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Abstract 
The unified solution is studied for a beam of rectangular cross 
section. With the rotation defined in the average sense over the 
cross section, the kinematics with higher-order shear deformation 
models in axial displacement is first expressed in a unified form by 
using the fundamental higher-order term with some properties. 
The shear correction factor is then derived and discussed for the 
four commonly used higher-order shear deformation models includ-
ing the third-order model, the sine model, the hyperbolic sine 
model and the exponential model. The unified solution is finally 
obtained for a beam subjected to an arbitrarily distributed load. 
The relation with that from the conventional beam theory is es-
tablished, and therefore the difference is reasonably explained. A 
very good agreement with the elasticity theory validates the pre-
sent solution. 
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Fundamental higher-order term, Unified higher-order shear defor-
mation model, Shear correction factor, Unified solution, Conven-
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1 INTRODUCTION 

As the basic structure, beams have been extensively used in fields such as architecture, mechanics, 
chemistry, aerospace and ocean engineering. Two approaches are often adopted in studying beams. 
One is to use the elasticity theory, two dimensional or three dimensional, while the other is to use a 
beam theory as a one-dimensional problem. In the first approach, the solution to a problem is de-
rived strictly according to the elasticity theory. However, as we know, this approach can only offer 
analytic solutions to problems with simple geometries or loadings. 

For the second approach, the situation is somewhat confused. To date, there have developed 
quite a number of beam theories. The Euler-Bernoulli theory (EBT) (Dym and Shames, 1973) is the 
first and classic beam theory in which the cross section is assumed normal to the neutral axis before 
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and after deformation and hence the shear deformation of cross section is not taken into account. In 
contrast, the Timoshenko beam theory (TBT) (Timoshenko, 1922, 1921) permits a uniform shear 
deformation of cross section with a shear correction factor. 

To improve the accuracy, higher-order shear deformation (HSD) models were proposed. For ex-
ample, Levinson (1981) suggested a third-order rectangular beam model by taking the in-plane 
warping of cross section into account. Based on the same idea, Murthy (1981) used another defini-
tion of rotation, leading to the shear correction factor 5/6 rather than 2/3 by Levinson (1981). Fol-
lowing the kinematics of Levinson (1981), Bickford (1982) proposed a variationally consistent beam 
theory and Reddy (1984a, 1984b) further developed a higher-order differential governing equation 
for plates. The comprehensive numerical investigations on the accuracy of various HSD models were 
conducted by Rohwer (1992) which showed that the Murthy’s (1981) and Reddy’s (1984a, 1984b) 
theories are the best choices. Inspired by Murthy (1981) and Bickford (1982), Shi (2011, 2007) pro-
posed an improved third-order shear deformation theory with a variationally consistent sixth-order 
governing equation and respective boundary conditions. 

Rohwer (1992) indicated that the kinematics and the rotation play important roles in the HSD 
model. For the kinematics, besides the third-order shear deformation model (Levinson, 1981; 
Murthy, 1981), the trigonometric model (Akgöz and Civalek, 2014a, 2014b; Karama et al., 1998; 
Mantari et al., 2012; Touratier, 1991), the hyperbolic sine model (Akgöz and Civalek, 2015; Akavci 
and Tanrikulu, 2008; El Meiche et al., 2011; Soldatos, 1992) and the exponential model (Aydogdu, 
2009; Karama et al., 2003) have been developed. For the rotation, two definitions are usually 
adopted in the existing work. As the first one, the rotation variable ψ is defined as the rotation at 
the neutral surface (e.g. Akgöz and Civalek, 2015; Akgöz and Civalek, 2014a, 2014b; Aydogdu, 2009; 
Bickford, 1982; El Meiche et al., 2011; Groh, 2015; Karama et al., 2003; Karama et al., 1998; Levi-
son, 1981; Mantari et al., 2012; Qu, et al., 2013; Reddy, 1984a, 1984b; Simsek, 2010; Soldatos, 1992; 
Touratier, 1991; Viola, et al., 2013) while, as the second one, the rotation variable ϕ is defined as 
the average rotation over the cross section in some sense (e.g. Cowper, 1966; Murthy, 1981; Reissner, 
1975; Shi, 2011, 2007). In this context, the beam theory in terms of ψ is called the conventional one. 

