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Abstract 
The theoretical analysis for the Brazilian test is a classical plane 
stress problem of elasticity theory, where a vertical force is applied 
to a horizontal plane, the boundary of a semi-infinite medium. 
Hypothesizing a normal radial stress field, the results of that mod-
el are correct. Nevertheless, the superposition of three stress fields, 
with two being based on prior results and the third based on a 
hydrostatic stress field, is incorrect. Indeed, this work shows that 
the Cauchy vectors (tractions) are non-vanishing in the parallel 
planes in which the two opposing vertical forces are applied. The 
aim of this work is to detail the process used in the construction of 
the theoretical model for the three stress fields used, with the 
objective being to demonstrate the inconsistency often stated in 
the literature. 
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1 INTRODUCTION 

The stress tensor for an elastic, diametrically compressed cylinder, as obtained by Timoshenko and 
Goodier (1970), is a result of technical interest because it is used as a basis in obtaining tension 
limits in fragile materials. With this purpose in mind, the artifice involving the superposition of 
three stress fields is used, selected specifically to ensure vanishing of the Cauchy vectors (tractions) 
on the surface of a cylindrical body immersed in a strip of infinite length. This procedure enables 
the cylindrical modelling of the well-known Brazilian test. 

The main objective of this paper is to discuss the result obtained by Timoshenko and Goodier 
(1970) that Carneiro (1943-1947) used to determine the tension strength of brittle materials. The 
second objective is to verify whether the mistake in reasoning for the diametric compression test, 
conceived in 1943 for determination of the tension strength of concrete, prevents the use of the Bra-
zilian test. 
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The intention of Carneiro (1943-1947) when constructing the theoretical model was to ensure 
that the tractions on the surface of a cylinder vanish when immersed in an endless flat strip of finite 
width with two opposing compressive forces applied vertically. The model used to remove the cylin-
der from the middle leads to an expression for the component (tension) in the vertical diametric 
plane of the cylinder, giving its dependence on the applied compressive load and the diameter of the 
cylinder. However, this result cannot be obtained because it is mischaracterized when introduced 
into the correct boundary conditions on the infinite faces for the upper and lower boundaries. 
Hence, the validity of the distribution of tension stresses is lost in the vertical diameter in analyzing 
the Brazilian test. 

A careful literature review on the subject has revealed a wide range of scientific papers address-
ing different aspects of determining the limit stress of tension of materials, particularly brittle mate-
rials, by using the Brazilian test. Li and Wong (2013) show the evolution of the state of art about 
the subject, analysing the 43 most important works, in the view of the authors, from 1943–2011. 
The papers most directly related to this article are: Sheep (1943), Hondros (1959), Colback (1966), 
Jaeger and Hoskins (1966), Jaeger (1967), Hudson et al. (1972), Wijk (1978), Yanagidani et al. 
(1978), Sundaram and Corrales (1980), Yu et al. (2006) and Markides et al. (2010, 2011). These 
publications were critically examined, but did not reveal any references to the aspects emphasised 
here. It is also worth mentioning the contributions of Lanaro et al. (2009), Andreev (1991), 
Markides et al. (2012), Erarslan et al. (2012) and Aydin and Basu (2006), Yang et al (2015), Haeri 
et al (2014),  Choupania et al (2015), Cai et al (2015), which addressed the issue of the Brazilian 
test, either theoretically or experimentally, or even applied. However, none of them investigated the 
foundations raised from Timoshenko and Goodier (1970), in which the problem of methodological 
character examined in this work was found. 

The discussion presented below questions the determination of the tension strength used in the 
diametrical compression test but does not enable one to immediately conclude fault in the Brazilian 
test. What one finds in discussing this issue is that there is no exact solution to the problem, as 
previously supposed. For this reason, we performed a numerical experiment with FEM to obtain the 
tension stress profile at the diametric vertical plane of a cylinder compressed diametrically. Numeri-
cal experimentation indicates the occurrence of a value for the tension stress in the center of the 
cylinder, which is roughly equivalent to the maximum and was used by Carneiro for all points along 
the vertical diametrical plane. This confirmation can only now be made because the computational 
modelling capabilities were not previously available. 
 
