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Abstract 
In engineering systems design, theoretical deterministic solutions 
can be hardly applied directly to real-world scenarios. Basically, 
this is due to manufacturing limitations and environmental condi-
tions under which the real system will operate. Therefore, a small 
variation in the design variables vector can result in a meaningful 
change on the theoretical optimal design as represented by the 
minimization of the corresponding vector of objective functions. In 
this context, it is important to develop methodologies that are 
able to produce solutions (even suboptimal) that are less sensitive 
to perturbations in the design variable vector and, consequently, 
leading to a robust optimal design. In this contribution, first the 
proposed approach is tested on various mathematical functions. 
Then, the methodology is applied to the design of two representa-
tive engineering systems through multi-objective optimization 
using the Firefly Colony Algorithm in association with the Effec-
tive Mean Concept is presented.The results obtained demonstrate 
that the design strategy conveyed represents an interesting alter-
native approach to obtain robust design for a number of engineer-
ing applications. 
 
Keywords 
Robust Multi-objective Optimization, Pareto's Curve, Effective 
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1 INTRODUCTION 

Frequently, during engineering system design, the model, the design variable vector, andthe param-
eter vector are consideredfree of errors, i.e., they do not contain uncertainties. However, more realis-
tically, small variations in the design variable vector can cause significant variations in the vector of 

Fernando Ricardo Moreira a 
Fran Sérgio Lobato b 

Aldemir Ap. Cavalini Jrc 
Valder Steffen Jr d 

 
a Department of Mathematics, Federal 
University of Goiás, BR 364, km 195, 
3800, Campus Cidade Universitária, 
75801-615, Jataí-GO, Brazil. 
frmoreira@ufg.br 
b School of Chemical Engineering,  
fslobato@ufu.br 
c,d LMEst-Structural Mechanics  
Laboratory, School of Mechanical  
Engineering Federal University of  
Uberlândia Av. João Naves de Ávila 
2121, Campus Santa Mônica, P.O. Box 
593, 38408-144, Uberlândia-MG, Brazil. 
aacjunior@ufu.br 
vsteffen@ufu.br 
 
http://dx.doi.org/10.1590/1679-78252801 
 
Received 18.01.2016 
Accepted 13.04.2016 
Available online 21.04.2016 



F.R. Moreira et al. / Robust Multi-objective Optimization Applied to Engineering Systems Design     1803 

Latin American Journal of Solids and Structures 13 (2016) 1802-1822 

objective functions. As mentioned by Ritto et al.  (2008), the process of modeling engineering sys-
tems introduces two types of uncertainties: i) uncertainties related to the parameters of the model, 
such as geometrical and constitutive parameters (data uncertainties), and ii) uncertainties due to 
the proposed model. In this case, regarding the existence of uncertainties in real-world engineering 
systems, some aspects should be highlighted (Leidemer, 2009): 

 Even if the real optimum is found, it will never be possible to implement it in practice, be-
cause there are uncertainties associated to the manufacture process or even due to the de-
mand of a high degree of accuracy, which can be extremely difficult to achieve or economical-
ly unaffordable; 

 The formulation of optimization problems is inherently static, but the reality is essentially 
dynamic. In this context, the design problems can be associated with parameter vector fluc-
tuation, such as temperature, wind speed, humidity. There might also be waste of some com-
ponents that imply alteration in system behavior. 

Consequently, the system to be optimized can be very sensitive to small changesin the design 
variable vector, and thus, small variations in this vector can cause significant changes in the vector 
of objective functions (Leidemer, 2009). In this context, it is important to determine a methodology 
that produces solutions less sensitive to small variations in the design variables vector. Solutions 
with this characteristic are called robust solutions and the procedure to find these solutions is 
named Robust Optimization (Taguchi, 1984). 

Real-world problems involve the simultaneous optimization of two or more (often conflicting) 
objectives, known as multi-objective optimization problem (MOOP). The solution of such problems 
is different from that of a single-objective optimization problem, i.e., multi-objective optimization 
problems normally have not only one but a set of solutions, which may all be equally good (Deb, 
2001). 

In the literature, several methods for solving MOOP can be found. These methods follow a 
preference-based approach, in which a relative preference vector is used to scalarize multiple objec-
tives. Since classical searching and optimization methods use a point-by-point approach, through 
which the solution is successively modified, the outcome of this classical optimization method is a 
single optimized solution. However, Evolutionary Algorithms (EA) can find multiple optimal solu-
tions in one single simulation run due to their population-based search approach. Thus, EA are 
ideally suited for multi-objective optimization problems. A detailed account of multi-objective opti-
mization using EA and applications using genetic algorithms are widely found in the literature 
(Deb, 2001). 

Other authors have also contributed to evolutionary algorithms. In this sense we can cite the 
development of evolutionary optimization methodologies based on genetic algorithms (Castro, 2001; 
Deb, 2001; Djamaluddin et al. 2015); fish swarm (Lobato and Steffen Jr.); bee colony (Ghashochi-
Bargh and Sadr, 2014) and firefly colony (Yang, 2008; Yang, 2009; Pfeifer and Lobato, 2010; Loba-
to et al. 2011), to cite few. The Firefly Colony Algorithm (FCA)is based on strategies that seek to 
mimic the behavior of fireflies observed in the nature to update a population of candidates to solve 
optimization problems. These systems have the capacity to notice and modify their environment in 
order to seek for diversity and convergence. In addition, this capacity makes possible the communi-
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cation among the individuals of the population. Each individual is able to capture the changes in 
the environment as generated by local interactions (Yang, 2008). 