Compared with the TBT, HSD models can not only reflect the warping of cross section, but 
give the shear correction factor in a straightforward manner. However, the TBT is amazing in eval-
uating deflection due to its sophisticated physics in the shear correction factor. In virtue of this, 
much attention was paid to evaluating the shear correction factor (e.g. Cowper, 1966; Dong et al., 
2013, 2010; Gruttmann and Wagner, 2001; Gruttmann et al., 1999; Hutchinson, 2001; Jensen, 1983; 
Kaneko, 1975; Pai and Schulz, 1999). 

In recent years, HSD models have been widely used in composite structures (Aydogdu, 2009; 
Karama et al., 2003; Mantari et al., 2012; Viola, et al., 2013) and functionally graded (FG) struc-
tures (El Meiche et al., 2011; Simsek, 2010). Much attention was also paid to real world applica-
tions by using beam theories. For example, Wang et al. (2008) studied the bending problems of 
micro- and nano-beams based on the Eringen nonlocal elasticity theory and the TBT, and found 
that the shear deformation and small-scale effect are significant in these problems. In addition, HSD 
models have been adopted to study small-scale structures (Akgöz and Civalek, 2015, 2014a, 2014b; 
Challamel, 2013, 2011; Wang et al., 2014) in nano- or micro-electro mechanical systems (NEMS or 
MEMS). 
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Though there have been massive researches on beam problems, some confusions are still pend-
ing. For example, what are the proper quantities in characterizing governing equations and bounda-
ry conditions of a beam problem? Are there any connections among the existing beam theories, 
HSD models, or shear correction factors? These are just the issues to touch on in the present work. 
To this end, the paper is outlined as follows. In Section 2, with the rotation defined in the average 
sense over the cross section, the beam theory is summarized, including derivation of the governing 
equations and the boundary conditions. In Section 3, the HSD model is expressed in a unified form 
for the kinematics in axial displacement by introducing the fundamental higher-order term with 
some properties. Four commonly used HSD models, viz. the third-order model, the sine model, the 
hyperbolic sine model and the exponential model, are then studied in detail, and the shear correc-
tion factors are finally calculated. In Section 4, the unified solution is derived and discussed. The 
concluding remarks are made in Section 5. 
 
2 FUNDAMENTALS OF THE BEAM THEORY  

 

 

Figure 1: A straight beam of rectangular cross-section. 

 
For a straight beam of rectangular cross-section, the coordinate system is shown in Figure 1. 

In the present work, according to the quantities in the plane elasticity theory, moment M, shear 
force Q, deflection w and rotation ϕ for a beam are respectively defined as 
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where σx , σy and τxy are the stress components in the x-y plane. u(x, y) and v(x, y) are respectively 
the axial and transverse displacements in this plane. A and I are respectively the area and the mo-
ment of inertia of cross section. It is easily seen that definitions for M, Q and w are the same as 
often while the definition for rotation is somewhat different. 

In this context, in parallel to Eqs. (1), the beam theory will be also established from the plane 
elasticity theory. Ignoring body forces, the governing equations in the plane elasticity theory are 
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Taking the end of x=0 as an example, the corresponding boundary conditions are 
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In the x-direction, integration of the first of Eqs. (2) and (3) weighted by y over the cross sec-
tion yields 
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In a similar manner, in the y-direction, integrating the second of Eqs. (2) and (3) over the cross 
section, we have 
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Considering the first two of Eqs. (1), Eqs. (4) and (6) yield 
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In this context, the prime denotes the differentiation with respect to x. 
Considering the definitions in Eqs. (1), Eqs. (5) and (7) yield 

