number of problems (nop) is: 
 

nop = 4 x 2 x 3 = 24 

 

 
In relation to the boundary conditions of the local problems, the displacements components (dx 

and dy) were prescribed equal to zero at the whole external boundary.  
Particularly for the sixtieth local problem ௅ܲ

ሺ௞ሻ (i.e., k = 6), in which the second segment Sci of 
the crack is subjected to a constant normal stress component, the stress component σyy is shown in 
Figure 23c. The same component stress for the second crack and local problem k = 12, in which its 
first segment is subjected to a constant normal stress component, is shown in Figure 23d. 

The SIFs obtained using Franc2D®	 (for both J Integral and Displacement Correlation Tech-
nique, DCT) and with SCIEnCE code are presented in Table 1. 
 

 Crack tip A Crack tip B Crack tip C 

 KI KII KI KII KI KII 

SCIEnCE 2.820 0.0280 1.264 0.968 1.248 0.973 

Franc2D® (DCT) 2.815 -0.0219 1.248 1.013 1.201 1.018 

Franc2D®  
(J Integral) 

2.815 -0.0241 1.255 0.967 1.208 0.978 

Table 1: SIFs obtained using Franc2D® x SCIEnCE (Splitting Method). 

 
It can be observed that the results obtained using SCIEnCE are very close to those obtained 

from Franc2D®
.  It should be noted that even using Franc2D®, there are some discrepancies when 

using the J Integral and Displacement Correlation Technique, especially in KII values. Obviously, 
since both results were computed numerically, it is reasonable to expect some differences among 
them. 
 
4.2 Example 2: Domain Containing Cracks with Arbitrary Shapes 

In this example, a domain with two cracks is analyzed as shown in Figures 24a and 24b. In order to 
guarantee the existence of some influence of one crack on the other, a relative distance (3.175 in 
Figure 24b) was chosen. One of the cracks (crack 1) consists of three segments. In each segment, 
constant and linear approximations were applied at the crack faces according to Figure 4. There-
fore, a total of 24 local and 24 global sub-problems were used. 
 

4 “incision lines”, 2 for each crack. 

2 Modes (I and II) 

3 terms (quadratic approximation) 
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a. Geometry b. Position and dimensions of the cracks 

Figure 24: Domain with cracks of arbitrary shapes. 

 
The reference values were obtained from the ANSYS®	program. The mesh consisted of 36918 

CSTs (Constant Strain Triangles), automatically generated by the program. Quarter point elements 
were explored close to the crack tip, to provide better accuracy for the Stress Intensity Factors. The 
component σyy of the stress field is depicted in Figure 25a and 25b. This picture refers to the final 
results of the original problem. 

The results related to the local problems computed using SCIEnCE are presented in Figure 26. 
The cracks were modeled using 6 incision lines, or 6 Sci segments.  
 
 

 

a. Stress component σyy b. Amplified region around the crack tip 

Figure 25: Stress field of interest around the crack tip. 

 

Crack 1 

Crack 2 
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a. Used mesh in local problems b. Stress component σyy 

Figure 26: Mesh for local problems and stress field of interest. 

 
The values of KI for crack 1 are shown in Table 2. It can be observed that the results are rela-

tively close to those obtained in the reference problem. Nevertheless, it is worthwhile mentioning 
that the Stress Intensity Factors are quite sensitive to the ANSYS® program. 
 

Left crack tip Right crack tip 

ANSYS® SCIEnCE ANSYS® SCIEnCE 

712.59 761.45 695.95 698.94 

Table 2: KI of crack 1: ANSYS® x SCIEnCE (Splitting Method with GFEM). 
 
5 CONCLUSIONS 

In this paper, the Splitting Method was recognized as an efficient method to analyze multi-site 
damage problems. In these problems, despite the fact that each individual crack is harmless, the 
combined effects of multiple cracks growing can be disastrous. In order to address more complex 
scenarios, some improvements for the Splitting Method were proposed, for instance the ones aiming 
to expand its application to arbitrary polygonal shapes of the crack. On the other hand, enrichment 
strategies of the approximation avoiding costly mesh refinements were hereby successfully provided 
by the Generalized Finite Element Method. A computational framework combining the Splitting 
Method with the GFEM was created involving automatic generation of each sub-problem until the 
linear equation system was assembled. 

The main findings and/or contributions of this work are summarized below. 
Splitting Method programming: making a code to generate each sub-problem, as well as assem-

bling the linear system of the unknown weights was essential to test the framework in more com-
plex scenarios. The code contains special procedures such as the those aimed at mesh generation in 
each one of the sub-problems and to automatically apply loading at the crack surfaces. These pro-
cedures comprise a library of routines useful for future improvements, such as extending the code 
for 3-D analysis.  
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GFEM efficacy: the good effects of the enrichment used to improve the numerical results 
could be observed. In particular, the enrichment was more accurate for the local sub-problems, es-
pecially when calculating the Stress Intensity Factors.  

Implementation of a code to evaluate J Integral: it is possible to state that the develop-
ment of a code that generates an integration path and calculates the J Integral is another contribu-
tion of this work. In spite of be very simple, the proposed method consists of a powerful and alter-
native tool to provides the SIFs, without directly using the elements of the mesh. 

Analysis of domains with cracks of arbitrary shapes and under mixed opening 
modes: another important contribution of this work consisted of extending the Splitting Method to 
analyse problems containing cracks with arbitrary shapes. Obviously, when cracks with arbitrary 
shapes are considered, mixed crack opening modes must be also considered. When such modeling is 
available, complex real-life problems can be analyzed.  

As suggestions for future work using the Splitting Method, the following can be highlighted: 
finding the worst scenario among many possible scenarios of multiple cracks, for instance taking the 
maximum value of Stress Intensity Factors (SIFs) as the main criterion. In fact, if many cracks are 
similar, the analysis can be considerably simplified, using only a few local problems to evaluate a 
large number of possible scenarios. 

Finally, the generated code is indeed a very important tool that should be developed in the fu-
ture to improve computational efficiency. 
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