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Abstract 
For many years, several crack detection attempts have been using 
measurements of the structure’s modal parameters. One of the 
easiest is to measure and correlate the change in natural frequen-
cies to cracks. The direct and inverse problem have been discussed 
in literature. However, the inverse problem, being addressed in 
this paper, is a challenging one, where it starts by measuring cer-
tain structural properties and estimate the corresponding crack 
location and size. Unlike previous studies that utilizing natural 
frequencies from one direction, both axial and bending natural 
frequencies are used together to determine crack size and location, 
without prior estimation of natural frequencies of the intact beam. 
The results obtained showing promising capabilities in crack de-
tection. 
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1 INTRODUCTION 

Many researchers are stimulated to focus on Structural Health Monitoring (SHM) that promises to 
significantly increase safety and reduce the inspection cost and time by early detection of damage 
(Samuel and Pines 2005). SHM problems are forward or inverse. The forward problem is to attempt 
correlating known damage properties to changes in some system parameters. While, the inverse 
problem, which is more realistic, is to measure a set of system parameters and to try to check the 
existence of the damage, then quantify it without prior knowledge of its characteristics. Published 
reviews of SHM discussed several methods, theories and approaches in the field (Samuel and Pines, 
2005; Montalvao et al., 2006; Sekhar, 2008; Adewuyi et al. 2009). Modal analysis is one important 
method of them. It relies on measuring structural modal parameters then relates their values to the 
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structure’s health (Fan and Qiao, 2001; Sekhar, 2008; Adewuyi et al. 2009). The natural frequency-
based methods are of a great interest.  

Understanding the behavior of beams and bars can pave the way towards understating more 
complex structures and yet simple to study. Cracks can be simulated using open cracks models 
which are simple and can effectively simulate reality, particularly in low frequency range (Friswell 
and Penny, 2002). One widely used open crack model, is to divide the beam into two segments con-
nected by springs (Fernandez-Saez et al. 1999; Bamnios et al. 2002; Lin et al. 2002; Patil and Maiti, 
2003; Law and Lu, 2005), as shown in Figure 1. It is proven that cracks decrease the natural fre-
quencies (Shahdin et al. 2009; Curyet al. 2011). 

Fernandez-Saez et al. (1999) developed an approximate method to calculate the fundamental 
frequency of a cracked simply supported Euler-Bernoulli beam. Yang et al. (2008) investigated ana-
lytically the response of a cracked Euler-Bernoulli beam made of Functionally Graded Material 
(FGM) under axial compressive load and transverse moving load, for single and multiple cracks. 
Sinha et al. (2002) proposed a simplified analysis to detect open crack properties based on updating 
a finite element model using measured natural frequencies.  While Kamali Yazdi et al. (2015) devel-
oped a new cracked 2D finite element to simulate embedded and surface cracks. 
 

 

Figure 1: Cracked 1-D Structure. 

 
Xu et al. (2007) proposed an iterative approach based on perturbation theory to detect damage 

using the changes in the first few natural frequencies. Kisa and Gurel (2006) studied the change in 
the first three natural frequencies and mode shapes for a cracked beam with circular cross-section.  

Not only Euler-Bernoulli beams received researchers' attention, but also Timoshenko beams 
(Kim and Kim, 2003; Chang and Chen, 2004; Masoud et al. 2006; Masoud and Al-Said, 2009; Kar-
garnovin et al. 2012) and Frames (Rezaiee-Pajand et al. 2014) were in the focus.  
Crack detection in bars, rods and shafts is particularly important as they are used in all rotating 
machines and gearboxes, and may lead to tragic accidents (Samuel and Pines 2005). Ruotolo and 
Surace (2004) derived expressions for the natural frequencies of bars with multiple cracks. Chon-
dros et al. (1997, 1998) derived the governing differential equation of a cracked bar. Dilena and 
Morassi (2009) developed a numerical model to detect damage in rods using natural and anti-
resonant frequencies.  
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In the present study, the inverse problem, of cracked Euler-Bernoulli beams, will be addressed. 
The change in natural frequencies will be utilized to check the existence of a crack and quantify it. 
As crack quantification requires evaluating its location and depth, at least two measurements are 
needed i.e. two or more natural frequencies. If a crack is located near a nodal point, the natural 
frequency will not exhibit any change regardless of the crack severity. Accordingly, more modes are 
needed to avoid this drawback.  