 



1720     T.C. Duan and L.X. Li / The Unified Solution for a Beam of Rectangular Cross-Section with Different Higher-Order Shear Deformation Models 

Latin American Journal of Solids and Structures 13 (2016) 1716-1737 

   
   

in the direction

in the direction

0 given or 0 given
0 given or 0 given

x

y

M

w Q

 







 (10)

 

With Eqs. (10), all the practical boundary conditions in the x-direction and/or in the y-direction 
can be prescribed. For instance, we have 
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It should be noted that, due to the definitions in Eqs. (1), Eqs. (11) can also serve as the 
boundary conditions in the plane elasticity theory. 

For a beam structure, the fundamental assumption is that σy<<τxy <<σx (e.g. see Ghugal and 
Sharma, 2011), so, from the first of Eqs. (1), in terms of ϕ, the moment can be further expressed as 
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Together with Eqs. (8), the governing equations read 
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3 THE KINEMATICS 

3.1 The Unified Higher-Order Shear Deformation Model 

In the second of Eqs. (13), Q must be expressed in terms of w(x) and/or ϕ(x). To this end, first, as 
often, the transverse displacement is assumed to be independent of the thickness coordinate y, and 
hence we have 
 

 , ( )v x y w x  (14)
 

Next, the axial displacement is assumed to be expressed by 
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where y and g(y) are respectively called the first-order term and the fundamental higher-order term 
with respect to y while f1(x) and fR(x) are the corresponding coefficient functions with respect to x. 
It is worth noticing that g(y) is a pure higher-order term in this context. 

Substituting Eq. (15) into the fourth of Eqs. (1) yields 
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where 
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 1 ( )
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If we take fR(x)≡0, together with Eq. (16), Eq. (15) reduces to the first-order shear deformation 
model as 
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For a higher-order model, upon eliminating fR(x) via Eq. (16), Eq. (15) becomes 
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Thus, considering Eq. (14), the shear strain over the cross section is 
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For a beam of rectangular cross section, the shear stress free condition is often adopted on the 
top and bottom surfaces, which requires 
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So, from Eq. (20), we have 
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Eventually, the axial displacement in Eq. (15) becomes 
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Eq. (24) is termed as the unified HSD model for a beam corresponding to the fundamental 
higher-order term g(y). 

Thus far, from Eqs. (23) and considering the higher-order property, g(y) has the following prop-
erties 
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In terms of w(x) and ϕ(x), the shear force Q(x) is expressed as 
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where KP, the shear correction factor originally defined by Timoshenko (1922,1921), takes the form 
of 
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It can be seen from Eq. (27) that the shear correction factor will be certainly determined as long 
as g(y) is known, rather than other procedures (e.g. Cowper, 1966; Hutchinson, 2001). 

If we assume 
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Eq. (26) yields 
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which implies that the shear effect cannot be not taken into account. 
Accordingly, Eq. (24) reduces to 

 

 , ( )u x y y w x    (30)
 

which is the axial displacement assumption in the EBT (Dym and Shames,1973). Compared with 
the first-order shear deformation model in Eq. (18), the EBT in Eq. (30) is obtained under the ad-
ditional assumption of Eq. (28), which is a more reasonable explanation than that of an infinite 
shear rigidity (e.g. Challamel, 2013). 
 
3.2 Four Commonly Used HSD Models 

One direct choice of the fundamental higher-order term is to take gA(y)=y 3. This model is just the 
commonly used third-order model and denoted as Model-A in this context. Eq. (27) yields 
 

5 6A
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In this paper, other three commonly used HSD models are studied as well. 
 