Therefore, in this contribution a systematic methodology to solve robust multi-objective optimi-
zation problems is proposed. This optimization strategy is based on the Effective Mean Concept - 
EMC (DebandGupta, 2006) in association with the Multi-objective Optimization Firefly Colony 
Algorithm – MOFCA (Lobato et al., 2011). The organization of this article is as follows. Section 2 
introduces briefly the EMC, the MOFCA and robust multi-objective optimization. For illustration 
purposes, section 3 presents applications involving mathematical functions and two engineering case 
studies. Finally, the conclusions are presented in the last section. 
 
2 MULTI-OBJECTIVE OPTIMIZATION FIREFLY COLONY ALGORITHM 

In this section, the mean effective concept and the robust multi-objective optimization problem will 
be defined. In addition, the subroutine of the MOFCA algorithm will be briefly discussed. 
 
2.1 Robust Multi-Objective Optimization 

Traditionally, during the solution of optimization problems it is commonly considered that mathe-
matical models, variables, and parameters are sufficiently reliable, i.e., there are no errors of model-
ing and estimation (DebandGupta, 2006). However, as previously mentioned, systems to be opti-
mized are generally sensitive to small changes in the design variables leading to significant changes 
in the vector of objective functions. In this case, to minimize this effect in the solution of optimiza-
tion problems, the concept of robust optimization should be used. Robust Optimization is defined as 
an approach that produces a solution that is not significantly sensitive to small changes in the de-
sign variables (Taguchi, 1984). In this context, robustness characterizes an important design level to 
be achieved, when exposed to a given condition of uncertainty. In addition, this approach is used 
for modeling optimization problems under uncertainty, where the modeler aims at finding decisions 
that are optimal for the worst-case realization of the uncertainties within a given set of values 
(Taguchi, 1984). 

The introduction of robustness in the mono and multi-objective contexts requires the considera-
tion of new restrictions and/or new objectives (relationshipbetween the mean and the standard 
deviation of the vector of objective functions) and probability distribution functions for the design 
variables and/or objectives. As mentioned by Ritto et al. (2008) and also considered by Soize 
(2005), Paenk et al. (2006), and Sampaio and Soize (2007), probability tools are required to model 
the uncertainties, i.e., random variables are associated with the uncertain parameters or matrices; 
then, probability density functions are constructed. 

As an alternative to these classical formulations, Deb and Gupta (2006) extended the Effective 
Mean Concept originally proposed for mono objective problems to the multi-objective context. In 
this approach, no additional restriction is inserted into the original problem. Thus, the problem is 
rewritten as a mean vector of original objectives. The authors applied the present methodology to 
constrained and unconstrained test problems having two and three objectives. In this case, simula-
tion results were presented by using an evolutionary multi-objective optimization algorithm as ap-
plied to an engineering design problem. 
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In the present contribution, a robustness measure, which does not use the hypothesis on uncer-
tainty parameters,will be used. The robustness measure and the solution of a robust multi-objective 
optimization problem are defined as (DebandGupta, 2006): 

Definition - Being : nf W Ì   an integrable function. The EMCof f , in relation to a neigh-

borhood d of variable x , is a function ( , )efff x d , given by: 
 

( )

1
( , ) ( )

( )
eff

y B x

f x f y dy
B x

d
d

d
Î

= ò  (1) 

 

where n  is the number of design variables. 

Definition - A point *x is defined as robust multi-objective solution if it is a Pareto-optimal solu-
tion for the following multi-objective optimization problem, defined byconsidering the neighborhood 
d of the variablex : 
 

 1 2min  ( , ),  ( , ),  ... , ( , )eff eff eff
mf x f x f x    (2)

 

 1subject to ( , ) 0,  1,..., ;eff ng x j k x       (3)
 

where the symbol ( )B xd  indicates the hyper-volume of the neighborhood and m  is the number of 

objectives. 
To estimate the integral defined by Equation(1), a sample is created randomly by using the 

Latin Hypercube method (Viana, 2008). Moreover, this procedure increases the computational cost 
due to additional objective function evaluations that are necessary to solve the optimization prob-
lem (DebandGupta, 2006). The Equations (2) and (3) considersan optimization problem with m  
objectives and k  inequality constraints. 
 
2.2 Firefly Colony Algorithm 

The FCA is based on the interesting characteristics of the fireflies’ bioluminescence. The fireflies are 
insects notorious for their light emission. Although biology does not have a complete knowledge to 
determine all the utilities that the firefly luminescence can bring to, at least three functions have 
been identified (Yang, 2008): i) as a communication tool and appeal to potential partners in the 
reproduction, ii) as a bait to lure prey for the firefly, iii) as a warning mechanism for potential 
predators reminding them that fireflies have a bitter taste. 