Available studies in the literature analyze beam and bar problems separately while the differ-
ence between a bar and a beam is the loading direction. However, axial and bending modes will 
continue to be structural properties regardless of the loading condition. In this analysis, unlike other 
approaches that uses more than one natural frequency from the same direction either axial or end-
ing, a mixture of axial and bending natural frequencies will be used here to quantify the crack. The 
two measurements needed to quantify a single crack will be the first axial and bending natural fre-
quencies measured for the possibly cracked beam. This model is simple, yet efficient. Another major 
advantage of the present approach is that it requires neither prior knowledge of the natural fre-
quencies of the intact beam nor any historical measurements.  

This study consists of five sections including this introduction. In Section 2, the mathematical 
model will be presented. The proposed solution will be described in section 3, and case studies are 
presented in section 4. Testing the ability to deal with multiple cracks are also included in section 4. 
Concluding remarks are comprised in section 5. 
 
2 MATHEMATICAL MODEL 

2.1 Model Assumptions 

The cracked beam of concern, as shown in Figure 1 has the following properties: 

- Beam is made of an isotropic, homogeneous, linearly, elastic material. Uncertainties of material 
properties are not considered. 

- The beam is a uniform, slender, Euler-Bernoulli beam, which implies shear deformation is ne-
glected. 

- The beam contains a single double-edge open crack with depth δ that is located along the 
beam at L. 

- The crack will be represented by massless axial and rotational springs to introduce displace-
ment discontinuity in the axial direction and slope discontinuity in the transverse direction re-
spectively. 

- The change in beam mass due to the crack is negligible. 
The beam has length L. The cross-section dimensions are b×h gives section A and second mo-

ment of area I. It is made of material that has Young’s modulus of E, Poisson’s ratio  and density 
. The crack is located a distance L from the left end of the beam, where  ranges from 0 to 1. 
The total crack depth to beam thickness ratio is . The analysis of the problem will be separated 
into bar and beam problem. These symbols will be utilized throughout this article. 
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2.2 Bar Problem 

The bar is divided into two segments at the crack location, and connected by a linear spring. The 
spatial distribution of the displacement field of each segment is given by (Dilena and Morassi, 
2009): 
 

      2 ,1      ,sincos 21  ixCxCxu j
i

j
i

i  (1)
 

Where ui is the axial displacement and i denotes the left and right segments of the bar. The 
wave number j is related to the cracked bar natural frequency by (Dilena and Morassi, 2009):  
 

Ejaj

 , (2)

 

Where a,j is the j-th axial natural frequency of the bar, E and  are the modulus of elasticity 

and mass density as defined in the previous section. The constants i
kC  can be evaluated by apply-

ing the boundary and compatibility conditions. 
From the axial motion perspective of a beam, the boundary conditions for Fixed-Free are the 

same for Fixed-Roller, and Hinged-Roller conditions. They are given by: 
 

    0     , 00 2
1
11  LuCu  (3)

 

At the crack location, the displacement is discontinuous while its derivative is continuous. The 
discontinuity of the displacement is related to the elongation in the linear spring. These conditions 
are given by:  
 

   LuLu  21  , 

      LuLu
EA

K
Lu a  121 

(4)

 

Where Ka is the axial spring stiffness representing the crack. This stiffness is a function of both 
the material properties and crack depth ratio, and will be discussed in a later section.   

Applying the boundary conditions and compatibility conditions given by Eq. (3) and (4) and 
solving for Ka, we get:  
 

      LLL
EA

K
jjjj

a  tantancos2   (5)

 

The expression given by Eq. (5) relates the natural frequency of the cracked bar to the crack 
properties, in terms of location and depth. As indicated earlier, this expression is valid for beams 
with Fixed-Free, Fixed-Roller and Hinged-Roller boundary conditions. 