3.2.1 The Sine Model – Model-B 

Inspired by Touratier (1991) and considering Eqs. (25), as the sine model, the fundamental higher-
order term is taken to be 
 

( ) sinB h y
g y y

h




    
 

 (32)

 

Accordingly, from Eqs. (17) and (23), we have 
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So, the axial displacement in Eq. (24) yields 
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Further, Eq. (27) yields 
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3.2.2 The Hyperbolic Sine Model – Model-C 

Inspired by El Meiche et al. (2011) and Soldatos (1992) and considering Eq. (25), as the hyperbolic 
sine model, the fundamental higher-order term is taken to be 
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Accordingly, from Eqs. (17) and (23), we have 
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So, the axial displacement in Eq. (24) yields 
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Further, Eq. (27) yields 
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3.2.3 The Exponential Model– Model-D 

Inspired by Karama et al. (2003) and considering Eq. (25), as the exponential model, the fundamen-
tal higher-order term is taken to be 
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Accordingly, from Eqs. (17) and (23), we have 
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where the Gauss error function is defined as 
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Further, Eq. (27) yields 
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3.3 Comparison of the Four HSD Models 

3.3.1 The First-Order Term and the Third-Order Term Through Taylor’s Expansion 

It is interesting to study the difference of the four HSD models by comparing the first two leading 
terms through Taylor’s expansion. 

For the third-order model, the axial displacement is 
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Thus, if the axial displacement is expanded in form of power series 
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from Taylor’s expansion, we have 
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The coefficients are summarized in Table 1. It is seen that c3 increases with c1. 
 

Model type c1 c3 

Model-A 0.250 1.667 

Model-B 0.292 2.125 

Model-C    0.246 1.628 

Model-D 0.338 2.676 

Table 1: Comparison of the four HSD models in c1 and c3 
 
3.3.2 Shear Correction Factors 

As already indicated in Section 3.1, given g(y), the shear correction factor can be evaluated for the 
beam of rectangular cross section. Values of the shear correction factor for the four HSD models in 
Section 3.2 are summarized in Table 2. It is seen that they vary a bit with different HSD models. In 
addition, KP becomes smaller if the HSD model (i.e. Model-D with the biggest c3) is farther deviat-
ed from the first-order shear deformation model. 
 

Model type Model-A Model-B Model-C Model-D 

KP 0.8333 0.8225 0.8343 0.8116 

c3 1.667 2.125 1.628 2.676 

Table 2: Comparison of the four HSD models in KP 

 
From Eqs. (31) and (35), we can see that the commonly used shear correction factors can be 

reasonably explained by Eq. (27) in the manner of HSD models. For example, the TBT with KP 
=5/6 (e.g. Kaneko, 1975; Timoshenko, 1922, 1921; Murthy, 1981; Reissner, 1975; Shi, 2007, 2011) is 
in essential equivalent to the third-order model (i.e. Model-A) because of Eq. (31) while the Mindlin 
plate theory (Mindlin, 1951) with KP =π2/12 is in essential equivalent to the sine model (i.e. Model-
B) because of Eq. (35). 
 
4 THE UNIFIED SOLUTION 

4.1 Derivation of the Unified Solution 

In this section, the unified solution will be derived for the unified HSD model in Section 3. To this 
end, the governing equations are re-arranged as follows 
 

 
 
0

P

EI q x

EI K GA w



 

  
   

 (48)

 

It is interesting to discuss the procedure of solving Eqs. (48). A straightforward procedure is to 
turn Eqs. (48) into the form 
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 

P

q x EI

EI
w

K GA



 

  

   


 (49)

 

From the first of Eqs. (49) - a third-order differential equation, the rotation ϕ can be first ob-
tained, and then, from the second of Eqs. (49) – a first-order differential equation, the deflection w 
can be further obtained. 

