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Topological sensitivity analysis for a two-parameter Mooney-
Rivlin hyperelastic constitutive model

Abstract

The Topological Sensitivity Analysis (TSA) is represented by

a scalar function, called Topological Derivative (TD), that

gives for each point of the domain the sensitivity of a given

cost function when an infinitesimal hole is created. Appli-

cations to the Laplace, Poisson, Helmoltz, Navier, Stokes

and Navier-Stokes equations can be found in the literature.

In the present work, an approximated TD expression ap-

plied to nonlinear hyperelasticity using the two parameter

Mooney-Rivlin constitutive model is obtained by a numeri-

cal asymptotic analysis. The cost function is the total po-

tential energy functional. The weak form of state equation

is the constraint and the total Lagrangian formulation used.

Numerical results of the presented approach are considered

for hyperelastic plane problems.
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1 INTRODUCTION

Topological optimization may be classified as continuous and discrete. The topological op-

timization of continuous structures are given in terms of material (micro) and geometrical

(macro) approaches. The main technique of the material approach is the SIMP (Solid Isotropic

Microstructures with Penalization) [6]. The methods ESO (Evolutionary Structural Optimiza-

tion) and TSA (Topological Sensitivity Analysis) are techniques related to the geometrical

approach [25, 31, 33, 34]. For discrete structures, the optimal topology is determined by the

optimal number, position and connectivity of the structural elements. A complete review of

discrete topological optimization may be found in [6, 14, 17, 26, 28–30].

The TSA technique calculates the sensitivity of the cost function when an infinitesimal hole

is created in the domain of the problem [8, 16, 31, 33]. The sensitivity is given by the topological

derivative or gradient. In [25], the topological derivative was presented using shape sensitivity

analysis and applied to the steady-state heat conduction and linear elasticity problems.

The topological derivative is obtained for the non-linear torsion problem of a primastic

bar under stationary fluency described by the p-Poisson equation in [24]. Exact expressions
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for the topological derivative in the nonlinear Helmholtz and Navier-Stokes equations have

been obtained in [1–3]. Topological derivative and level set methods were presented in [7].

Applications to time dependent problems and image processing are found in [5, 22]. In [27],

the TSA concept was applied to large deformation problems and an approximated expression

to the topological derivative was obtained.

The purpose of this work is to extend the results obtained for large deformation with

linear elastic material in [27] to nonlinear hyperelasticity using the 2 parameter Mooney-

Rivlin constitutive model. In Sections 2 and 3, the topological derivative for the Lagrangian

formulation and the nonlinear hyperelasticity model are reviewed. In Section 4, the expression

of the topological derivative is obtained for nonlinear hyperelasticity and the total potential

energy functional. In Section 5, an asymptotic numerical analysis is developed to determine

the behavior of the analytical expression of the topological derivative. Finally, a heuristic

topological optimization algorithm is applied to three hyperelastic two-dimensional structures

and conclusions are addressed in Sections 6 and 7, respectively.

2 TSA FOR THE TOTAL LAGRANGIAN FORMULATION

The topological derivative [25] can be extended to large deformation problems using the total

Lagrangian formulation as in [27]. A review of that application is presented below. It should

be emphasized that this paper does not intend to present any formal proof of the topological

derivative to non-linear elastic problems. The topological derivative in the cases of semilinear

problem and linear elasticity is demonstrated in [19, 23], based on the asymptotic expansions

which results in the topological derivatives of general shape functionals. Asymptotic analysis

is also presented for nonlinear Helmholtz and Navies-Stokes equations in [1–3].

Consider a new domain Ω0
ε ∈Rn, Ω0

ε = Ω0−B̄0
ε , that has a boundary denoted by Γ0

ε = Γ0∪∂B0
ε

and B̄0
ε = B0

ε ∪∂B0
ε is a ball of radius ε and centered at the material point X̂ ∈ Ω0

ε, as illustrated

in Figure 1.

Figure 1 Modified definition of the topological derivative for the total Lagrangian formulation [27].
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A total Lagrangian description for the topological derivative can be written as

DT (X̂) = lim
ε→0
δε→0

ψ (Ω0
ε+δε) − ψ (Ω0

ε)
f (ε + δε) − f (ε)

. (1)

The action of increasing the hole can be interpreted as a sequence of perturbed configu-

rations characterized by the parameter τ and described by a smooth and invertible function

