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Abstract 
Hybrid quasi-Trefftz finite elements have been applied with suc-
cess to the analysis of laminated plates. Two independent fields 
are approximated by linearly independent, hierarchical polynomi-
als: the stress basis in the domain, adapted from Papkovitch-
Neuber solution of Navier equations, and the displacement basis, 
defined on element surface. The stress field that satisfies the 
Trefftz constraint a priori for isotropic material is adapted for 
orthotropic materials, which leads to the term “quasi”. In this 
work, the hexahedral hybrid quasi-Trefftz stress element is applied 
to the modeling of nonsymmetric laminates and laminated compo-
site plates with geometric discontinuities. The hierarchical p-
refinement is exploited. 
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1 INTRODUCTION 

The important role played by transverse shear and normal stresses in identifying damage mecha-
nisms in laminated composite plates, allied to requirements of modern industries in structural opti-
mization, has stimulated the application of models that contain full 3-D kinematics and constitutive 
relations. Also, the analysis of plates with cracks, holes, fillets, notches and other geometric discon-
tinuities demands a high quality in the prediction of stress fields (Bathe, 1996; Cook et al., 2002). 
Stress-based finite elements, derived from mixed, hybrid and hybrid-mixed formulations, are suita-
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ble for these applications, since it is well known to present improvements of the stress prediction 
when compared to conventional displacement-based FEM. In particular, the hybrid-Trefftz formula-
tion approximates stresses within the element and displacements on its boundary. The Trefftz con-
straint consists of assuming that the stress approximation basis is the local solution of the Navier 
equation (Freitas and Bussamra, 2000). 

Freitas and Ji (1996) presented highly accurate finite element solution procedures for simulation 
of singular stress fields with two-dimensional hybrid-Trefftz element. Souza and Proença (2009) 
presented a hybrid-Trefftz formulation for 2-D elasticity with enrichment of the initial approxima-
tions. 

Trefftz method has been applied to piezoelectricity by Qin (2003), where four modified varia-
tional functionals have been presented. Jin et al. (2005) have applied Trefftz collocation and Trefftz 
Galerkin methods to the analysis of plane piezoelectricity. 

Freitas and Bussamra (2000) have formulated hybrid-Trefftz element for 3-D elasticity. The el-
ement presented low sensitivity to geometric irregularities, incompressibility, and produced good 
estimates for stresses and displacements. In particular, very low sensitivity to mesh distortion was 
reported for the brick element. The resulting linear systems are highly sparse. Bussamra et al. 
(2001) expanded the use of the element for elastoplastic analysis. Motivated by these features, Bus-
samra et al. (2014) showed that the hexahedral 3-D hybrid-Trefftz stress elements was capable to 
accurately model thin or thick plates made of isotropic material, with geometric discontinuities 
caused by cracks, holes and notches. 

The above element attributes, in addition to the symmetry, high sparsity and well conditioning 
of the solving system, have motivated the use of the hexahedral quasi Trefftz elements presented by 
Bussamra et al. (2011) to handle thin laminated plates. Solution of bending and stress concentration 
problems is carried out and comparison of the obtained stress concentration factors and stress inten-
sity factors is made with available results. The hierarchical p-refinement strategy is exploited in the 
numerical tests. It is shown that good results can be directly computed with relatively coarse mesh-
es. 
 
2 EQUATIONS FOR 3-D ELASTICITY 

Let V be the domain of a typical finite element and Γ its boundary. Let Γu and Γσ be the portions of 
Γ on which displacements and tractions are specified, respectively, where 
 

ΓV Ç =Æ 					 Γ Γ Γu σÈ = 				 Γ Γu σÇ =Æ  (1)
 

The field equations below (Eqs. (2-4)) summarize the equilibrium equation, strain-displacement 
and constitutive relations of the linear elastic response in the domain V: 
 

0=+D bs     in    V (2)
 

*D u=e     in    V (3)
 

rσ kε σ= +     in    V (4)
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where vectors σ and ε collect the independent components of the stress and strain tensors, respec-
tively, and u is the displacement vector. As a geometrically linear model is assumed, the differential 
equilibrium and compatibility operators D and D* are linear and adjoint. In Eq. (4), the stiffness 
matrix k collects the elastic constants. For simplicity, body forces b and residual stresses σr are not 
taken into account. On the boundary, 
 

u uG=     on    Γu (5)
 

N ts G=     on    Γσ (6)
 

where matrix N contains the components of the unit outward normal vector to Γ vectors uΓ and tΓ 
are the specified surface displacements on  Γu and tractions on Γσ. 
 