In the FCA, the attractiveness between two fireflies is determined by thelight intensity emitted 
and by the distance between them. The intensity is a function of the objective function (Yang, 
2008). An effective exploration of the design space is obtained by the movement of fireflies accord-
ing to the attractiveness of other swarm members with higher intensity of light emitted and a ran-
dom step vector to avoid a premature convergence. Thus, at the k-th iteration, the movement of the 
i-th firefly towards the firefly that is more attractive is defined by the following equation (Yang, 
2008): 
 

( )( ) ( )1 2 1 1exp 0,5t t t t
i i j ix x r x x randw g k- - -= + - - + -  (4)
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wherer  is the distance between two fireflies;w  and g are parameters defined as the maximum at-

tractiveness (when r =0) and the coefficient of light absorption, respectively. The second factor of 
the right hand side of Equation (4) adds the attractiveness between the fireflies, and the third one, 
regulated by k , adds randomness to the process. 
 
2.3 Multi-Objective Optimization Firefly Colony Algorithm 

Due to the success obtained by the FCA in different science and engineering applications (Apos-
tolopoulos and Vlachos, 2011; Lukasik and Zak, 2009; Yang, 2009; Pfeifer and Lobato, 2010),Lobato 
et al. (2011) proposed the Multi-objective Optimization Firefly Colony Algorithm (MOFCA). This 
approach is based on the classical FCA associated with Fast Non-Dominated Sorting and has the 
following structure: 

 An initial population with Nfirefly fireflies is randomly generated; 
 All dominated solutions are removed from the population through the operator Fast Non-

Dominated Sorting (Deb et al., 2000). In this way, the population is sorted into non-
dominated fronts (sets of vectors that are non-dominated with respect to each other); 

 Then, FCA is applied to generate the new population of fireflies (potential candidates to solve 
the multi-objective optimization problem); 

 If the number of individuals of the population is larger than the number early defined by the 
user, it is truncated according to a criterion named the Crowding Distance (Deb et al., 2000). 

These steps are repeated until a given stopping criterion is reached. The operators used in the 
MOFCA are described below. 

Fast Non-Dominated Sorting 
Fast Non-Dominated Sorting operator was proposed by Deb et al. (2000) in order to sort a popula-
tion of size N according to the level of non-domination. Each solution must be compared with every 
other solution in the population to find if it is dominated. At this point, all individuals in the first 
non-dominated front are found. In order to find the individuals in the next front, the solutions of 
the first front are temporarily discounted and the above procedure is repeated. The procedure is 
repeated to find the subsequent fronts. 

Crowding Distance Operator 
This operator describes the density of solutions surrounding a vector. In order to compute the 
Crowding Distance for a set of population members, the vectors are sorted according to their objec-
tive function values for each objective function.  An infinite Crowding Distance (or an arbitrarily 
large number for practical purposes) is assigned to the vectors with the smallest or largest values. 
For all other vectors, the Crowding Distance (

ixdist ) is calculated according to (Deb et al., 2000): 

 
, 1 , 1

,max ,min1
i

m
i j i j

x
i ij

f f
dist

f f
+ -

=

-
=

-å  (5)
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where jf  corresponds to the j-th objective function andm is the number of objectives. This operator 

is important to avoid many points close in Pareto's Curve and to promote the diversity in terms of 
the space of objectives (Deb et al, 2000). 

Treatment of Constraints 
In this work, the treatment of constraints is performed through the Static Penalization Method, 
proposed by Castro (2001). This approach consists in assigning limit values to each objective to 
play the role of penalization parameters. According to Castro (2001), it is guaranteed that any non-
dominated solution dominate any solution that violates at least one of the constraints. In the same 
way, any solution that violates only one constraint will dominate any solution that presents two 
constraint violations, and so on. For a constrained problem the vector containing the objective 
functions to be accounted for, is given by: 
 

( ) ( ) p violf x f x r nº +  (6) 
 

where ( )f x  is the vector of objective functions, pr  is the vector of penalty parameters that depends 

on the type of problem considered, and violn  is the number of violated constraints. More details 

about this optimization strategy can be found in Lobato et al. (2011). 
In the present paper, the methodology proposed by Deband Gupta (2006) considering the EM-

Cis used to insert robustness in the MOFCA. In this case, the original objective function vector is 
transformed by considering Eq. (2). In addition, to evaluate Eq. (1) the Latin Hypercube method is 
used. It is important to observe that in real-world engineering problems, it is not possible to per-
form the analytical calculation of effective mean. Thus, the integration is performed numerically 
using the Trapezoidal Method. 

The user has to inform to the routine the vector of objective functions, the vector of constraints, 
the design space, the MOFCA parameters, the perturbation id  added to the design variable vector, 

and the sample size sampleN . To compute the Effective Mean, the user has to inform the value of id  

for each design variable ix , which will be calculated by the Latin Hypercube Method. 

 
3 APPLICATIONS 

For illustration purposes, in this section, applications involving mathematical functions and the 
design of two representative engineering systems (the optimum design of an industrial robot and the 
optimization of a flexible rotor)are presented. 