T (X, τ) with X ∈ Ω0
ε ⊂Rn and τ ∈R. In this way, the sequence of domains Ω0

τ and respective

perturbed reference boundaries Γ0
τ can be defined as

Ω0
τ = {Xτ ∈Rn∣∃ X ∈ Ω0

ε,Xτ = T (X, τ) ,Xτ ∣τ=0 =X}

and Γ0
τ = {Xτ ∈Rn∣∃ X ∈ Γ0

ε,Xτ = T (X, τ)}, where Ω0
τ ∣τ=0 = Ω0

ε and Γ0
τ ∣τ=0 = Γ0

ε. In

this way, the domain Ω0
ε+δε, perturbed by a smooth expansion δε of the ball B0

ε , and its

respective boundary Γ0
ε+δε can be written with relation to τ as Ω0

ε+δε = Ω0
τ Ô⇒ Ω0

ε = Ω0
τ ∣τ=0

and Γ0
ε+δε = Γ0

τ Ô⇒ Γ0
ε = Γ0

τ ∣τ=0.
The mapping between the non-perturbed reference domain Ω0

ε and the perturbed domain

Ω0
τ can be written as

Xτ =X + τVnn0, ∀ X ∈ ∂B0
ε , (2)

where Vn is the normal component to the hole of the velocity field V in the reference configu-

ration. The perturbation δε is associated to the parameter τ in the following way (∀ X ∈ ∂B0
ε

and ∀ Xτ ∈ ∂B0
ε+δε)

δε = ∥Xτ −X∥ = ∥τVnn0∥ = τ ∣Vn∣ . (3)

Considering that the domain used in the shape variation sensitivity is the reference domain

Ω0, then the topological derivative can be rewritten as

DT (X̂) =
1

∣Vn∣
lim
ε→0

1

f ′ (ε)
dψ (Ω0

τ)
dτ

RRRRRRRRRRRτ=0
, (4)

where f (ε) is the regularizing function chosen in such a way that 0 < ∣DT (X̂)∣ <∞.

3 NONLINEAR HYPERELASTICITY

In a large deformation problem, the final configuration of the body Ω ∈ Rn can differ greatly

from the initial or reference configuration Ω0 ∈ Rn. A body is deformed through a one to

one mapping f that relates each material point X ∈ Ω0 to a point x ∈ Ω in such a way that

x = f (X) ∈ Ω and det∇f > 0. The vector u (X) = f (X)−X represents the displacement of the

material point X.

For a homogeneous incompressible hyperelastic material, the constitutive equation is given

by [18]

W ∗ (F, p) =W (F) − p (J − 1) , (5)
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where p ∈R is the Lagrange multiplier related to the hydrostatic pressure and J = detF.
Following [10], the strain energy density functionalW for an isotropic hyperelastic material

may be decomposed as the sum of the distortional (W̄ ) and the volumetric W̃ strain energy

densities as

W (Ī1, Ī2, I3) = W̄ (Ī1, Ī2) + W̃ (I3) , (6)

where Ī1 = I1I−1/33 , Ī2 = I2I−2/33 and I3 = detC is the third invariant of the right Cauchy-Green

deformation tensor C. In addition, the following equation relates the hydrostatic pressure p

and the volumetric strain energy density W̃ [10]

p = ∂W̃ (I3)
∂J

. (7)

In this work, the distortional and volumetric densities are written in terms of the Mooney-

Rivlin form with two-parameters, respectively, as [9–12, 21]

W̄ (Ī1, Ī2) = A10 (Ī1 − 3) +A01 (Ī2 − 3) , (8)

W̃ (I3) =
k̃

2
(J − 1)2 , (9)

where A10 and A01 are material constants and k̃is the bulk modulus, which is a numerical

penalization term for nearly incompressible materials. After replacing equations (8) and (9)

in (6), the strain energy density functional for an isotropic nearly incompressible hyperelastic

material is given by

W (Ī1, Ī2, J) = A10 (Ī1 − 3) +A01 (Ī2 − 3) +
k̃

2
(J − 1)2 , (10)

The mixed variational form of the non-linear nearly incompressible hyperelastic problem

is expressed by: find u ∈ U and p ∈ Q such that [32]

{ a (u, δu) + b1 (δu, p) = l (δu) ∀ δu ∈ V
b2 (u, δp) − g (p, δp) = 0 ∀ δp ∈ Q , (11)

with

a (u, δu) = ∫
Ω0
[∂W̄
∂Ī1

∂Ī1
∂E
+ ∂W̄
∂Ī2

∂Ī2
∂E
] ⋅ δE dΩ0 = ∫

Ω0
S̄ ⋅ δE dΩ0 , (12)

b1 (δu, p) = ∫
Ω0
p
∂J

∂E
⋅ δE dΩ0 = ∫

Ω0
S̃ ⋅ δE dΩ0 , (13)

b2 (u, δp) = ∫
Ω0
(J (u) − 1) δp dΩ0 , (14)

g (p, δp) = ∫
Ω0

p

k̃
δp dΩ0 , (15)

l (δu) = ∫
Ω0

b0 ⋅ δu dΩ0 + ∫
Γ0
N

t0 ⋅ δu dΓ0 , (16)
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where U ={u ∈ [H1 (Ω0)]dim ∣ u∣Γ0
D
= ū} with dim ≤ 3 and Q = {p ∈ L2 (Ω0)}. It is assumed

that the reference domain Ω0 ∈ Rn is open and bounded. Its boundary Γ0 = Γ0
N ∪ Γ0

D

(Γ0
D ∩ Γ0

N = ∅) is sufficiently regular and admits the existence of a normal unitary vector n in

almost all of the points of Γ0, except in a finite set of zero measure.

