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Eigenvalue based inverse model of beam for structural modifi-
cation and diagnostics. Part I: Theoretical formulation

Abstract

In the work, the problems of the beam structural modifica-

tion through coupling the additional mass or elastic support,

as well as the problem of diagnostics of the beam cracks,

are discussed. The common feature for both problems is

that the material parameters in each of the discussed cases

change only in one point (additional mass, the support in one

point, the crack described by the elastic joint). These sys-

tems, after determination of the value of additional element

and its localization, should have a given natural vibration

frequency. In order to solve the inverse problem, i.e. the

problem of finding values of the additional quantities (mass,

elasticity), the beam inverse model was proposed. Analy-

sis of this model allows finding such a value of additional

mass (elasticity) as a function of its localization so that the

system has the free vibration frequency, which is desired in

the modification problem or measured on the object in the

diagnostics.
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1 INTRODUCTION

The dynamic characteristics are one of the most important factors which should be taken into

consideration during design and using of the mechanical systems. It is essential for the designer

to ensure that none of the system natural frequency corresponds to the excitation frequency.

The structural modification can be used to change (to shift) the natural vibration frequencies

away from the excitation frequency or to change the position of the vibration node. This part

of the paper concerns searching for such an additional mass, added to the main system, and

its position or for such a position of the elastic support and its coefficient of elasticity that the

system after modification achieves the required eigenfrequencies or (and) eigenmodes.

Additionally, the dynamic characteristics are the source of the information about the tech-

nical condition of the object. The measured natural vibration frequencies can be used for

diagnostic of the damages in the examined object [7, 10]. This part of the paper concerns

identification of the crack position and its depth. The crack is modeled as an elastic joint.
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424 L. Majkut / Eigenvalue based inverse model of beam for structural modification and diagnostics (Part I)

The common feature for both problems is that the material parameters in each of the

discussed cases change only in one point (the point mass, the support in one point, the crack

described by the joint). These systems, after determination of the value of additional element

and its localization, should have a given natural vibration frequency. Thus, the both problems

can be treated as the Structural Modification of the system aiming at achieving the given value

of the natural vibration frequency.

The typical approach to the optimization problem for the system vibration is carrying out

a series of modification of the numerical or analytical model to obtain the required eigen-

frequencies. Such an approach, known as the forward variation [5] approach or design load

analysis cycle [1] is expensive, time-consuming and rarely leads to the optimum solution. The

simple modification, such as adding a mass or an elastic support can be easily carrying out

by determination of the proper receptance in the point where the additional element is added

[11, 12].

The structural modification can be also defined as the inverse problem [2, 5]. The inverse

engineering refers to the problem where the desired response (for example eigenvalue) of the

system in known (diagnostics) or decided (modification) but the physical systems is unknown

[6]. These problems are difficult because a unique solution is rarely possible.

The early works concerning the inverse eigenvalue problem [4, 16] are based on Rayleigh’s

work and their authors utilize the first order terms of Taylor’s series expansion. Such an

approach was developed in the work [1], where the second order approximation in Taylor

series expansion was used.

Another approach is presented in the works [15, 17], where the response of the system due

the forced vibration is used to change the natural frequency of the system. The method is

based on modification of either the mass or stiffness matrix by treating the modification of the

system matrices as an external forced response. This external forced response is formulated in

terms of the modification parameters.

In work [3] authors presented detailed review of structural modification methods and clas-

sified them into categories of the techniques based on small modification, these based on

localized modification, and these based on modal approximation. In the class of small modifi-

cations, they described model-updating techniques developed from Rayleigh’s principle, eigen-

value derivatives and modal perturbation. In local modification class, they presented the

methods that had been developed to solve the structural eigenvalue problem of the perturbed

mass or (and) stiffness matrix of system. In this case the localization an additional mass or

stiffness is known. The method is based on minimization of the residual matrix [14].

Thanks to such an approach to the inverse problem, we avoid the problem of the ambiguous

solution.