2 THEORETICAL BASIS OF THE ELASTIC MODEL OF THE BRAZILIAN TEST 

The analysis of the stress distribution within a cylinder subjected to two lines of symmetrical longi-
tudinal loads acting along a pair of opposing generatrices of a cylinder can be found in the work of 
Timoshenko and Goodier (1970). The article used here as reference is the English version published 
in 1970. The basis of this analysis is the classical stress distribution for a semi-infinite plate of uni-
form thickness in a plane stress state (see Figure 1 and Figure 2), as motivated by Timoshenko and 
Goodier (1970). We emphasize that we do not discuss the solution of the problem with a load ap-
plied to the upper plane of a semi-infinite medium, but rather the superposition of stresses that 
forms the basis of this result. 
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2.1 Stress Field Resulting from the Application of a Concentrated Normal Load to the Plane Limit of a Semi-

Infinite Elastic Middle 

According to Timoshenko and Goodier (1970), there is a basic solution in the theory of elasticity 
called the simple radial distribution that satisfies the equilibrium equations of the bi-dimensional 
problem. As shown in Figure 1, the domain of the problem reduces to an arbitrary cross-section of 
the cylinder, as indicated, where the body forces per unit volume, R and S, are considered null. The 
equations for the general local equilibrium in the polar representation are: 
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Figure 1: Radial stress field due to a uniformly distributed load P. 

 
In terms of the stress function φ = φ(r, ), the tensor components that satisfy Eq.(1) for null R 

and S are given by: 
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A function φ = φ(r, ) must be found that solves the unique compatibility equation for the 
plane problem, i.e. 
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For the simple radial distribution, the stress function satisfying Eq. (3) is: 
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Substituting this function into Eq. (2) yields: 
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The first equation of Eq. (4) implies that the resultant forces acting on the cylindrical surface of 
radius r (Figure 1) and uniform thickness balance load P, i.e.: 
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With respect to the boundary conditions, one obtains from Eq. (4) 0r        in the upper 

part (Figure 1) of the flat plate representative of the problem, i.e., on the length AB for which 
cos 0  , excepting the point O where load P(r = 0) is applied. The load is actually a distribution 
over an area near the load application point, which necessarily falls within the plastic accommoda-
tion regimen. Hence, the equations of linear elasticity are valid only outside this restricted area. 
 

 

Figure 2: Stress field (state plane) for points on the circumference of the circle tangent to O. 

 
When verifying the compatibility of the stress distribution represented by Eq. (4) with the dis-

tribution of the tractions over the remaining contour beyond the flat outer surface represented by 
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AB in Figure 2, we take the region ABmn to extend to infinity and the value of r also to tend to 
infinity. Hence, the stresses must vanish: 
 

, and 0.rr q qs s t ¥    (6)
 

For a generic point on the circumference of the circle with diameter d tangent to point O, the 
point where the load is applied (Figure 2), it follows that: 
 

cos ,r d q=  (7)
 

where d is the diameter of the circle. Thus, if Eq. (7) is substituted into the first of Eq. (4), one 
obtains: 
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This result indicates that at every point (except O) on the circle’s circumference, a load P ap-
plied to point O leads to a stress component (compression) in the radial direction (dashed circle in 
Figure 2) of a magnitude that conforms to Eq. (8). 
 
2.2 Stresses in a Circular Disc with Two Diametrically Opposite Vertical Loads 

Following Timoshenko and Goodier (1970), our theoretical development makes use of results given 
in the previous section for the construction of a stress field composed as a superposition of two 
symmetrical fields: the first generated by the application of force P at point A, and the second by 
the application of the force P in the opposite direction at point B (see Figure 3). 

The first stress field has its source in the semi-infinite domain bounded above by the tangent 
plane at point A; the second field has as its domain the semi-infinite region bounded below by the 
tangent plane at point B. The region of intersection, where the superposition of the two fields is 
given, is located in a range of finite width and infinite length, situated between the two horizontal 
planes. It is therefore a composite model to be used with the possibility of isolating the cylindrical 
body under diametric compression from this elastic medium.  Assuming that each field is the sim-
ple radial stress distribution given in the previous section, then, according to the first equation of 
Eq. (4), the normal components of the field tensor related to the force P applied at A are (see Fig-
ure 4): 
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By analogy, the normal component of the field corresponding to force P applied in the opposite 
direction at point B (Figure 4) is: 
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From the property of triangles inscribed in a semicircle, r and r1 in Figure 4 are perpendicular 
to each other; hence, 
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where d is the circular diameter section. Substituting Eq. (11) into Eqs. (9) and (10) leads to values 
given by Eq. (8) for the normal stress in both planes, allowing the conclusion that at the generic 
point M in Figure 5, the principal stresses are compressive, both with the same magnitude. This 
means that at any point on the cylinder indicated by the contour of the circumference there is a 
hydrostatic plane system of stresses such that, for all tangent planes through M, the Cauchy vectors 
have the same magnitude, each one normal to its respective plane and corresponding to the com-
pressive forces. 
 