4 TSA IN NONLINEAR HYPERELASTIC PROBLEMS

In this section, the expression of the topological derivative for the isotropic nearly incom-

pressible hyperelastic problem is obtained from equation (1). This expression requires the

evaluation of a given cost function Ψ, defined on the non-deformed configuration Ω0
ε, when the

hole B0
ε centered in X ∈ Ω0

ε and ε → 0 increases in size according to the velocity field defined.

The topological derivative is related to the shape sensitivity analysis as indicated in equation

(4).

The mixed variational statement for the elastic problem with large deformation and ho-

mogeneous, isotropic and nearly incompressible hyperelastic material in the reference non-

perturbed domain Ω0
ε, assuming that the domain Ω0

ε is limited and open and Γ0
ε sufficiently

regular, is given by: find uε ∈ Uε and pε ∈ Qε such that

{ aε (uε, δuε) + b1ε (δuε, pε) = lε (δuε) ∀ δuε ∈ Vε
b2ε (uε, δpε) − gε (pε, δpε) = 0 ∀ δpε ∈ Qε

, (17)

where Uε, Vε and Qε are, respectively, the spaces of the admissible kinematically functions,

their variations and pressures defined on the reference domain with the non-perturbed hole

Bε.

An equivalent mixed variational problem to the system given in (17) in the non-perturbed

reference domain Ω0
ε may be defined by the family of perturbed reference domains Ω0

τ , remem-

bering that Ω0
τ ∣τ=0 = Ω0

ε, as: find uτ ∈ Uτ and pτ ∈ Qτ such that

{ aτ (uτ , δuτ) + b1τ (δuτ , pτ) = lτ (δuτ) ∀ δuτ ∈ Vτ , ∀τ ≥ 0
b2τ (uτ , δpτ) − gτ (pτ , δpτ) = 0 ∀ δpτ ∈ Qτ , ∀τ ≥ 0

, (18)

where Uτ , Vτ and Qτ are the spaces of kinematically admissible functions, their variations and

pressures defined in Ω0
τ , respectively.

Considering the strain energy functional per unit of non-deformed volume given in (10),

the total potential energy functional Ψτ (uτ) is written in Ω0
τ as

Ψτ (uτ) = ∫
Ω0

τ

W (Ī1τ , Ī2τ , Jτ) dΩ0
τ − ∫

Ω0
τ

b0 ⋅ uτ dΩ
0
τ − ∫

Γ0
N

t0 ⋅ uτ dΓ
0
τ . (19)

To obtain the sensitivity of the cost function (19), the lagrangian function for the hypere-

lastic problem, in the non-perturbed configuration Ω0
τ , is written as

Lτ (uτ , βτ , pτ , θτ) = Ψτ (uτ) + aτ (uτ , βτ) + b1τ (βτ , pτ)
+ b2τ (uτ , θτ) − gτ (pτ , θτ) − lτ (βτ) , (20)
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where βτ = m1 δuτ and θτ = m2 δpτ (m1 and m2 ∈ R) are, respectively, the Lagrange multi-

pliers related to the first and second equations of the mixed variational system (18). However,

considering that equation (18) is satisfied for all τ , the derivative of the lagrangian function

(20) will be the same as the derivative of the total potential energy functional

dLτ

dτ
= dΨτ

dτ
= ∂Lτ

∂τ
+ ⟨∂Lτ

∂uτ
, u̇τ⟩ + ⟨

∂Lτ

∂βτ
, β̇τ⟩ + ⟨

∂Lτ

∂pτ
, ṗτ⟩ + ⟨

∂Lτ

∂θτ
, θ̇τ⟩ , (21)

where u̇τ = duτ

dτ
∈ Vτ , β̇τ = dβτ

dτ
∈ Vτ , ṗτ = dpτ

dτ
∈ Qτ and θ̇τ = dθτ

dτ
∈ Qτ .