Generally speaking, all methods of the inverse problem solution, described above, are based

on the single- or multiple-analysis of the direct problem. In this paper, a different novel beam

model, called the inverse model of a beam, is proposed. Thanks to such an approach, we avoid

the problems related to the measurement noise, which is inevitable in direct problem analysis.
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2 DESCRIPTION OF VIBRATION OF A BEAM WITH POINT CHANGE IN MATERIAL
PROPERTIES

As it was mentioned in the introduction, the material parameters of the system, such as mass

(additional mass) or elasticity (elastic support and crack modeled by elastic joint), in each of

the problems discussed in the work change only in one point. Generalized functions (some basic

properties see appendix A) are employed to describe the vibrations of such discrete-continuous

systems.

2.1 Model of a beam with an additional mass

The model investigated in the work is the beam shown in Fig. 1.

Figure 1 Beam with an addition mass

The differential equation for the free vibrations of a beam with an additional mass has the

form:

EI ⋅ ∂
4y(x, t)
∂x4

+ (ρF +ma ⋅ δ(x,xa)) ⋅
∂2y(x, t)
∂t2

= 0 (1)

where: EI - bending stiffness, ρ - material density , F - beam cross-section, ma - addition

mass applied to a beam in the point x = xa, δ(x,xa) - Dirac delta function in the point x = xa.
The equation (1) will be solved using the Fourier method of separation of variables. The

basis of the method is the assumption that the solution y(x, t) can be treated as product of

the function depending only on position and the function depending only on time.

y(x, t) =X(x) ⋅ T (t)
With this assumption, the vibration amplitudes equation can be written in the form:

X(x)(4) − λ4 ⋅X(x) = λ4 ⋅ ma

ρF
⋅X(x) ⋅ δ(x,xa) (2)

where: λ4 = ω2 ⋅ ρF /EI, ω - natural frequency of the beam.

The solution of the equation (2) is given by a function in the form:

X(x) = P coshλx +Q sinhλx +R cosλx + S sinλx + (3)

+λma

2ρF
⋅X(xa) ⋅ [ sinhλ(x − xa) − sinλ(x − xa)] ⋅H(x,xa)
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where:

• H(x,xa) - Heaviside (step) function in point x = xa.

and its derivatives are described by a functions:

X ′(x) =λ ⋅ (P sinhλx +Q coshλx −R sinλx + S cosλx)+

+ λ
2ma

2ρF
⋅X(xa) ⋅ [ coshλ(x − xa) − cosλ(x − xa)] ⋅H(x,xa)

X ′′(x) =λ2 ⋅ (P coshλx +Q sinhλx −R cosλx − S sinλx)+

+ λ
3ma

2ρF
⋅X(xa) ⋅ [ sinhλ(x − xa) + sinλ(x − xa)] ⋅H(x,xa)

X ′′′(x) =λ3 ⋅ (P sinhλx +Q coshλx +R sinλx − S cosλx)+

+ λ
4ma

2ρF
⋅X(xa) ⋅ [ coshλ(x − xa) + cosλ(x − xa)] ⋅H(x,xa)

Integration constants P , Q, R, S depends on boundary conditions related to the initial-

boundary problem under consideration.

The equations describing the boundary conditions constitute the system of 4 algebraic

homogeneous equations, to which one can add, as the fifth equation, the equation connecting

the beam vibration amplitude in the point x = xa (i.e. the place where the mass is added) to

the constants of integration in the form:

P coshλxa +Q sinhλxa +R cosλxa + S sinλxa −X(xa) = 0

In this way, the homogeneous system of 5 algebraic equations is obtained, where the un-

knowns are: the constants of integration P , Q, R, S and the beam vibration amplitude in the

point X(xa) where the mass is added.