3 ELEMENT FORMULATION 

3.1 Approximations 

The Hybrid-Trefftz element independently approximates stress σ in V and displacement ũ on Γσ 
and also on the interelement boundary Γi, respectively: 
 

SXs=     in    V (7)
 

qu Z=     on    Γσ,Γi (8)
 

where S and Z are matrices that collect the approximation functions, and vectors X and q collect 
the corresponding weights.  

The equilibrium equation can be expressed in terms of the displacement field by 
 

*DkD u= 0     in    V, (9)
 

known as Navier equation. Trefftz constraint requires a choice of S such that u within the element 
satisfies (9). The stress is then determined from the displacement by means of  
 

*kD us=     in    V. (10)
 

If the displacement is written as 
 

ru UX u= +     in    V, (11)
 

where ur collects the rigid-body displacement components and U collects functions related to the 
displacement basis, on gets from (7) and (10)  
 

*S kD U=     in    V. (12)
 
3.2 Stress Function Approximation 

Each column of U is stated as a Papkovitch-Neuber solution of (9) for an (hypothetic) isotropic 
material: 
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–4(1 – ν) ( )ψ r ψT+ +f  (13)
 

where ψ and ϕ are vector and scalar harmonic displacement potentials, respectively, r the position 
vector, ׏ the gradient operator,   the Poisson’s ratio of the isotropic (hypothetic) material. A simi-
lar solution seems not to be available for anisotropic material. It has been shown that the strain 
energy clearly converges under h-refinement for each value chosen for   in Eq. (13), so numerical 
results presented from now onwards are for   = 0 (Bussamra et al., 2011). Because of that this 
element has been named quasi-Trefftz. 

Legendre and Chebychev modified polynomials are attributed to ψ and ϕ, as explained by 
Freitas and Bussamra (2000). They form a complete stress approximation basis for degrees lower 
than seven. Whenever a linearly dependent mode is detected, it is suppressed by numerical proce-
dures. 
 
3.3 Boundary Displacement Function Approximation 

The displacement approximation functions are formed by hierarchical monomial bases, in a local 
coordinate system (ξ1, ξ2) in each face of the element. The polynomial of degree ζ is defined accord-
ing to the Pascal’s triangle scheme. As there are three displacement components, the number of 
independent displacement modes on each face is 
 

3 ( 1)( 2)
2zn z z= + + . (14)

 
3.4 Element Matrices 

The element is based on the variational expressions 
 

–1 ( ) ( )k N u N us s s sG ÈG G Gò = ò G+ ò G
i u

T T T
V dV d d

s
d d d  (15)

 

u N u tsG ÈG G Gò G= ò G 
i

T T
d d

s s
d d  (16)

 
Substitution of the Eqs. (7-8) into Eqs. (15-16) yields the system of equations 

 
n=–FX Aq  (17)

 

A X Q=T  (18)

 
where 
 

–1= ò T
V dVF S k S  (19)

 

ሺ ሻA NS ZG ÈG= ò G
i

T ds  (20)
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ሺ ሻNS un G G= ò GT
u d  (21)

 

Q Z tG G= ò GT ds . (22)
 

The problem can be written as the symmetric linear system 
 

–
– –={ }[ ]{}T 0
F A X v

q QA
. (23)

 

The optimal relation between the numbers ns and nz of independent functions in S and Z 
should be found by numerical experimentation. The rank of the matrix will be deficient and there 
will be spurious modes if ns < nz – 6 (Fung and Tong, 2001). 

Advantage has been taken of the fact that the system (23) is symmetric and very sparse, typi-
cally greater than 99%, and identical elements, wherever are placed, have the same submatrix F, 
thus, computational efforts are reduced. 
 
4 NUMERICAL APPLICATIONS 

Some problems have been chosen to test the quasi-Trefftz element for stress concentration in plane 
stress and membrane-bending coupling in laminated plates. Results are compared with Nastran 4-
node laminated element models. 