The MOFCA parameters considered for all the applicationsare the following (Lobato et al., 
2011): 

 Fireflies number ( fireflyN ) = 55; 

 Generation number  ( genN ) = 250; 

 Absorption (w )and attractiveness coefficients ( g )=1; 

 Sample size to estimate the Effective Mean ( sampleN )= 100. 
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Considering the parameters presented above, fireflyN + fireflyN genN objective function evaluations 

are necessary to solve the nominal cases by using the MOFCA. In order to solve the robust cases by 
the MOFCA, fireflyN + fireflyN genN sampleN objective function evaluations are necessary. 

Regarding the mathematical problems, ten simulations for different initial seeds of the random 
number generator rand aretaken into account to evaluate the convergence and diversity of the solu-
tions obtained by using the MOFCA. To compute the convergence metric (CM ) and diversity met-
ric (DM )for the cases tests where the analytic solution is known, the following equations are used 
(Deb, 2001): 
 

=
i

firefly

d
CM

N
å  (7)

 

( )
=

1
f l i m

f l firefly m

d d d d
DM

d d N d

+ + -

+ + -
å  (8)

 

where id  is the smaller Euclidean distance between the firefly ix  and the analytic Pareto's Curve, 

fd  and ld  represents the Euclidean distance between the extreme solutions of the analytic Pareto's 

Curve and the non-dominated solutions obtained through the MOFCA, and md  is the arithmetic 

average of id .In this case, the analytic Pareto's Curve was obtained by using 1000 points equally 

spaced in order to compute CM and DM . 

 
3.1 Mathematical Problem MP1 

The mathematical problem MP1 is defined by (DebandGupta, 2006): 
 

1 1 5 1

5
2

2 1 5 2 1
3

( ,..., )                                 

min  
( ,..., ) ( ) 1 50 i

i

f x x x

f x x h x x x
=

ì =ïïïï æ öí ÷çï ÷= - +çï ÷çï ÷çè øïî
å

 (9)

 

where 
 

( ) ( ) ( )
2 2

2 2
2

0.35 0.85
2 0.8 exp exp

0.25 0.03
x x

h x
æ æ ö æ öö- -÷ ÷÷ç ç ç= - - - -÷ ÷÷ç ç ç÷ ÷÷÷ ÷÷ç ç çè è ø è øø

 (10)

 

and 1 20 , 1x x£ £  and 1 1ix- £ £ , for i=3, 4 and 5.  

ThePareto global and local curves correspond to ix =0 (i=3, 4 and 5) and are obtained from the 

global minimum and local minimum of ( )2h x , respectively. According toDeb and Gupta (2006), 

the global and local curves are given by: 
 

2 11   (Global)f f= -  (11)
 

2 11.2(1 )  (Local)f f= -  (12)
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The objectives obtained through the calculation of the EMC are given by the following expres-
sions: 
 

11
efff x=  (13)

 

( ) ( )( )1,5 1,52
1 12

3

50 1
1

3 3

n
eff

i i i
ii

f x xd d d
d=

æ öæ ö÷ç ÷ç= Q + - + - - ÷ç ÷ç ÷÷ç ÷ç è øè øå  (14)

 

where 
 

( ) ( )
2 2

2 2

2 2

2

1 0.35 0.85
2 0.8 exp exp

2 0.25 0.03

x

x

y y
dy

d

d
d

+

-

æ æ ö æ öö- -÷ ÷÷ç ç çQ = - - - -÷ ÷÷ç ç ç÷ ÷÷÷ ÷÷ç ç çè è ø è øøò  (15)

 

Figure 1 presents the nominal Pareto's Curve (global and local), i.e., without robustness,and the 
solutions obtained by using MOFCA considering the problem MP1.Note that MOFCA was able to 
find the global Pareto’s Curve. 
 

 

Figure 1: Nominal Pareto's Curves (global e local) and the solution obtained by MOFCAfor the problem MP1. 

 
Table 1 presents the metrics computed in each run for the problem MP1. Note thatthe MOFCA 

converges to the global optimum, except for the run with initial seed equal to zero. In addition, the 
solutions found by using MOFCA are well distributedon the Pareto's Curve, i.e., there is a good 
diversity of solutions. 

In order to evaluatethe effect of d  on the curve, the following perturbation vector [ 1d 2d 3d 4d

5d ] = [ d d 2d 2d 2d ] was considered (Deb and Gupta, 2006). Figure 2(a) presents the Pareto's 

Curves (global, local, nominal and robust) obtained analytically through the Equations 13 and 14 
for different values of d .Figure 2(b) presents the robust Pareto's Curve obtained by using MOFCA 
considering the problem MP1. It is observed that the convergence to the global solution is reached 
for the consideredvalues of d . In addition, the solutions are satisfactory as observed by different 
values of d  for each robust Pareto's Curve. 
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Simulations 

Metrics 1 2 3 4 5 

CM 0.056 0.009 0.014 0.013 0.021 

DM 0.423 0.810 1.117 0.660 1.201 

Optimum Local Global Global Global Global 

Metrics 6 7 8 9 10 

CM 0.007 0.020 0.009 0.015 0.012 

DM 0.745 1.190 0.832 1.160 0.970 

Optimum Global Global Global Global Global 

Table 1: Results of the CM and DM metrics for the problem MP1. 

 

Mean effective theoretical. Robust solution obtained by MOFCA. 