This system can be written in the matrix form M ⋅C = 0:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

four equations which 0

describes the boundary conditions 0

of the beam without a35
an additional element a45

coshλxa sinhλxa cosλxa sinλxa −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P

Q

S

R

X(xa)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The coefficients a35, a45 depends on the forms of the equations describing the boundary

conditions at the right end of the beam (x = l). They are the coefficients at the constant X(xa)
in the equation (3) or its derivatives are listed in Tab. 1.
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Table 1 The coefficients a35 and a45

Boundary condition a35 or a45

X(l) = 0 λma

2ρF
⋅[ sinhλ(l − xa) − sinλ(l − xa)]

X ′(l) = 0 λ2ma

2ρF
⋅ [ coshλ(l − xa) − cosλ(l − xa)]

X ′′(l) = 0 λ3ma

2ρF
⋅ [ sinhλ(l − xa) + sinλ(l − xa)]

X ′′′(l) = 0 λ4ma

2ρF
⋅ [ coshλ(l − xa) + cosλ(l − xa)]

Figure 2 Right end of the beam supported in general way

In the case of the generalized boundary conditions (elastic support of the beam), the

equations for the boundary conditions are the proper linear combination of the equations

presented in Tab. 1 and for the support as in Fig. 2.

The equation which connect the shear force and vibration amplitude in the point x = l has
the form:

EI ⋅X ′′′(l) − kT ⋅X(l) = 0

In this case coefficient a35(a45) has form (it is result from the rows 1 and 4 of the Tab. 1):

a35(a45) = EI ⋅ λ
4ma

2ρF
⋅ [ coshλ(l − xa) + cosλ(l − xa)] +

− kT ⋅
λma

2ρF
⋅ [ sinhλ(l − xa) − sinλ(l − xa)]

The equation which connect the bending moment and angle of cross-section rotation in the

point x = l has the form:

EI ⋅X ′′(l) + kR ⋅X ′(l) = 0
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In this case coefficient a35(a45) has form (rows 2 and 3 of the Tab. 1):

a35(a45) = EI ⋅ λ
3ma

2ρF
⋅ [ sinhλ(l − xa) + sinλ(l − xa)] +

+ kR ⋅
λ2ma

2ρF
⋅ [ coshλ(l − xa) − cosλ(l − xa)]

2.2 Model of a beam with an elastic support

Model of a beam with additional internal elastic support is shown in Fig. 3.

Figure 3 Beam with an additional internal elastic support

The differential equation for free vibrations can be written in the form:

EI ⋅ ∂
4y(x, t)
∂x4

+ ρF ⋅ ∂
2y(x, t)
∂t2

− ks ⋅ y(x, t) ⋅ δ(x,xs) = 0 (5)

After separation of the variables, the vibration amplitude equation, takes the form:

X(x)(4) − λ4 ⋅X(x) = ks
EI
⋅X(x) ⋅ δ(x,xa) (6)

the solution of which is the function:

X(x) = P coshλx +Q sinhλx +R cosλx + S sinλx + (7)

+ ks
2 ⋅EI ⋅ λ3

⋅X(xs) ⋅ [ sinhλ(x − xs) − sinλ(x − xs)] ⋅H(x,xs)

The integration constants P,Q,R,S depend on the boundary conditions corresponding to

the initial-boundary problem under consideration. If the fifth equation, relating the beam

vibration amplitude in the point x = xs to the constants of integration, is added to four

equations describing the boundary conditions then such the system of equations written in the

matrix form will have a form identical to that in the case described in the previous section,

i.e. as in the equation (4), although now the coefficients a35(a45) have the form presented in

the Tab. 2.
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Table 2 Coefficients a35 and a45 in dependence on boundary condition

Boundary condition a35 or a45

X(l) = 0 − ks

2⋅EI ⋅λ3 ⋅ [ sinhλ(l − xs) − sinλ(l − xs)]

X ′(l) = 0 − ks

2⋅EI ⋅λ2 ⋅ [ coshλ(l − xs) − cosλ(l − xs)]

X ′′(l) = 0 − ks

2⋅EI ⋅λ ⋅ [ sinhλ(l − xs) + sinλ(l − xs)]