 

Figure 3: Superposition of two symmetrical stress fields for construction of the model  

of a cylinder compressed diametrically. 

 

 

Figure 4: Application of two opposite loads with module P. 
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Figure 5 illustrates the fact that, in the neighborhood of any point M, the Cauchy vector must 
have the same magnitude in the two orthogonal planes for the element indicated and must be com-
pressive with a value given by Eqs. (10) and (11): 
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Figure 5:Principal stresses at a generic point M of the boundary of the circle. 

 
2.3 Obtaining the Third Stress Field to Superimpose with the Previous Two 

Following this reasoning, to simulate a disk compressed diametrically, superposing one more stress 
fields is required. Specifically, this field needs to make the sum of all tractions disappear in the con-
tour of the cylindrical body located at the intersection of the semi-infinite spaces depicted in Figure 
3. Observing Figure 5, it appears that at every point of the circumference, all of the principal stress-
es are equal to 2/PD and of compression, obtained by the setting of a hydrostatic stress state. In 
order to annul the tensions in the circumference points, it is sufficient to superimpose a uniform 
field with a diagonal tensor that has the first two components of the same module, but of traction, 
as Eq. (13). 
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From the above results, the superposition is composed of three contributions: 
a) the field produced by the load P applied at A in the semi-infinite domain below the tangent 

plane through A; 
b) the field produced by the load P applied at B in the semi-infinite domain above the tangent 
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c) the field represented by the tensor that produces tractions in the contour of the circle that 
cancel the tractions resulting from the superposition of the two previous fields, throughout 
the infinite domain. 

By analogy to 0, for which the components of the stress were obtained by Eq. (4), the stress 
field of b), described in polar coordinates (pole at point B) in accordance with the depiction in Fig-
ure 4, also has only a non-zero component in the radial direction, i.e.,: 
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Finally, apart from the two diametric compression forces P applied at A and B, one completes 
the model of the cylinder free from external forces on its exterior surface. The model enables the 
state of stress on the points of the cylinder to be represented in cross-sections more properly while 
in a plane stress state. 

After forming the superposition of the fields given by Eqs. (4), (14), and (15), in the Cartesian 
system of Figure 4, for any point on the circle, the values of the stress components for the plane 
stress state are given by: 
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By virtue of Eq. (11), at any point on the circumference of the circle ACBDA in Figure 5, Eq. 
(15) leads to: 
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Although it is necessary to isolate the cylinder from the infinite medium, the vanishing of the 
tractions at any point on the circumference of the cylinder section is not sufficient. The result needs 
to be consistent with the boundary conditions in the tangent planes passing through loading points 
A and B (see Figure 6). 
 
3 DISCUSSION OF THE RESULTS FROM THE CURRENT MODEL SIMULATING DIAMETRICAL 

COMPRESSION 

Using Eq. (15), which is assumed true, we calculated the tractions in the tangent planes through A 
and B, according to the scheme shown in Figure 6. 
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Figure 6: Superposition of two valid fields on semi-infinite domains. 

 
For points in the plane through A, recall that 
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Aided by Eq. (15), one then obtains the stresses tensor components: 
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With the unit normal vector in this plane defined as 
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the tractions, based on Eqs. (15) and (19), are: 
 

t 2
1 1 1

2 2
( ; cos ;0).
P P
sin sin
d d

q q q
p p

= - -  (20)

 

Similarly, for the tangent plane through point B, the external unit normal vector is: 
 

n1 (1;0;0),=  (21)
 

with 
 

 1 and ,
2 cos

d
r

p
q

q
= =  (22)

P

d
P

P

A

B

r1

r

y





n

n



J.A.L. Rocha and A.M. Wahrhaftig / Superposition of Stress Fields in Diametrically Compressed Cylinders     1963 

Latin American Journal of Solids and Structures 13 (2016) 1954-1967 

the values of the non-zero stress components of the tensor, according to Eqs. (15) and (22), are 
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So, the tractions in this plane are expressed as 
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Eqs. (20) and (24) show that the boundary conditions are not identically zero on the tangent 
planes through A and B (apart from these two points), as is desired if the values of the stresses in 
the cylinder with a boundary free of tractions were correct. 