The directional derivatives in (21) are given, respectively, by

⟨ ∂aτ
∂uτ

, u̇τ⟩ = ∫
Ω0

τ

C (uτ) ∶ ⟨
∂Eτ

∂uτ
, u̇τ⟩ ⋅ δEτ

+ Sτ ⋅ ⟨
∂δEτ

∂uτ
, u̇τ⟩ dΩ0

τ = δaτ (sτ ; u̇τ , βτ) , (22)

⟨∂aτ
∂βτ

, β̇τ⟩ = ∫
Ω0

τ

S̄τ ⋅ ⟨
∂Eτ

∂uτ
, β̇τ⟩ dΩ0

τ = aτ (uτ , β̇τ) , (23)

⟨∂b1τ
∂βτ

, β̇τ⟩ = ∫
Ω0

τ

S̃τ ⋅ ⟨
∂Eτ

∂uτ
, β̇τ⟩ dΩ0

τ = b1τ (β̇τ , pτ) , (24)

⟨∂b1τ
∂pτ

, ṗτ⟩ = ∫
Ω0

τ

ṗτ
∂J (uτ)
∂Eτ

⋅ ⟨∂Eτ

∂uτ
, βτ⟩ dΩ0

τ = δb1τ (sτ ;βτ , ṗτ) , (25)

⟨∂b2τ
∂uτ

, u̇τ⟩ = ∫
Ω0

τ

∂J (uτ)
∂Eτ

⋅ ⟨∂Eτ

∂uτ
, u̇τ⟩ θτ dΩ0

τ = δb2τ (sτ ; u̇τ , θτ) , (26)

⟨∂b2τ
∂θτ

, θ̇τ⟩ = ∫
Ω0

τ

[J (uτ) − 1] θ̇τ dΩ0
τ = b2τ (uτ , θ̇τ) , (27)

⟨∂gτ
∂pτ

, ṗτ⟩ = ∫
Ω0

τ

ṗτ

k̃
θτ dΩ

0
τ = δgτ (pτ ; ṗτ , θτ) , (28)

⟨∂gτ
∂θτ

, θ̇τ⟩ = ∫
Ω0

τ

pτ

k̃
θ̇τ dΩ

0
τ = gτ (pτ , θ̇τ) , (29)

⟨ ∂lτ
∂βτ

, β̇τ⟩ = ∫
Ωτ

b0 ⋅ β̇τ dΩ0
τ − ∫

ΓN

t0 ⋅ β̇τ dΓ0
τ = lτ (β̇τ) . (30)

The partial derivative of the lagrangian function (20) in τ is the same as the total derivative

if the directional derivatives presented in (21) are zero. Therefore, from (22) to (30), the

following variational problem is obtained: find uτ ∈ Uτ and pτ ∈ Qτ such that

{ aτ (uτ , β̇τ) + b1τ (β̇τ , pτ) = lτ (β̇τ) ∀ β̇τ ∈ Vτ , ∀τ ≥ 0
b2τ (uτ , θ̇τ) − gτ (pτ , θ̇τ) = 0 ∀ θ̇τ ∈ Qτ , ∀τ ≥ 0

, (31)
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which represents the state equation for the considered problem. The adjoint problem is: find

βτ ∈ Vτ and θτ ∈ Qτ such that

⎧⎪⎪⎨⎪⎪⎩

δaτ (sτ ;βτ , u̇τ) + δb2τ (sτ ; u̇τ , θτ) = − ⟨∂Ψτ

∂uτ
, u̇τ⟩ ∀ u̇τ ∈ Vτ , ∀τ ≥ 0

δb1τ (sτ ;βτ , ṗτ) − δgτ (pτ ; θτ , ṗτ) = 0 ∀ ṗτ ∈ Qτ , ∀τ ≥ 0
, (32)

where the symmetry of the bilinear forms δaτ (sτ ; u̇τ , βτ) and δgτ (pτ ; ṗτ , θτ) has been taken

into account.

The directional derivative of the total potential energy functional in uτ in the direction u̇τ ,

according to (19), may be written as

⟨∂Ψτ

∂uτ
, u̇τ⟩ = ∫

Ω0
τ

(∂Wτ

∂Ī1τ

∂Ī1τ
∂Eτ

+ ∂Wτ

∂Ī2τ

∂Ī2τ
∂Eτ

+ ∂Wτ

∂Jτ

∂Jτ
∂Eτ
) ⋅ ⟨∂Eτ

∂uτ
, u̇τ⟩ dΩ0

τ

−∫
Ω0

τ

b0 ⋅ u̇τ dΩ
0
τ − ∫

Γ0
N

t0 ⋅ u̇τ dΓ
0
τ ,

⟨∂Ψτ

∂uτ
, u̇τ⟩ = aτ (uτ , u̇τ) + b1τ (u̇τ , pτ) − lτ (u̇τ) = 0 ∀u̇τ ∈ Vτ , ∀τ ≥ 0, (33)

where it has been assumed that uτ and pτ satisfy the state equation (18). Consequently,

the solution of the adjoint equation (32) is (βτ , θτ) = (0,0) and the partial derivative of the

lagrangian (20), written in the perturbed configuration Ω0
τ , is

∂Lτ

∂τ
∣
τ=0
= ∂Ψτ (uτ)