All the examples are three-dimensional models of orthotropic plates. The mechanical properties 
adopted are the same ones used by Bussamra et al. (2011): 
 

1 25E E 					 2 3E E E  				 12 13 23 0.5G G G E   				 12 13 0.25   				 23 0.01   (24)
 

where Ei are Young’s moduli, νij are Poisson’s ratios and Gij are shear moduli referred to the mate-
rial coordinate system. For simplicity, E = 1. 

The quasi-Trefftz elements are identified by LHS(ds, dz), where the symbols ds and dz denote 
the degrees of the polynomial approximations adopted for stress and displacement, respectively. 
 
4.1 Plate with a Circular Hole 

The first set of tests is concerned with stress concentration factor calculation in a plate with a circu-
lar hole composed of a 3-layer laminate [0o/90o/0o] with thickness [0.01/0.03/0.01]. The plate has 
total thickness h = 0.05, height H = 10h, length L = 30h and circular hole with diameter d = 0.5H. 
The left edge is fixed and the right one is submitted to the action of a uniformly distributed load qx 
= 1 (force/area)The global coordinate system is located in the plate bottom surface and the x axis 
follows the direction of the length of the plate, y axis the height and z axis the thickness. 

Figure 1 shows the structure and three meshes used in the analyses. Figure 2 to 4 present the 
convergence under p-refinement for the maximum σxx tension found at the first 0 ply, where σxx is 
plotted against the number of degrees of freedom NDF. Relevant results of this numerical analysis 
are summarized in Table 1. 
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Figure 1: Plate with circular hole: 44 × 3, 56 × 3 and 62 × 3 element meshes (meshes 1, 2 and 3, respectively). 

 

 

Figure 2: Convergence of the maximum σxx under p-refinement at 0 ply for mesh 1. 

 

 

Figure 3: Convergence of the maximum σxx under p-refinement at 0 ply for mesh 2. 

 

Nastran 

Nastran 
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Figure 4: Convergence of the maximum σxx under p-refinement at 0 ply for mesh 3. 

 

Layer 0  Layer 90 

Mesh Nastran LHS(10,2) Diff. Nastran LHS(9,2) Diff. 

1 14.07 -0.86% 0.5074 8.90% 

2 13.95 14.09 -1.00% 0.557 0.5080 8.80% 

3 14.35 -2.87% 0.5265 5.48% 

Table 1: Maximum σxx for the laminate [0o/90o/0o]. 

 
Figures 5 to 7 present the convergence of the maximum σ11 tension on the fiber direction for 

mesh 1, 2 and 3 when the laminate is replaced by [45o]3. Relevant results of convergence for this 
analysis are summarized in Table 2. 
 

 

Figure 5: Convergence of the maximum σ11 under p-refinement at 45 ply for mesh 1. 
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Figure 6: Convergence of the maximum σ11 under p-refinement at 45 ply for mesh 2. 

 

 

Figure 7: Convergence of the maximum σ11 under p-refinement at 45 ply for mesh 3. 

 
Mesh Nastran LHS(9,2) Diff. 

1  3.839 0.29% 

2 3.85 3.852 -0.05% 

3  3.865 -0.39% 

Table 2: Maximum σ11 on the fiber direction for the laminate [45]3. 

 
Results with the Nastran laminated element are also shown for the plate composed of both lam-

inates. Even for simple meshes, the LHS elements have presented good convergence patterns. 
 
4.2 Cracked Plate 

In this test, the stress intensity factor K is evaluated for a cracked plate. The orthotropic plate has 
thickness h = 1, height H = 10h, length L = 15h and one straight crack of length a = 0.5H. The 
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left edge is fixed and the right one is submitted to the action of a uniformly distributed load qx = 1 
(force/area), as shown in Fig. 8. 

The stress intensity factor in a state of plane stress can be calculated by 

= ,IK EG  (25)

where the strain energy release rate 
1

–
¶

=
¶
		

G
h a

 (26)

has the derivative ∂࣯/∂a numerically replaced by the ratio between the strain energy change Δ࣯ 
and the small value Δa assigned to the crack extension. In the present finite element formulation, 
the strain energy is evaluated from 

࣯ 
1
2
X FX= T  (27)

in which F refers to the assembled equation that comes from each element contribution (19) and X 
results from the equation solution (23). 