In this context, a more general approach is used instead. To this end, Eqs. (48) are re-expressed 
as 
 

 

 

(4) ( )
P

P P

q xq x
w

EI K GA

q xEI
w w

K GA K GA



 




         

 (50)

 

From the first of Eqs. (50), w is firstly obtained by solving a fourth-order differential equation, 
and ϕ is then directly obtained from the second of Eqs. (50). Eventually, we have 
 

3 2
1 2 3 4

0 0 0 0 0 0

2 1
1 2 3

0 0 0

1 1( ) ( )

61 ( ) 3 2

x x x x x x

P

x x x

P

w dx dx dx q x dx dx q x dx a x a x a x a
EI K GA

EIa
dx dx q x dx a x a x a

EI K GA



     




          

     

  
 (51)

 

 

 

Figure 2: A cantilever beam under an arbitrarily distributed load 

 
 

For the problem shown in Figure 2, the boundary conditions are 
 

 free condition at 0 : (0) 0 , (0) (0) 0
fixed condition at : ( ) 0 , ( ) 0

Px EI K GA w

x L L w L

 


    


  
 (52)

 

y 

1 

q(x) 

x 

L 

h 



T.C. Duan and L.X. Li / The Unified Solution for a Beam of Rectangular Cross-Section with Different Higher-Order Shear Deformation Models     1727 

Latin American Journal of Solids and Structures 13 (2016) 1716-1737 

So, the integration constants in Eqs. (51) are finally determined as 
 

1
0 0

2
0 0 0

3
0 0 0 0 0 0

2

0 00 0

4
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1 ( )
6

1 ( )
2

1 ( ) ( )
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x

x x

x

x x x x x

x L x

x x

x x

x x x x

a q x dx
EI

a dx q x dx
EI

L
a dx dx q x dx dx q x dx

EI EI

L
q x dx q x dx

EI KGA

a dx dx dx q x dx
EI





 

 

 
   

 

 
   

 

   
     

   

   
    

   


  





 

    

 

   
0 0 0

2 3

0 0 00 0

0 0 0 0

( )
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x x x

x L x L

x x x

x x

x x x

P Px L x

L
dx dx q x dx

EI
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dx q x dx q x dx
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L
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 

 

 

















     
  

             

    

     
    

  

  

    

(53)

 
Eqs. (51) and (53) are the unified solution for the beam problem shown in Figure 2. 
The unified solution is also derived in Appendix A (see Eqs. (A.24) and (A.26)) by using the 

conventional beam theory. It is seen that Eqs. (A.24) will turn into Eqs. (51) if αT=1 (and hence 
KT=KP from Eq. (A.13)). However, the fact is that αT is actually much less than unity for all the 
HSD models (see Table A.1), leading to major difference between KT  and KP. This may be the 
reason why KT  was not recognized as the shear correction factor in the previous HSD models (e.g. 
Akgöz and Civalek, 2014a, 2014b; El Meiche et al., 2011; Huang et al., 2013; Levinson, 1987, 1981; 
Simsek, 2010; Touratier, 1991) despite of the definition already made as early as in 1920s (Timo-
shenko, 1922,1921). 
 
4.2 Comparison of the Results 

With the unified solution, the results can be comparatively studied in detail. For this purpose, the 
special case of q=const is considered. From Eqs. (51) and (53), it is not difficult to obtain the uni-
fied solution to this case as 
 

   

 

4 3 4 2 2

3 3

4 3
24 2

6

P

q q
w x L x L x L

EI K GA

q
x L

EI


     

   

 (54) 

 
On the other hand, applying the boundary conditions in Eqs. (11) to the problem shown in 

Figure 2 with q=const, the elasticity solution to this plane stress problem is obtained as 
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       

     

           

           

4 24 2 2

22

33 2

3 3 3 2

1 4 3 24 7 12 5 120

5 12 17 20

1 6 3 4 40 3 4 5 20

1 24 1 4 6+

q
Ref

q
Ref

w vda qL x L x L EI qL h x L x L EI
A

qL x L x L GA

u y qL x L EI qLh x L EI qL x L GA

qLh x L EI qLh x L GA qxy EI qxy GAh

              


      
           
     


 

(55)

 
The deflections from different solutions are plotted in Figure 3 for the four HSD models in 

which “Reference”, “Conventional” and “Present” denote the solution from Eqs. (55), (A.27) and (54), 
respectively. It is seen that the current solution can always agree better with the reference for all 
the four HSD models than the conventional solution. 