∂τ
∣
τ=0
= ∂

∂τ
∫
Ω0

τ

W (Eτ) dΩ0
τ ∣

τ=0
− ∂lτ (uτ)

∂τ
∣
τ=0

. (34)

Replacing the definition of the total potential energy for the non-linear nearly incompress-

ible hyperelastic problem, given in (19), in (34) and using the Reynolds Transport Theorem,

the partial derivative of the lagrangian function in the non-perturbed configuration Ω0
τ ∣τ=0 = Ω

0
ε

is given by

∂Lτ

∂τ
∣
τ=0
= ∫

Ω0
ε

∂W (Eτ)
∂τ

∣
τ=0
+W (Eε)DivV dΩ0

ε −
∂lτ (uτ)
∂τ

∣
τ=0

, (35)

where
∂lτ (uτ)
∂τ

∣
τ=0
= ∫

Ω0
ε

(b0 ⋅ uε) I ⋅ ∇VdΩ0
ε (36)

for uτ and βτ fixed and the velocity field V defined by

{ V = Vnn0 with Vn < 0 and constant on ∂B0
ε

V = 0 on Γ0 considering Γ0
ε = Γ0 ∪ ∂B0

ε

, (37)

Therefore, equation (35) is rewritten as

∂Lτ

∂τ
∣
τ=0
= ∫

Ω0
ε

Sτ ⋅
∂Eτ

∂τ
∣
τ=0

dΩ0
ε + ∫

Ω0
ε

[(W (Eε) − b0 ⋅ uε)] I ⋅ ∇V dΩ0
ε . (38)

Latin American Journal of Solids and Structures 7(2010) 391 – 411



398 C.E.L. Pereira et al/ Topological sensitivity analysis for a two-parameter Mooney-Rivlin hyperelastic constitutive model

where
∂Eτ

∂τ
∣
τ=0
=
∂ (∇τu

S
τ )

∂τ

RRRRRRRRRRRτ=0
+ 1

2

∂ (∇τu
T
τ )

∂τ

RRRRRRRRRRRτ=0
∇uτ +

1

2
∇uT

τ

∂ (∇τuτ)
∂τ

∣
τ=0

. (39)

Using the definition of the partial derivative of the Green-Lagrange strain tensor Eτ in

the non-perturbed configuration Ω0
ε, given in (39), equation (38), after a few manipulations,

becomes

∂Lτ

∂τ
∣
τ=0
= ∫

Ω0
ε

{[W (Eε) − b0 ⋅ uε] I −∇uT
ε Sε −∇uT

ε ∇uεSε} ⋅ ∇V dΩ0
ε . (40)

Equation (40) may be expressed in the following form

∂Lτ

∂τ
∣
τ=0
= ∫

Ω0
ε

Σ0
ε ⋅ ∇V dΩ0

ε , (41)

where Σ0
ε is the Eshelby’s energy moment tensor in the non-perturbed reference configuration

Ω0
ε for the total lagrangian formulation [15]. For the considered problem, it is defined by

Σ0
ε = [W (Eε) − b0 ⋅ uε] I −∇uT

ε Sε −∇uT
ε ∇uεSε. (42)

or in terms of the first Piola-Kirchhoff tensor

Σ0
ε = [W (Eε) − b0 ⋅ uε] I −∇uT

ε Pε. (43)

From the divergence theorem and the tensorial expression

Σ0
ε ⋅ ∇V = Div [(Σ0

ε)
T
V] −Div (Σ0

ε) ⋅V, (44)

equation (41) is rewritten as

∂Lτ

∂τ
∣
τ=0
= ∫

Ω0
ε

Div (Σ0
ε) ⋅V dΩ0

ε + ∫
Γ0
ε

Σ0
εn0 ⋅V dΓ0

ε . (45)

It is possible to show that

DivΣ0
ε = 0. (46)

Replacing equation (46) in (45) and considering the velocity field (37), the following equa-

tion is obtained
∂Lτ

∂τ
∣
τ=0
= −Vn∫

∂B0
ε

Σ0
εn0 ⋅ n0 d∂B

0
ε . (47)

From the definition of the Eshelby’s tensor Σ0
ε given in (43), the following relation is valid

Σ0
εn0 ⋅ n0 =W (Eε) − b0 ⋅ uε −Pεn0 ⋅ (∇uε)n0.