The 48-element mesh used in the analysis is illustrated in Figure 8. The strain energy evaluated 
under p-refinement is presented in Figure 9 and the stress intensity factor is summarized in Table 3. 
 

 

Figure 8: Cracked plate and 48 element mesh. 

 

 

Figure 9: Convergence of strain energy under p-refinement. 

࣯



1686     F.L.S. Bussamra et al. / Simulation of Stress Concentration Problems in Laminated Plates by Quasi-Trefftz Finite Element Models 

Latin American Journal of Solids and Structures 13 (2016) 1677-1694 

a Nastran LHS(10,2) LHS(10,3) LHS(10,4) 

0.5H 4.34 4.30 4.45 4.49 

Table 3: Stress intensity fator. 

 
4.3 Nonsymmetric Laminated Plate 

Bussamra et al. (2011) presented good results for the analysis of cross-ply laminate using Quasi-
Trefftz element. In order to expand the application of the element, a nonsymmetric laminated plate 
is analyzed. 

The structure showed in Figure 10 is a 6-layer [0o/90o/45o/–45o/90o/0o] laminated clamped 
square plate, with side length L = 1 and thickness h = 0.06L, subject to a uniformly distributed 
transverse load qx (force/area). A 5×5×6 element mesh is used in LHS tests. Tables 4 and 5 show 
for the middle of each layer stresses at x = y = L/2 using LHS(7,3) and LHS(8,4) elements, respec-
tively. 
 

 

Figure 10: Nonsymmetric laminated plate. 

 

xx  yy  xy 

Layer Nastran LHS(7,3) Diff.  Nastran LHS(7,3) Diff. Nastran LHS(7,3) Diff. 

0o -63.308 -62.330 1.55%  -3.218 -3.302 -2.61% -0.248 -0.232 6.47%

90o -1.893 -1.893 -0.02%  -39.248 -38.730 1.32% -0.248 -0.241 2.66%

-45o -3.766 -3.633 3.53%  -3.783 -3.660 3.25% 2.951 2.850 3.43%

45o 3.766 3.502 7.01%  3.783 3.530 6.69% 2.951 2.731 7.46%

90o 1.893 1.879 0.72%  39.248 38.490 1.93% -0.248 -0.241 2.54%

0o 63.308 62.080 1.94%  3.218 3.289 -2.20% -0.248 -0.232 6.51%

Table 4: Stresses at the middle of each layer at the plate center for element LHS(7,3). 
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xx  yy  xy 

Layer Nastran LHS(8,4) Diff.  Nastran LHS(8,4) Diff. Nastran LHS(8,4) Diff. 

0o -63.308 -62.640 1.06%  -3.218 -3.309 -2.83%  -0.248 -0.232 6.35% 

90o -1.893 -1.866 1.41%  -39.248 -38.940 0.78% -0.248 -0.243 2.10% 

-45o -3.766 -3.647 3.16%  -3.783 -3.670 2.99% 2.951 2.862 3.02% 

45o 3.766 3.514 6.69%  3.783 3.540 6.43% 2.951 2.743 7.05% 

90o 1.893 1.852 2.15%  39.248 38.700 1.40% -0.248 -0.243 1.94% 

0o 63.308 62.390 1.45%  3.218 3.298 -2.48% -0.248 -0.232 6.35% 

Table 5: Stresses at the middle of each layer at the plate center for element LHS(8,4). 

 
4.4 Membrane-Bending Coupling 

The membrane-bending coupling behavior is tested in a square plate, with side length L = 1. The 
left edge is fixed and the right one is submitted to the action of a uniformly distributed load qx = 
1(force/area). Three different stacking sequences for this structure were analyzed: 2-layer [0o/45o], 
2-layer [45o/–45o], both with thickness [0.02/0.02], and 3-layer [45o/0o/–45o], with thickness 
[0.01/0.02/0.01]. 

In this test, the deformed shapes of the plates are analyzed. To evaluate h-refinement, the qua-
si-Trefftz elements are used in two different meshes, with 9 and 25 elements per ply (meshes 1 and 
2, respectively), as depicted in Figure 11. The origin of the global coordinate system xyz is on the 
plate bottom surface. 
 