With Eqs. (51), the axial displacement (i.e. the warping of the cross section) can also be ob-
tained through Eq. (24). The variation with y at x=L is plotted in Figure 4. It is seen that the 
warping from all the four HSD models are in considerably good agreement with the reference for the 
present solution. However, due to the apparent difference between KP and KT (see Table 2 and 
Table A.1), the conventional solution greatly deviates. 
 
 

a) Model-A b) Model-B 

 
c) Model-C d) Model-D 

Figure 3: Comparison of deflections from the four HSD models. 
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a) Model-A b) Model-B 

 
c) Model-C d) Model-D 

Figure 4: Comparison of the warping of cross section from the four HSD models. 

 
5 CONCLUSIONS AND FUTURE WORK 

In this paper, with the definitions of average deflection and average rotation, the governing equa-
tions and the boundary conditions were derived from the plane elasticity theory. Based on the kin-
ematics in axial displacement, the unified HSD model was proposed by using the fundamental high-
er-order term with some properties. The shear correction factor was then derived. The unified solu-
tion was finally obtained for the unified HSD model subjected to an arbitrarily distributed load, and 
compared with the conventional one. From the current work, following conclusions can be made. 

1) The definition of rotation plays an important role for the HSD models. 
2) The kinematics of HSD models in axial displacement can be expressed by using the funda-

mental higher-order term with some properties. 
3) Given a loading, the unified solution can be derived for a beam with different fundamental 

higher-order terms in axial displacement. 
4) Given the fundamental higher-order term, the shear correction factors can be reasonably ob-

tained. 
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The beam theory used in the current work is a lower-order (fourth-order) one in terms of deflec-
tion w. Future work will focus on a variationally consistent higher-order (sixth-order) beam theory 
and the shear correction factor of arbitrary cross section. Application to small scale problems and 
extension to a plate problem are also prospective. 
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APPENDIX A: THE CONVENTIONAL BEAM THEORY WITH THE UNIFIED HSD MODEL AND 

THE UNIFIED SOLUTION 

A.1  Governing Equations and Boundary Conditions 

In the conventional beam theory, deflection ( )w x   and rotation ψ(x) are defined as (e.g. Timoshen-

ko and Goodier, 2004) 
 

 
 

0

( ) ,0

( )=
y

w x v x

x u y


 
  


 (A.1)

 
With the assumption of Eq. (15), ( )w x   is identical to w(x). 

Together with the properties in the first two of Eqs. (25) for g(y), Eq. (15) is still mathematical-
ly valid. Thus, the shear strain is 
 

   1 R( ) ( ) ( )xy

u v
f x w x dg dy f x

y x
        

 
  (A.2)

 
Considering the shear stress free condition on the top and bottom surfaces 

 

 1 R( , 2) ( ) ( ) ( ) 0xy x h f x w x c f x        (A.3)

 
we have  
 

 R 1
1( ) ( ) ( )f x f x w x
c

     (A.4)

 
where c is as defined in Eq. (23) and hence the property in the third of Eqs. (25) stand also for g(y). 

From the definition in the second of Eqs. (A.1) and considering the third of Eqs. (25), we have 
 

1( ) ( )x f x   (A.5)

 
With Eqs. (A.4) and (A.5), in terms of  ( )w x   and ψ(x), the axial displacement is eventually 

expressed as 
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   
    

( , )u x y y g y c w

y w y g y c w

 



   

        



 
 (A.6)

 
As often, Eq. (A.6) can also be re-expressed as 

 

  ( , )u x y y w S y w        (A.7)

 
with 
 

    S y y g y c     (A.8)

 
Based on Eqs. (25), S(y) has following properties 

 

 

 
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0

0

2

0

1

0

y

y

h
y

S y

dS dy

dS dy






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







 (A.9)