Figure 2: Influence of parameter d on the robust Pareto's Curves for the problemMP1. 

 
 In Table 2 it is possible to observe that MOFCA converges to the global optimum for all the 

simulations performed. 
 
3.2 Mathematical Problem MP2 

Mathematically, the problem MP2 can be formulated as follows (Deband Gupta, 2006): 
 

( ) ( )1 2 1 1 1min ( ), ( ) , ( ) ( ) ( )f x f x x h x G x S x= +  (16)
 

subject to 
 

1 2( ) 0.2 0.1 0g x x x= + - ³  (17)
 

where 
 

2
1 1( ) 1h x x= -  (18)

 
5

2

2

( ) 50 i
i

G x x
=

= å  (19)
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2
1 1

1

1
( )

0.2
S x x

x
= +

+
 (20)

 

and 10 1x£ £  and 1 1ix- £ £ , for i=2, 3, 4 and 5.  

 
 

Simulations 

0.03d =  

Metrics 1 2 3 4 5 

CM 0.007 0.006 0.006 0.005 0.006 

DM 0.772 0.819 0.946 0.901 1.062 

Optimum Global Global Global Global Global 

Metrics 6 7 8 9 10 

CM 0.006 0.004 0.007 0.005 0.005 

DM 0.838 1.329 0.703 0.793 0.903 

Optimum Global Global Global Global Global 

0.04d =  

Metrics 1 2 3 4 5 

CM 0.005 0.004 0.006 0.003 0.005 

DM 0.905 0.765 0.888 0.876 0.874 

Optimum Global Global Global Global Global 

Metrics 6 7 8 9 10 

CM 0.004 0.001 0.002 0.004 0.003 

DM 0.915 0.875 0.985 0.577 0.751 

Optimum Global Global Global Global Global 

0.05d =  

Metrics 1 2 3 4 5 

CM 0.003 0.005 0.004 0.005 0.005 

DM 0.878 0.951 0.885 0.951 0.889 

Optimum Global Global Global Global Global 

Metrics 6 7 8 9 10 

CM 0.004 0.005 0.004 0.005 0.003 

DM 0.844 0.781 0.998 0.778 0.985 

Optimum Global Global Global Global Global 

Table 2: Results of the CM and DM metrics obtained for the robust problem MP1. 

 
In this problem, the nominal Pareto's Curve is obtained by the activation of the constraint 

equations, i.e., when 2 10.1 0.2x x= -  and considering ix =0 for i=2, 3, 4 and 5. As observed in the 

previous case, the objectives obtained by EMC are expressed by: 
 

11 ( , )efff x xd =  (21)
 

2
1 1

2
1 2 1

1 se 0,5

se 0,5
eff

x x
f

H H x

ì - ³ïïï= íï <ïïî
 (22)

 

where 
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1 0.2 1 100
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x
H x x

x
d d

d d
d d =

æ æ + + ö ö÷ ÷ç ç= - - + + +÷ ÷ç ç ÷ ÷ç çè è ø ø+ - å  (23)
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1 1

1 1

22
2 1 2

1

50 1
0.1 0.2 0.2

2 0.2

x

x

H y y dy
y

d

d

d d
d

+

-

æ ö÷ç= + - + +÷ç ÷çè ø+ò  (24)

 

Table 3 presents the CM and DM metrics for the nominalproblemMP2. 
 

Simulations 
Metrics 1 2 3 4 5 

CM 0.025 0.031 0.019 0.021 0.019 
DM 0.974 1.063 0.655 0.625 0.484 

Metrics 6 7 8 9 10 
CM 0.025 0.022 0.037 0.025 0.016 
DM 0.974 0.723 1.077 0.911 0.672 

Table 3: Results of the CM and DMmetrics for the problem MP2. 

 
Figure 3(a) presents the nominal Pareto's Curve without and with the constraint and the solu-

tion obtained by using the MOFCA. It is possible to observe that satisfactory resultsare obtained 
for both convergence and diversity. 
 

Mean effective theoretical. Robust solution obtained by MOFCA. 

Figure 3: Nominal Pareto's Curve obtained by MOFCA for the problem MP2 considering rp equal to 106. 

 
To evaluate the effect of d on the Pareto's Curve, a perturbation vector [ 1d 2d 3d 4d 5d ] = [ d 2d

2d 2d 2d ] was considered. In this case, d =[0.0100.0150.020]. In Figure3(b) the results obtained by 
using MOFCA considering different values of d  are shown. For each run, a good distribution of the 
solutions on the Pareto's Curve is observed. As mentioned by Deb and Gupta (2006), the analytical 
Pareto's Curve can be described by two regions defined for 1x , which is smaller than 0.5. On the 

other hand, considering 1x greater than 0.5, the constraint is always attended, independently of the 

value assumed by d . This effect can be observed in the Figure 3(b). 
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Table 4 presents the CM and DM  metrics for different values of d . It is possible to observe 
that the obtained values for the metrics are satisfactory, i.e., the CM tends to small values and the 
DM metric values present good distribution (see Figure 3(b)). 
 