 

Figure 11: Laminate and meshes. 

 
Convergence of the transverse displacement at the free corner x = 1, y = 0, z = 0.02 using 

LHS(10,2) element is summarized in Table 6 and compared with results from a fine mesh Nastran 
model. Deformed shapes using Mesh 2 are displayed in Figure 12 and the convergence curves are 
shown in Figures 13 to 15. The stresses across the thickness at the plate center are depicted in Fig-
ures 16 to 24. 
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Laminate Mesh Nastran LHS (10,2) Diff 

[0o/45o] 
1 

6.990 
6.651  4.85% 

2 7.010 -0.29% 

[45o/-45o] 
1 

3.213 
2.936  8.62% 

2 3.235 -0.68% 

[45o/0o/-45o] 
1 

0.390 
0.367  5.90% 

2 0.401 -2.82% 

Table 6: Transverse displacement at x = 1, y = 0, z = 0.02. 

 
 

[45o/0o] [45o/-45o] [45o/0o/-45o] 

Figure 12: Deformed shapes of the plates with membrane-bending coupling. 

 
 

 

Figure 13: Convergence of transverse displacement for the laminate [0o/45o]. 
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Figure 14: Convergence of transverse displacement for the laminate [45o/-45o]. 

 

 

Figure 15: Convergence of transverse displacement for the laminate [45o/ 0 o/-45o]. 

 

 

Figure 16: xx across the thickness at the plate center for the laminate [0o/45o]. 
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Figure 17: yy across the thickness at the plate center for the laminate [0o/45o]. 

 

 

Figure 18: xy across the thickness at the plate center for the laminate [0o/45o]. 

 

 

Figure 19: xx across the thickness at the plate center for the laminate [45o/-45o]. 
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Figure 20: yy across the thickness at the plate center for the laminate [45o/-45o]. 

 

 

Figure 21: xy across the thickness at the plate center for the laminate [45o/-45o]. 

 

 

Figure 22: xx across the thickness at the plate center for the laminate [45o/0o/-45o]. 
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Figure 23: yy across the thickness at the plate center for the laminate [45o/0o/-45o]. 

 

 

Figure 24: xy across the thickness at the plate center for the laminate [45o/0o/-45o]. 

 
5 CONCLUSIONS 

The results reported in this paper clearly illustrate the efficiency of the three-dimensional model of 
the hybrid quasi-Trefftz stress finite element formulation in the solution of laminated plates. Many 
degrees of freedom are involved, but substantial memory and computing time are saved in the as-
semblage and problem solution by taking numerical advantage of the high sparsity. Accurate esti-
mates for stress concentration factors and stress intensity factors in plates with geometric disconti-
nuities are found. The tests reported also show that the element can produce good estimates for 
both stresses and displacements in plane stress and plate membrane-bending coupling problems. 
Although good convergence rates are observed even for coarse meshes around the discontinuities, 
the p-refinement procedure is still restricted to a complete polynomial stress basis of sixth degree. 
Research on the extension of this basis is being developed to fully exploit the hierarchical nature of 
the formulation. 
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Nomenclature 

a Crack length 

b Body force 

D, D*  Differential operator, and its adjoint 

Ei Young’s moduli 

Gij Shear moduli 

k Material stiffness matrix 

K Stress intensity factor 

ns, nz Number of stress and displacement modes 

N Unit outward normal vector matrix 

q Displacement weights  

qx Uniform load (force/area) in x direction 

r Position vector 

S Stress basis for σ 

tΓ Specified surface traction 

u Displacement vector in V 

ũ Displacement vector on Γi andΓσ 
uΓ Specified surface displacements 

U Displacement basis for u 

࣯ Strain energy 

V  Domain of an element 

X Stress weights  

Z Displacement basis for ũ 
Γ  Boundary of an element 

Γi, Γu, Γσ  Interelement, kinematic and static boundaries 

ε Vector with strain components 
Ζ Degree of the polynomial displacement ũ 
νij Poisson’s ratios 
Ξ Local coordinate system 
σ, σr  Vectors with stress and residual stress components 
ϕ Scalar harmonic displacement potentials 

ψ Vector harmonic displacement potentials 

 Gradient operator ׏
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