 
From Eq. (A.7), we further obtain 

 
( )TQ K GA w     (A.10)

 
with 
 

1 ( )TK dS y dy dA
A 

   (A.11)

 
In addition, in terms of ( )w x   and ψ(x) (Aydogdu , 2009; Akavci and Tanrikulu, 2008; El 

Meiche et al., 2011; Karama et al., 1998, 2003; Levinson, 1981; Mantari et al., 2012; Soldatos, 1992; 
Touratier, 1991), moment M can be expressed in a unified form as 
 

 TM EIw EI w         (A.12)

 
with 
 

 1 ( )T I y S y dA


    (A.13)
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Interestingly, we can obtain the following relationship 
 

T T PK K   (A.14)
 

From Eqs. (A.10) and (A.12), in terms of ( )w x   and ψ(x), the governing equations are 
 

   
   

0T

T T

K AG w q x

EIw EI w K AG w



  

   
        



  
 (A.15)

 

with the boundary conditions as [e.g. Levinson, 1981] 
 

0 0

0 0

0 0

Free condition : and
Simply supported condition : and 0
Fixed condition : 0 and 0

M M Q Q

M M w w

w w 

 
   
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 
 

 (A.16)

 
A.2 The Four Commonly Used HSD Models 

(1) The third-order model – Model-A (Levinson, 1981) 
In the third order shear deformation model, we take gA(y)=y3, and hence c=3h2/4 from Eq. (23). 

Then, Eq. (A.8) yields 
 

2

2
4( ) 1
3

A y
S y y

h

 
  

 
 (A.17)

 

(2) The sine model – Model-B (Touratier, 1991) 
In this HSD model, gB(y) takes the form of Eq. (32), and hence c=1 from Eq. (23). Then, Eq. 

(A.8) yields 
 

( ) sinB h y
S y

h




   
 

 (A.18)

 

(3) The hyperbolic sine model – Model-C (Soldatos, 1992) 
In this HSD model, gC(y) takes the form of Eq. (36), and hence c=1-cosh(1/2) from Eq. (23). 

Then, Eq. (A.8) yields 
 

   
 

cosh 1 2 sinh
( )

cosh 1 2 1
C y h y h

S y





 (A.19)

 

It should be noted that Eq. (A.19) firstly derived according to Eqs. (A.8) corrects the original 
form in Soldatos (1992). 
(4) The exponential model – Model-D (Karama et al., 2003) 

In this HSD model, gD(y) takes the form of Eq. (40), and hence c=1 from Eq. (23). Then, Eq. 
(A.8) yields 
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 2 2( ) exp 2 /DS y y y h   (A.20)

 
A.3 Shear Correction Factors 

From Eq. (A.11), for the four HSD models, it is immediate to obtain 
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In addition, from Eq. (A.13), we have 
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The values for KT and αT are summarized in Table A.1. Compared with KP in Table 2, Eq. 
(A.14) can also be validated by the four HSD models. 
 

Model type Model-A Model-B Model-C Model-D 

KT 0.6667 0.6366 0.6694 0.6065 

αT 0.8000 0.7740 0.8024 0.7473 

Table A.1: Comparison of the four HSD models in KT and αT. 

 
A.4 The Unified Solution 

For sake of the unified solution, Eqs. (A. 15) are further re-expressed as 
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 (A.23)

 

Considering Eq. (A.14), the first of Eq. (A.23) is identical to the first of Eq. (50). From Eq. 
(A.23), it is not difficult to obtain the unified solution as 
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 (A.24)

 
For the problem shown in Figure 2, from Eqs. (A.16), the corresponding boundary conditions 

for the conventional beam theory are 
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Thus, the integration constants in Eqs. (A.24) are determined as 
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(A.26)

 
For the case of q=const, the unified solution to the unified HSD model is 
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Int erestingly, Eqs. (A.27) will turn into Eqs. (54) if αT=1 (hence KT=KP from Eq. (A.13)). 