X ′′′(l) = 0 − ks

2⋅EI
⋅ [ coshλ(l − xs) + cosλ(l − xs)]

EI ⋅X ′′′(l) − kT ⋅X(l) = 0 −ks

2
⋅ [ coshλ(l − xs) + cosλ(l − xs)]+

+ kT ⋅ks

2⋅EI ⋅λ3 ⋅ [ sinhλ(l − xs) − sinλ(l − xs)]

EI ⋅X ′′(l) + kR ⋅X ′(l) = 0 − ks

2⋅λ ⋅ [ sinhλ(l − xs) + sinλ(l − xs)]+

− kR⋅ks

2⋅EI ⋅λ2 ⋅ [ coshλ(l − xs) − cosλ(l − xs)]

2.3 Model of a beam with a crack

The examined in the work problem was described by an open crack model, what is shown

schematically in Fig. 4.

Figure 4 Beam with a crack

The crack was modeled as an elastic joint, flexibility cb of which relates the bending moment

in the intersection with the coordinate x = xc with the rotation angles at the right and left

side of the intersection, at crack location:

y′(x+c ) − y′(x−c ) = cb ⋅EI ⋅ y′′(x−c ) (8)

The equation relating flexibility of the elastic joint cb and the crack depth, based on fracture

mechanics and Castigliano’s theorem, is placed in the appendix B.
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The beam with the crack modeled as the elastic joint, being the subject of the subsequent

analysis, is shown in Fig. 5.

Figure 5 Cracked beam model

The free vibration equation for a beam with a crack, after separation of variables, can be

written in the form:

X(x)(4) − λ4 ⋅X(x) = cb ⋅X ′′(xc) ⋅ δ′′(xc) (9)

solution of which is the function:

X(x) = P coshλx +Q sinhλx +R cosλx + S sinλx + (10)

+ cb
2λ
⋅X ′′(xb) ⋅ [ sinhλ(x − xc) + sinλ(x − xc)] ⋅H(x,xc)

Integration constants P,Q,R,S depends on boundary conditions.

Similar to the previous sections of the work, the system of equations describing the bound-

ary conditions will be completed with the equation:

λ2 ⋅ [P coshλxc +Q sinhλxc −R cosλxc − S sinλxc] −X ′′(xc) = 0

In such a case, the system of equations describing the boundary conditions has the form

identical to this from the equation (4), although now the fifth row has the form coming from

the above equation and the coefficients a35 and a45 depend on the corresponding derivatives

of the equation (10) and are placed in Tab. 3.

3 INVERSE PROBLEM IN DIAGNOSTICS AND STRUCTURAL MODIFICATION

Analysis of the direct model consists in finding such values of the natural vibration frequencies

ω so that the main matrix determinant of the equation (4) is equal to zero for them, i.e.

detM = 0. Finding these values for given additional mass ma (elasticity ks) or crack depth

(flexibility cb) and their positions is not a problem.

Analysis of the inverse problem consists in finding such values of mass (elasticity) or flex-

ibility and their positions so that the natural vibration frequency has the desired value (in

the case of modification) or the value measured on the object (in the case of crack). So, the
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Boundary condition a35 or a45

X(l) = 0 cb
2⋅EI ⋅λ ⋅ [sinhλ(l − xc) + sinλ(l − xc)]

X ′(l) = 0 cb
2⋅EI
⋅ [ coshλ(l − xc) + cosλ(l − xc)]

X ′′(l) = 0 λ ⋅ cb
2⋅EI
⋅ [ sinhλ(l − xc) − sinλ(l − xc)]

X ′′′(l) = 0 λ2 ⋅ cb
2⋅EI
⋅ [ coshλ(l − xc) − cosλ(l − xc)]

EI ⋅X ′′′(l) − kT ⋅X(l) = 0 λ2 ⋅ cb
2
⋅ [ coshλ(l − xc) − cosλ(l − xc)]+

− kT ⋅cb
2⋅EI ⋅λ ⋅ [sinhλ(l − xc) + sinλ(l − xc)]