Considering a homogeneous Neumann boundary condition in the hole, i.e., Pεn0 = 0 on

∂B0
ε , and no body forces, b0 = 0, the partial derivative of the lagrangian function in τ = 0

becomes
∂Lτ

∂τ
∣
τ=0
= −Vn∫

∂B0
ε

W (Eε) d∂B0
ε . (48)
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The topological derivative, except for the limit ε → 0, is obtained after the substitution of

(48) in the expression of the topological derivative for the total lagrangian formulation given

in (4). Therefore,

DT (X̂) = − lim
ε→0

1

f ′ (ε) ∫∂B0
ε

W (Eε) d∂B0
ε . (49)

5 NUMERICAL ASYMPTOTIC ANALYSIS

Equation (49) represents the topological derivative, except for the limit with ε → 0, for the

case of large deformations and nonlinear nearly incompressible hyperelasticity. In order to

obtain the topological derivative, it is necessary that the limit for ε → 0 in (49) be calculated

either analytical or approximately. For the present non-linear problem, an analytic asymptotic

analysis of equation (49) becomes impracticable. A procedure based on numerical experiments

for the calculation of the limit with ε → 0 in (49) was used in [27] for large deformation and

linear elastic material. The same asymptotic analysis is applied below to large deformation

and Mooney-Rivlin material.

The topological sensitivity analysis aims to provide an asymptotic expansion of a shape

functional with respect to the size of a small hole created inside the domain [3]. The asymptotic

analysis makes possible to obtain the behavior of the integrand of the topological derivative

expression (49) in the limit when the hole radius becomes small. Another point is to compare

the quotient between the topological derivative in the domain with a small hole and the strain

energy functional in the domain without the hole.

Consider the function dT (uε) defined by

dT (uε) = −
1

f ′ (ε) ∫∂B0
ε

W (Eε) d∂B0
ε , (50)

in such a way that

DT (X̂) = lim
ε→0

dT (uε) . (51)

A numerical study of the asymptotic behavior of the function dT (uε) with relation to the

radius ε is developed.

Consider a plane square domain, denoted by Ω, with size L = 2 mm and a hole of radius ε

at the center of the domain, subjected to the distributed load cases t0 along the edges of Ω, as

illustrated in Figure 2. It is assumed plane strain and Mooney-Rivlin model with A10 = 0.55
N/mm2, A01 = 0.138 N/mm2 and k̃ = 666.66 N/mm2. Figure 3 shows the meshes for the

original domain and the domain with the hole. The purpose of the first two model cases

is to verify the influence of each of the displacement components u and v separately on the

results of the asymptotic analysis of the topological derivative. The third and fourth load

cases aim to study the influence of the two displacements components acting together. For

all cases, traction and compression loads were applied. Other load conditions were considered

and the conclusions of the asymptotic analysis were the same. These load cases constitute the

minimum set to obtain the main results from the asymptotic analysis.
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(a) First case model. (b) Second case model.

(c) Third case model. (d) Fourth case model.

Figure 2 Models used in the asymptotic analysis [27].

(a) Mesh without hole. (b) Mesh with hole ε = 0.16
mm.

Figure 3 Finite element meshes used in the asymptotic analysis [27].
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The finite element meshes of quadratic triangles are constructed in such a way that they

have the same number of elements at the boundary of the hole, independently of the value of

the radius ε. Consequently, the approximated size of the elements is calculated as

he ≈ 2πε

ne
, (52)

being ne the number of elements required over the boundary of the hole. Table 1 shows the

total number of elements NE of the meshes generated in the domain Ω for different values of

the radius ε and ne = 60.

Table 1 Meshes used in the numerical asymptotic analysis.

ε [mm] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.10 0.12 0.16
NE 3876 1968 1846 1760 1672 1644 1592 1576 1480 1408 1296
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(a) Load t0 = 6.25 × 10−3N/mm2.
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(b) Load t0 = 12.50 × 10−3N/mm2.
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(c) Load t0 = 25.00 × 10−3N/mm2.
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(d) Load t0 = 37.50 × 10−3N/mm2.

Figure 4 Asymptotic behavior of dT (uε) f
′
(ε) in terms of the radius ε for the traction non-linear hyperelastic

problem.
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The plots of the asymptotic behavior of dT (uε) f
′
(ε) × ε are shown in Figures 4 and 5,

respectively, for the traction loads t0 = {6.25; 12.50; 25.00; 37.50} × 10−3 N/mm2 and com-

pression loads t0 = −{6,25; 12,50; 25,00} × 10−3 N/mm2 loads. Based on these results, it is

reasonable to assume that the integrand term in equation (50) behaves as a straight line trough

the origin in relation to ε. A function f (ϵ) which satisfies the condition 0 < ∣DT (X̂)∣ < ∞ is

f (ε) = − ∣Bε∣ = −πε2. Consequently, equations (50) and (51) give

DT (X̂) = lim
ε→0

dT (uε) = CW (E) . (53)
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(a) Load t0 = −6.25 × 10−3N/mm2.
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(b) Load t0 = −12.50 × 10−3N/mm2.
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(c) Load t0 = −25.00 × 10−3N/mm2.