To illustrate, Figure 7 shows graphically the distribution of the normal components of the trac-
tions over both the upper and lower tangent planes, given by Eqs. (20) and (24), respectively. Evi-
dently, the values of the stress components given by Eq. (15) do not guarantee that both compo-
nents of the tractions are zero in those planes. Hence, they must be rejected in applying the diamet-
rical compression model used in the Brazilian test. 
 

 

Figure 7: Distribution of the normal component for tractions in the tangent planes through A and B. 

 
4 COMPUTATIONAL MODELLING 

The numerical computational modelling was performed using the finite element method (FEM) 
with elements in the plane stress state, according to SAP2000 (integrated software for structural 
analysis and design, Analysis Reference Manual, Computer and Structures, Inc., Berkeley, Califor-
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nia, USA, 2015), a commercial software package. The loading conditions used in computer simula-
tion were meant to represent the procedures stated in conducting the Brazilian test, as represented 
in Figure 3. For that, both identical and opposing forces were applied, one positioned at the upper 
end and one at the bottom end of the cylinder. Care was taken to restrict it across, in one direction, 
to avoid any possibility of lateral instability, characterising then a plane stress state. Figure 8 ex-
emplifies the output and discretisation using the computational modelling employed in a similar 
way for all the models. It is interesting to mention that the plane element is appropriated to model 
plane-stress behavior in two-dimensional solids where the stresses are assumed not to vary in the 
thickness direction. The element has no out-of-plane stiffness and because of this there is no stress 
acting perpendicularly to element, existing, therefore, the transversal deformation at the plane 
which contents it, or better, the plane-stress element contributes stiffness only to the degrees of 
freedom in the plane of the element. For more details on the FEM, the reader is referred to Buca-
lem and Bathe (2011) and Cook (1974). 

The distribution of the normal stresses in the tangent plane element can be observed in Figure 
9, where the radius is partitioned into nine bins with 1 indicating the central point of the circle and 
9 indicating its surface. The previous results were developed for a cylinder of 10 cm diameter sub-
ject to opposing forces of 40.000 N, which could have any other value, applied vertically on the 
circumference. The equation currently recommended for the Brazilian test, i.e., σy, in Eq. (12), pro-
vides a maximum tension stress of 254647.91 Pa, whereas that obtained in the computational mod-
elling was 254335.45 Pa, 99.88% of the previous. Other computational experiments using the same 
FEM as above were performed. From 12 tests with diameters between 10 cm and 200 cm, similar 
behaviors were observed in regard to the distribution of the normal stress component perpendicular 
to the vertical diameter of the cylinder. 
 

 

    

Figure 8: Polar diagram of the horizontal normal components using FEM. 
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Figure 9: Distribution of the normal components by FEM. 

 
 
5 CONCLUSIONS 

Given the present discussion and considering the results obtained, we determined that contrary to 
statements in the literature, there is no exact mathematical expression for the component of normal 
stress (tension) along points in the vertical diametrical plane of a cylinder used in diametrical com-
pression tests. This finding implies that the mathematical expression employed in the work of Car-
neiro (1947) is methodologically incorrect because it relates this component of stress to the vertical 
force applied and the diameter of the cylinder used in the Brazilian test. 

This error arises because the superposition of three stress fields, introduced to obtain a solution 
to the elastic problem, yields vanishing tractions on the surface of the cylinder immersed in an infi-
nite medium, but does not preserve the boundary conditions in the tangential planes that form the 
upper and lower boundaries of the domain in which the cylinder is immersed. The tractions in those 
planes also need to vanish everywhere except for the points of application of the loads to the cylin-
der. This is the key point of the present discussion, because it is not considered in the classical 
model presented by Timoshenko (1970). 

The misconception that exists in taking the superposition of the three fields of tension stems 
from a mistake perpetrated in a previous application of the results to the construction of a theoreti-
cal model for diametrical compression tests established independently by Carneiro (1943-1947) and 
Akasawa (1943). Fortunately, as evidenced by our numerical experiments using FEM, the maxi-
mum diametrical tension stress in the center of the cylinder tends to 2P/πd, a value that has been 
traditionally and mistakenly accepted as valid for all points in the vertical diametrical plane of the 
cylinder. Strictly speaking, this value for tension stress only occurs at the center of the cylinder, 
implying that rupturing in the sample in the Brazilian test originates from the center. 
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