EI ⋅X ′′(l) + kR ⋅X ′(l) = 0 λ ⋅ cb
2
⋅ [ sinhλ(l − xc) − sinλ(l − xc)]+

+kR⋅cb
2⋅EI

⋅ [ coshλ(l − xc) + cosλ(l − xc)]

Table 3 Coefficients a35 and a45

problem comes down (similarly as in the case of the direct problem) to solving the determinant

equation detM = 0, in which the value λ =
√
ω ⋅
√

ρF
EI

in known now, while the values of mass

ma (elasticity ks or flexibility cb) and their positions are the searched variables. Mathemat-

ically, this can be written as searching for the solution of the two variables function in the

form:

F1(ma, xa) = 0 F2(ks, xs) = 0 F3(cb, xc) = 0

Such an equation can be solved employing sensitivity analysis, i.e. finding the impact of

mass ma (elasticity ks or flexibility cb) change and change of their positions on the change of

free vibration frequency ω, in other words in determining:

∂ detM

∂ma

∂ detM

∂xa

or
∂ detM

∂ks

∂ detM

∂xs

or
∂ detM

∂cb

∂ detM

∂xc

Another method for solution of the two-variable function is factor analysis that consists

in so-called factorial experiments, in other words determining (from the equation detM = 0)
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free vibration frequency for many different values of mass ma (elasticity ks or flexibility cb)

and their positions xa (xs, xc), correspondingly. Having the results of many calculations,

it is possible to determine gradient of these changes, in other words to determine ”rate”

of free vibration frequency ω, changes caused by the changes of the individual independent

variablesma, xa (ks, xs or cb, xc). After determination of gradient, it is possible to minimize the

difference between the determined free vibration frequency (from the condition detM = 0) and
the desired value (the goal of modification) or the value measured (on the cracked element).

All the methods listed above consist in searching for the minimum of the function. This

makes a serious problem in the analysis of the inverse problem, which is an ambiguous model

- its solution is a function, for instance ma = g1(xa). Because of that, one should employ, in

principle, the methods used for searching of a functional minimum, i.e. the methods based on

calculus of variations.

Another method for solution of the inverse-model ambiguity problem is searching for the

value of one of the independent variable (for instance mass ma, elasticity ks or flexibility cb)

for the constant fixed value of another independent variable (position xa, xs or xc) - localized

modification [3]. Such calculations (i.e. searching for a minimum of function of one variable)

should be carried out for every possible position of the additional element from the range (0, l).
In this paper, it was proposed to develop the inverse model of the beam and to carry out

the analysis of this model instead of multiple analysis of the direct problem.

4 INVERSE MODEL OF A BEAM

As it was pointed out in the previous section, solution of the modification or the diagnostic

problem one consists in searching for solution of the function of two variables written in form

of determinant equation: detM = 0. To solve this equation, developing of the inverse model

that allows to transform the equations of the form F1(ma, xa) = 0 to the form ma = g1(xa),
was proposed.

In order to determine the inverse model, the following algorithm of calculations, easy to

computer implementation, was proposed:

1o One should build a new matrix (marked as A) that comes from the main matrix of the

initial - boundary problem (eq. (4) through replacement of the quantity ma (ks or cb)

with the number 1

2o One should build the second matrix (marked asB) that comes from the matrixA through

crossing the last row and the last column off. So, the matrix B is a matrix describing

the eigenvalue problem for a beam without an additional element.

3o After defining of the matrixes A and B, the equation detM = 0 can be written in the

form:

ma ⋅ (detA + detB) − detB = 0

or ks ⋅ (detA + detB) − detB = 0

Latin American Journal of Solids and Structures 7(2010) 423 – 436



L. Majkut / Eigenvalue based inverse model of beam for structural modification and diagnostics (Part I) 433

or cb ⋅ (detA + detB) − detB = 0

4o After some transformation, it is possible to determine the additional value for each

xa(xs, xc) ∈ (0, l), with the help of the relationship:

ma(ks, cb) = detB/(detA + detB) (11)

The equation (11) is useful for determination of such a value of mass (elasticity or flexibility)

as a function of its position so that the system has the free vibration frequency, which is desired

in the modification problem or measured on the object in the diagnostics.