Figure 5 Asymptotic behavior of dT (uε) f
′
(ε) in terms of the radius ε for the compression non-linear hyper-

elastic problem.

The analysis of the constant C is based on the asymptotic behavior of the function dT (uε)
in relation to the radius ε. For that purpose, consider the quotient between the function

dT (uε), given in (50), and the integrand calculated on the node of the mesh without hole,

whose coordinates coincide with the coordinates of the center of the hole in the mesh with
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holes (see Figure 3). Therefore, for f (ε) = −πε2, the following quotient is obtained

1
2πε ∫

∂B0
ε

W (Eε) d∂B0
ε

W (E)
. (54)

The plots in Figure 6 show the behavior of this quotient versus 1/ε for each value of t0 and

the four load cases. The plots for the first, second and fourth load cases miss a certain

smoothness and have an increase in the quotient for ε = 0.01 (1
ε
= 100). This behavior may be

related to the distortion of the elements around the hole which is amplified as the values of t0
increase. In the compressive case, this point was much more critical and made impossible to

run the simulations for the case with t0 ≤ −25.00×10−3 N/mm2. However, it seems reasonable

to assume an asymptotic behavior of equation (54), in function of ε, for all traction and

compression load cases.
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(a) First load case.
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(c) Third load case.
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(d) Fourth load case.

Figure 6 Asymptotic behavior of the quotient
dT (uε)
W (E) in relation to the radius ε for the non-linear hyperelastic

problem.
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For the third load case, the values for C are much larger than for the other load cases.

The C values depend on the combination of loads and material properties. For the third load

case, C is larger because the strain energy density calculated on the central node of the mesh

without hole (denominator of equation (54)) is very small. The distortional strain energy is

almost zero. Due to the near-incompressibility behavior of the Mooney-Rivlin material, the

volumetric part is also very small. Figure 7 shows the results for the third load case with

k̃ = 1.0 N/mm2 which makes the material more compressible. The values for C are now much

smaller and close to the values obtained for the linear elastic material given in [27]. However,

the main point of the asymptotic analysis is that the variation range of the C values is more

limited than the strain energy densities W for a given load and material properties.
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Figure 7 Asymptotic behavior of the quotient
dT (uε)
W (E) in relation to the radius ε for the third load case and

k̃ = 1.0N/mm2.

Table 2 Analysis of the variation of the constant C for the first traction load case in the nearly incompressible
hyperelastic problem.

t0 (N/mm2) 0.00625 0.0125 0.025 0.0375

W (Nmm/mm3) 0.000327 0.001353 0.005696 0.013592

C 2.99 2.87 2.84 2.80

Table 3 Analysis of the variation of the constant C for the second traction load case in the nearly incompressible
hyperelastic problem.

t0 (N/mm2) 0.00625 0.0125 0.025 0.0375

W (Nmm/mm3) 0.000327 0.001354 0.005699 0.013597

C 2.99 2.87 2.84 2.80

Tables 2 to 5 compare the values of C and W . It may be observed that the variation of the
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Table 4 Analysis of the variation of the constant C for the third traction load case in the nearly incompressible
hyperelastic problem.

t0 (N/mm2) 0.00625 0.0125 0.025 0.0375

W (Nmm/mm3) 0.000003 0.000012 0.000046 0.000104

C 495.00 515.00 530.00 555.00

Table 5 Analysis of the variation of the constant C for the fourth traction load case in the nearly incompressible
hyperelastic problem.

t0 (N/mm2) 0.00625 0.0125 0.025 0.0375

W (Nmm/mm3) 0.000353 0.001522 0.007251 0.019504

C 11.00 10.70 9.80 9.00

strain energy density is much larger when compared to the variation of C for all the considered

cases.

Based on the previous results, the expression of the topological derivative for the non-linear

nearly incompressible hyperelastic problem may be written approximately as

DT (X̂) ≈ C∗W (E) , (55)

where C∗ is taken from the previous values obtained for C. The effective value of the constant

C∗ becomes of little practical interest, because the topological derivative will be calculated

for all the nodes of the mesh and the holes will be created where the topological derivative

assumes the least values [27].

6 RESULTS

In this section, the heuristic algorithm used in [27] is applied to obtain the topology of three

two-dimensional non-linear hyperelastic large deformation problems.