Simulations 

δൌ0.010 

Metrics 1 2 3 4 5 
CM 0.161 0.120 0.162 0.067 0.039 
DM 1.372 1.366 1.451 1.098 0.706 

Metrics 6 7 8 9 10 
CM 0.080 0.092 0.043 0.056 0.167 
DM 1.057 1.195 0.779 1.034 1.429 

δൌ0.015 

Metrics 1 2 3 4 5 
CM 0.145 0.115 0.143 0.044 0.045 
DM 1.309 1.278 1.409 1.024 0.678 

Metrics 6 7 8 9 10 
CM 0.079 0.078 0.040 0.045 0.179 
DM 1.087 1.012 0.756 1.033 1.409 

δൌ0.020 

Metrics 1 2 3 4 5 
CM 0.114 0.105 0.124 0.056 0.030 
DM 1.955 1.232 1.533 1.087 0.712 

Metrics 6 7 8 9 10 
CM 0.090 0.089 0.043 0.070 0.145 
DM 1.067 1.342 0.766 1.033 1.389 

Table 4: Results of the CM and DM metrics obtained for the robust problemMP2. 

 
3.3 Industrial Robot 

This real-world engineering application was first proposed by Eschenauer et al. (1990) and considers 
the optimization of an industrial robot, in which a hydraulic spring mechanism is used for the bal-
ancing of the armAB (see Figure 4). 
 

 

Figure 4: Industrial robot with a hydraulic spring mechanism (Eschenauer et al., 1990). 
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Table 5 presents the robot parameters considered in this application. 
 
 

Symbols Description 
Val-
ue 

Unity 

1m  Arm's mass 254.4 Kg 

2m  Forearm's mass 105.3 Kg 

1l  Arm's length 1.0 M 

2l  Forearm's length 1.35 M 

1e  Distance of gravity center until arm 0.52 M 

2e  Distance of gravity center until fore-
arm 

0.53 M 

3v  Maximum load carrying 80 Kg 

Table 5: Industrial robot parameters (Eschenauer et al., 1990). 

 
 

The design variables associated with the balancing of the robot's arm are the following: localiza-
tion of spring mechanism in relation to base ( 1X and 2X , in meters), pressure of hydraulic accumu-

lator ( 3X , in MPa), and cylinder diameter ( 4X , in meters). The robot's performance is a function 

of the static torque in steering the motor shaft, the work executed by the motor, and the static 
force in the joint A. The model of the industrial robot presented in Fig. 1 was obtainedbyupdat-
ingof following meta-model: 
 

2 2
0 1 1 4 4 5 1 8 4 9 1 2 10 1 3

11 1 4 12 2 3 13 2 4 14 3 4

... ...

     

Y x x x x x x x x

x x x x x x x x

b b b b b b b

b b b b

= + + + + + + + + + +

+ + + +
 (25)

 
where ib  are the approximation coefficients (i = 1, …, 14), ix  (i = 1,  …, 4) are the design varia-

bles vector, and 1 2 3[   ]met met metY y y y=  is the vector of response of the model, representing measures 

to evaluate the performance of the industrial robot.  For this purpose, the design vector variables 
were coded as (Eschenauer et al., 1990): 
 

1 2 3 4
1 2 3 4

0.3 3.3 0.037
,  ,  ,  

0.01 0.04 0.3 0.003
X X X X

x x x x
- - -

= = = =  (26)

 
According to Eschenauer et al. (1990), a satisfactory performance of the robot depends on the 

following criteria: static torque on the shaft of the driving motor ( 1y ), work performed by the driv-

ing motor ( 2y ), and the static force at the joint A ( 3y ). 

Table 6 presents the experiments considered by Eschenauer et al. (1990), which are now used in 
this application. 

Table 7 presents the meta-models obtained using the Sequential Quadratic Programming Meth-
od. 
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Experiment 1x 2x  3x 4x 1y 2y 3y  

1 1 1 1 1 3546.7 16652.3 4405.4 
2 -1 1 1 1 3684.1 17443.4 4552.4 
3 1 -1 1 1 1960.5 13648.9 3042.8 
4 -1 -1 1 1 1727.8 14200.7 2736.7 
5 1 1 -1 1 2606.3 13788.4 3510.8 
6 -1 1 -1 1 2720.9 14447.8 3611.5 
7 1 -1 -1 1 1828.5 11856.7 3433.9 
8 -1 -1 -1 1 1746.0 11884.0 3168.5 
9 1 1 1 -1 2053.8 10851.3 3034.0 
10 -1 1 1 -1 1886.5 10851.3 2824.2 
11 1 -1 1 -1 2452.1 10581.8 3895.2 
12 -1 -1 1 -1 2438.7 10851.8 3752.3 
13 1 1 -1 -1 1977.5 9761.6 3456.0 
14 -1 1 -1 -1 1954.6 9761.6 3205.6 
15 1 -1 -1 -1 2827.7 9762.0 4270.2 
16 -1 -1 -1 -1 2816.5 9762.0 4169.2 
17 1 0 0 0 1880.4 11411.5 3178.2 
18 -1 0 0 0 1694.0 11411.5 2857.2 
19 0 1 0 0 2154.7 11658.6 3053.5 
20 0 -1 0 0 2084.2 11409.8 3528.7 
21 0 0 1 0 1935.6 12054.9 2813.7 
22 0 0 -1 0 1785.7 10764.7 3248.1 
23 0 0 0 1 2087.1 13966.0 3066.5 
24 0 0 0 -1 2189.5 10305.7 3526.9 

Table 6: Experimental data planning and answer obtained for the industrial robot application (Eschenauer, 1990). 
 