The choice of the ”proper” value of the searched quantity and its position depends on the

additional criteria, the propositions of which are given in the second part of this work.

5 SUMMARY AND CONCLUSIONS

In the work, the problems of the beam structural modification through coupling the additional

mass or elastic support, as well as the problem of diagnostics of the beam cracks, are discussed.

Thanks to using of elastic joint model to describe the crack, the common feature of both

problems is that material parameters of the beam change only in one point (point mass, support

in one point, crack described as joint). This allows describing vibrations of such system with

the use of generalized functions, thanks to what the mathematical description of vibrations in

each problem has the same form.

In order to solve the inverse problem, i.e. the problem of finding values of the additional

quantities (mass, elasticity), the beam inverse model was proposed. Analysis of this model

allows finding such a value of additional mass (elasticity) as a function of its localization so

that the free vibration frequency changes to desirable value, when this mass is coupled to the

beam.

The proposed beam inverse model can be employing to identification of the beam cracks. In

such a case, however, the input quantity is free vibration frequency measured on the damaged

object.

Each determined free-vibration frequency allows determining of the flexibility curve mod-

eling the crack in the function of its position. For each pair of parameters (cb, xc) lying on

the curve, the free vibration frequency is equal to the frequency measured. The searched

parameters of the crack lay in the point that is common for two arbitrary curves.
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APPENDIX A. BASIC PROPERTIES OF THE GENERALIZED FUNCTIONS

Dirac delta function δ(x,xa) = {
0 for x ≠ xa
∞ for x = xa

Heaviside function H(x,xa) = {
1 for x > xa
0 for x < xa

Some properties:

α(x) ⋅ δ(x,xa) = α(xa) ⋅ δ(x,xa)
α(x) ⋅ δ′(x,xa) = α(xa) ⋅ δ′(x,xa) − α′(x) ⋅ δ(x,xa)

∫
x

−∞
δ(x,xa) =H(x,xa) ∫

x

−∞
δ′(x,xa) = δ(x,xa)

∫
x

−∞
δ′′(x,xa) = δ′(x,xa)

∫
x

−∞
f(x) ⋅H(x,xa) = (F (x) − F (xa)) ⋅H(x,xa) where f(x)=F’(x)

simple example of using:

( cos(x − xa) ⋅H(x,xa))
′

= − sin(x − xa) ⋅H(x,xa) + δ(x,xa)

( sin(x − xa) ⋅H(x,xa))
′

= cos(x − xa) ⋅H(x,xa)

APPENDIX B. FLEXIBILITY AT THE CRACKED PLACE

The fracture mechanics studies allow to find relations between global quantity G - Energy

Release Rate determining the increase in elastic strain energy for infinitesimal crack surface

increase:

G = ∂U

∂Ac

and local quantity K - Stress Intensity Factor (SIF), which is function of crack depth a:

G = 1 − ν2

E
⋅K2

I

where: G - energy release rate represents the elastic energy per unit crack surface area, - Ac

- area of the crack, - ν - Poisson ratio, - E - Young modulus, - KI - Stress Intensity Factor

(SIF) of mode I (opening the crack) for pure bending, given by equation:

KI = σ
√
πa ⋅ F (a/h)
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where F (a/h) - correction function also called ”shape functions”. Relation between the func-

tion F (a/h) and crack depth for different geometries elements with crack and different ways

of loading can be found in catalogs e.g. [13].

The section with the crack should be replaced with a flexible joint (rotational spring)

having the same potential energy [8]. In order to determine the flexibility cb of such joint, the

Castigliano’s theorem shall be used:

cb =
∂2U

∂M2
b (xc)

where Mb(xc) bending moment in coordinate where crack is situated.
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