6.1 Clamped short beam

In this example, the initial domain is a square modeled as plane strain problem with sides

L = 50 mm, Mooney-Rivlin constants A10 = 0.55 N/mm2, A01 = 0.138 N/mm2 and k̃ = 666.66
N/mm2. The beam is clamped on the regions indicated by a = 5 mm and subjected to the

distributed load t0 = −0.4444 N/mm2 on the region indicated by b = 4.5 mm, as illustrated in

Figure 8(a).

A mesh of 3656 triangular quadratic finite elements showed in Figure 8(b) was used. The

stopping criterion was based on the final area Ā = 0.40A0, with A0 the initial domain area, and

1% of the area was removed in each iteration. The final result was reached after 89 iterations

of the algorithm presented in the last section and is showed in Figure 8(c). The maximum

deflexion was −7.28 mm in the upper right side of the beam. Figure 8(d) shows the decreasing

of the total potential energy functional versus the number of iterations. Figure 9 illustrates

the final distribution of the strain energy density W .
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(a) Model. (b) Initial mesh with 3656
quadratic elements.

(c) Topology at iteration j = 89.
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mm3 at itera-

tion 89.

Figure 8 Clamped short beam under non-linear nearly incompressible hyperelasticity.
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Figure 9 Total potential energy versus iteration number j.
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6.2 Two bars

In this example, the initial domain is subjected to a concentrated load F = −1.0 N as illustrated

in Figure 10(a). The other parameters are the same used in the previous example. The required

final area is V̄ = 0.36V0. The final topology, illustrated in Figure 10(c), is achieved after 99

iterations and the maximum deflexion is −3.75 mm on the point of load application. Figure

10(d) illustrates the behavior of the total potential energy functional along the iterations of

the algorithm. Figure 11 shows the distribution of the strain energy density W on the domain

after 99 iterations.

(a) Model. (b) Initial mesh with 3656
quadratic elements.

(c) Topology at iteration j = 99.
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(d) Strain energy density in Nmm
mm3 at iteration

99.

Figure 10 Two bars example under non-linear nearly incompressible hyperelasticity.
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Figure 11 Total potential energy versus iteration number.

6.3 Clamped-clamped short beam

In this third example, the clamped-clamped beam given in Figure 12 is considered for L = 20
mm and a concentrated force F = −0.04 N applied on the beam middle span. The same pre-

vious material constants are used. The final considered area is V̄ = 0.20V0 and the percentage

of removed area is 3% for each iteration. The final topology is obtained after 52 iterations and

illustrated in Figure 13(b). A similar result was obtained in [20, 27] for large deformation and

linear elastic material.

Figure 12 Clamped-clamped beam.

7 CONCLUSIONS

This paper presented the application of the TSA to large deformation and nearly incompressible

hyperlastic Mooney-Rivlin material using the total Lagrangian formulation.

As in [27], an approximated expression for the topological derivative was obtained using a

numerical asymptotic analysis for four different load conditions. The same behaviour was ob-

served from the asymptotic analysis of the topological gradient for linear elastic and hyperelstic
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(a) Initial mesh with 2302 quadratic elements. (b) Topology at iteration j = 42.
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mm3 at iteration 42.

0 5 10 15 20 25 30 35 40 45
−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

Iterations

Ψ
(u

)

(d) Total potential energy versus iteration number.

Figure 13 Clamped-clamped beam example under non-linear nearly incompressible hyperelasticity.

materials.

A heuristic topological optimization algorithm was applied to three planar problems with

deformation of about 20%. In the case of the third example, similar topologies were obtained

with those ones calculated using large deformation and linear material [27].

Most of the computational cost is related to the solution of the state equation due to the

nearly incompressible material model and the possibility of the locking phenomenon. Once

the solution has converged, the topological derivative is given by the strain energy functional

as indicated in expression (55).

The final solution in Figure 13(b) shows the formation of mechanisms. This is related to

the way the optimization algorithm is implemented based on the removal of a fixed amount

of material. In this sense, the implemented TSA procedure has the same limitations of most

hard-kill methods.

Originally, the TSA approach did not define a classical minimization problem. In [4], the

topological derivative is used as a descent direction in the optimization problem. Also a penalty

method is used for the constraint imposition in terms of the von Mises stress.

The procedure presented in this paper allows only the removal of elements. The topol-

ogy optimization of non-linear problems may also require the inclusion of material which is

presented in [13].
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[33] J. Sokolowski and A. Żochowski. On topological derivative in shape optimization. Technical Report, INRIA-Lorraine,
French, 1997.

[34] C. Zhao, G. P. Steven, and Y. M. Xie. Evolutionary optimization of maximizing the difference between two natural
frequencies. Structural Optimization, 13(2-3):148–154, 1997.

Latin American Journal of Solids and Structures 7(2010) 391 – 411