Coefficient 1
mety  2

mety  3
mety  

0b  1838.77 11416.08 3023.20 

1b  25.80 -127.75 74.93 

2b  150.17 626.97 -19.11 

3b  79.00 852.64 -56.50 

4b  72.83 1966.61 -33.61 

5b  -51.57 -4.58 -5.50 

6b  280.67 131.61 267.89 

7b  21.87 -6.28 7.69 

8b  299.52 719.76 273.49 

9b  -25.10 -37.58 -37.68 

10b  17.12 -57.88 -0.26 

11b  -9.47 -109.97 -23.76 

12b  159.46 126.27 165.43 

13b  497.36 654.58 454.08 

14b  172.66 367.46 162.99 
2R  0.97 0.99 0.87 
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Table 7: Meta-model coefficients and determination coefficient ( 2R ) for the industrial robot application. 

Robust Optimum Design 
The formulation for the multi-objective optimization problem is given by (Eschenauer et al., 1990): 
 

1 1 2 3 4 1

2 1 2 3 4 2

3 1 2 3 4 3

( , , , )

min ( , , , )

( , , , )

met

met

met

f x x x x y

f x x x x y

f x x x x y

ìï =ïïïï =íïïï =ïïî

 (27)

 

where 1 1ix- £ £ , i = 1, 2 , 3 and 4. 

The following relation [ 1d 2d 3d 4d ] = [ d d d d ] was considered to evaluate the robustness of 

the design, in which d is equal to 0.1 and 0.2. These values represent a disturbance of 5% and 10%, 
respectively, in the amplitude of the domain of definition of the design variables.  

Figures 5 to 7 present the vector of objective functions, where the comparison between the nom-
inal and robust cases for d  equal to 0.1 and 0.2 is performed. 
 

 

Figure 5: 1 2
met mety y´ . 

 

 

Figure 6: 1 3
met mety y´ . 
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Figure 7: 2 3
met mety y´ . 

 
It can be observed that for the solutions in the interval 9500 2f£ £  10000 there is a high sensi-

tivity of the objectives 1f and 3f , thus characterizing a zone of small robustness. On the other hand, 

from the identification of regions with small robustness, it is also possible to identify zones with low 
sensitivity of the objectives, i.e., the robustness zones. 
 
3.4 Flexible Rotor 

Rotating machines are used in a wide range of applications regarding different engineering fields, 
such as automotive, aerospace and power generation industries. The generator units of hydraulic 
power plants, jet engines, steam turbines, are some examples of applications (Tsuzuki, 2012; Cava-
lini Jr, 2013). Therefore, the identification of optimal design and operating conditions for such kind 
of machines is an interesting engineering challenge (Quitzrau, 2002). Assis(1999) applied optimiza-
tion techniques to identify unknown parameters of a vertical rotating machine. A similar procedure 
was adopted by Steffen Jr et al. (1999) by using multi-objective optimization techniques. He et al. 
(2001) applied the Genetic Algorithm associated to a finite element model to detect cracks in a 
rotating shaft. Bueno (2007) used optimization techniques to obtain the optimal localization of pie-
zoelectric sensors and actuators for active vibration control. Cavalini Jr(2013) identified incipient 
cracks in a rotating shaft by using a nonlinear phenomenon and the Differential Evolution Algo-
rithm. 

Robust Optimum Design 
It is well known that critical speeds in rotating machines are associated with high vibration ampli-
tudes, which can lead to irreversible damages on the system. Thus, it is important keep the rotor 
operating as always as possible from those rotation speeds. Regarding the associated minimization 
process, the optimal (and robust) solution should have a low sensibility to small variations on the 
design variables (for example, changes due to wear). In this context, the maximization between the 
first and second forward critical speeds of the rotating machine presented in Fig. 8 is considered. A 
finite element model with 18 elements is used to represent the rotating machine. It is composed of a 
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flexible steel shaft with 552 mm length and 12 mm of diameter (nominal diameter; E = 210 GPa, 
r = 7800 kg/m3, u = 0.3), three rigid discs of steel (see Table 8; r = 7800 kg/m3), and two identi-

cal ball bearings (m = 10 kg, xx zzk k= = 106 N/m, xz zxk k= =0, xx zzc c= =83.3 N/m and 

xz zxc c= = 0). Considering the nominal parameters, the first two forward critical speeds of the 

rotor are approximately: 2620 rev/min and 2940 rev/min. 
 

 

Figure 8: Finite element model for the studied rotor. 

 
Table 8 presents the geometric characteristics of the discs of the rotor. 

 

Disc Mass (kg) Moment of Inertia (kg m2) 
Radius 
(mm) 

Depth (mm) 

1 0.794 0.005 45 16 
2 1.544 0.005 75 11.2 
3 0.935 0.005 60 10.6 

Table 8: Geometric characteristics of the discs of the rotating machine. 

 
The robust optimization process was formulated to deal with 4 design variables, namely the ex-

ternal radius of the finite elements confined between nodes 1 to 5; 5 to 11; 11 to 15 and 15 to 18 
(see Fig.8). Table 9 shows the design space used in the fitting of the finite element model. In order 
to avoid assembly problems, the external radius of the shaft associated with the nodes 5 to 11 is 
given by the sum of the radius determined for the first shaft section (nodes 1 to 5) and the ones for 
the second section (nodes 5 to 11). Similar procedure was adopted for the sections associated with 
nodes 11 to 15 and 15 to 18. 
 

Shaft section (nodes) Lower limit (m) Upper limit (m) 
1	to	5 0.004 0.008 
5 to 11 0 0.004 
11 to 15 0 0.004 
15 to 18 0.004 0.008 

Table 9: Design space used in the fitting of the finite element model. 
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The robustness evaluation of the solution was performed considering the deviation parameters 

1d = 0.0005 m, 2d = 0.00075 m and 3d = 0.001 m, separately, which represent perturbations of 

8.33%, 12.5%, and 16.67%, respectively, on the nominal radius of the shaft.  
Figure 9 shows the deterministic and robust Pareto's Curve obtained by using the MOFCA al-

gorithm. In this case, both objectives are sensible to small perturbations on the design variables. 
The first critical speed presents a variation of 2000 rev/min approximately, while the third one 
reaches 4800 rev/min (nominal value of 2940 rev/min). The robust region for the optimum design 
of the rotating machine is verified. Note that the third critical speed increases according to d  (per-
turbation parameter) for the case in which a single first critical speed is considered. 
 

 

Figure 9: Deterministic and robust Pareto's Curve obtained by using the MOFCA algorithm. 

 
Table 10 presents the optimal solutions determined from the deterministic and robust process 

considering the highly fireflies of Figure 9. 
 

Shaft section (nodes) Deterministic (m) 1r  (m) 2r  (m) 3r  (m) 

1	to	5 7.76ൈ10-3 6.01ൈ10-3 6.10ൈ10-3 7.89ൈ10-3 

5 to 11 3.73ൈ10-3 3.47ൈ10-3 4.05ൈ10-5 2.67ൈ10-4 

11 to 15 5.67ൈ10-4 4.03ൈ10-4 5.34ൈ10-4 4.20ൈ10-4 

15 to 18 5.27ൈ10-3 4.90ൈ10-4 5.62ൈ10-3 4.60ൈ10-3 

3 1Cr Cr- (rev/min) 1197.7 1214.4 1206.2 1306.6 

Table 10: Optimal solutions determined from the deterministic and robust process ( iCr is the critical speed). 

 
Figures 10 and 11 shows the Campbell diagrams obtained from the nominal radius of the shaft 

and the one obtained at the end of the optimization process considering the robust ( 2r ) solution, 

respectively. As expected, the difference between the first and third critical speeds was maximized 
by the associated optimization process.  
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Figure 10: Campbell diagram for the nominal case. 

 

 

Figure 11: Campbell diagram for the robust ( 2r ) case presented in Table 10. 

 
4 CONCLUSIONS 

In this contribution, the Multi-objective Optimization Firefly Colony Algorithm in association with 
the Effective Mean Concept was used to solve robust multi-objective problems. This methodology 
was applied to solve both mathematical and real-world engineering problems. In general, for the test 
cases considered, the results obtained were considered satisfactory as compared with those described 
in the literature. 

In the industrial robot's arm optimization problem, the influence of the robustness parameter d  
on the robust Pareto's Curve was observed. It was also possible to characterize regions with higher 
sensitivity of the objectives with respect to small perturbations in the design variables. In the con-
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text of robust design, this characterization is of great importance, since regions with greater sensi-
tivity have to be crowded out in relation to those with lower sensitivity.   

Considering the results obtained, it is important to mention that the robustness parameter in-
fluences the robust Pareto's Curve. 

Since a systematic study introducing robustness in multi-objective optimization problems 
(DebandGupta, 2006; Paenk et al., 2006) is not easily available, the problems studied may serve as 
comparison for future evaluations of other methodologies for robust multi-objective optimization. 
Regarding optimal robust design, the determination of robustness regions may represent a criterion 
for the choice of a specific point of the Pareto's Curve for a possible practical implementation. How-
ever, it is important to observe that the main disadvantage of this approach is the increase of the 
number of objective function evaluations, which are necessary to evaluate the integral considered in 
the Effective Mean Concept, independently from the optimization strategy considered.  

It is worth mentioning that the operators used in the MOFCA algorithm were not developed in 
this paper. In addition, the authors of the present contribution did not propose the Mean Effective 
Concept originally. However, the use of Mean Effective Concept associated to Firefly Colony Algo-
rithm represents a new approach, considering the literature associated with this work. The devel-
opment of a multi-objective algorithm for the robust optimization using the FCA is considered as 
being the main contribution of the present contribution. 

Further works will be dedicated to approaches related to dynamically updating the parameters 
and mutation strategies of the Multi-objective Optimization Firefly Colony Algorithmtogether with 
its parallelization to reduce the number of objective function evaluations. 
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