Similarly, for Fixed-Hinged and Hinged-Hinged beams, the compatibility conditions will hold 
while the boundary conditions are given by: 
 

  1
11 00 Cu  ,           02 Lu (6)
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Applying the boundary conditions and compatibility conditions given by Eq. (6) and (4) respec-
tively, and solving the resulting equations for the spring stiffness gives: 
 

       

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2.3 Beam Problem 

For beam problem we follow the same procedure described in section 2.2 to derive relations similar 
to (5) and (7). For the beam problem, the crack is represented by a rotational spring. 

The spatial distribution of the bending displacement of the beam segments to the left and right 
of the crack are given by: 
 

          2 ,1      ,sinhcoshsincos 4321  ixDxDxDxDxw j
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Where i denotes the left and right segments and j is given by (Patil and Maiti, 2003): 
 

EI

A
jrj
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,
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Where r,j is the j-th bending natural frequency. As known, the boundary conditions for the 
above mentioned cases as follows: 

Fixed end: 
 

011  ww (10)
 

Hinged and Roller end: 
 

011  ww (11)
 

Free end: 
 

011  ww (12)
 

Where i denotes either left or right ends.  
For compatibility at the crack location, the continuity is maintained for the displacement, the 

shear force and bending moment, while the slope is not regardless of the beam boundary conditions. 
They are given by (Patil and Maiti, 2003): 
 

           ,    ,    , 312121 LwLwLwLwLwLw  
 

      LwLw
EI

K
Lw r  121 

(13)

 

Where Kr is the rotational spring stiffness equivalent to the crack.  
Each set of the above boundary conditions with the compatibility conditions are cast in a ho-

mogenous matrix form as detailed in Appendix. In the boundary and compatibility conditions, the 
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wave number j appears as a common factor with powers corresponding to the degree of differentia-
tion. Since it has a positive non-zero value, it will be crossed out from these equations.  

For Fixed-Free beam, to get a nonzero solution of Eq. (23) in the appendix, the determinant of 
the coefficient matrix must vanish, which leads to the following solution for Kr: 
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Where C, S, Ch and Sh in equations (14) stand for cosine, sine, hyperbolic cosine and hyperbol-
ic sine functions respectively. This notation will be used throughout this research.  is given by: 
 

L  (15)
 

The expression above matches the one derived by Patil and Maiti (2003): 
Similarly, for the rest of the boundary conditions the same procedure is utilized. The nonzero 

solution of Eq. (24), for Hinged-Hinged or Hinged-Roller is obtained when the determinant of the 
coefficient matrix vanishes, which leads to the following solution for Kr: 
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Again, the expression above matches the one derived by Patil and Maiti (2003).  
For Fixed-Roller and Fixed-Hinged beams, solving Eq. (25), for Kr gives: 
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2.4 Spring Stiffness-Crack Relation 

Several expressions relate the spring stiffness to crack depth can be found in the literature (e.g. 
Haisty and Springer 1988; Ostachowicz and Krawczuk 1991; Patil and Maiti 2003; Ruotolo, and 
Surace 2004). These relations are based on fracture mechanics. The expressions, utilized here, have 
one thing in common; they all assume Mode I stress field where the surfaces of the crack moves in 
opposite directions as shown in Figure 2. This stress intensity factor is given by (Ostachowicz and 
Krawczuk 1991): 
 

  fhKI   (18)
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Where  is the plane stress and f(δ) is a function depends on the loading condition and crack 
type in case of bending, whether it is single side or double edge. Interested readers can follow the 
formulation of these expressions in the indicated references. 

For open crack with total depth δ under axial loading, the axial spring stiffness expression is 
given by Ruotolo and Surace (2004):  
 

   
S

EA

h
Ka

2
1 12 


(19)

 

Where: 
 

  2345678 9852.02381.00368.12055.15803.00368.1713.0  S  
 

The axial spring stiffness for bars does not change if the crack is single sided or double-edge.  
For the rotational spring stiffness, several expressions are presented in literature that simulate 

an open crack in bending motion. The spring expression in case of double edge crack and single side 
cracks are as follows: 

For double-edge crack (Haisty and Springer 1988): 
 

 432
2

2
1 793.5181.3412.39022.05033.036 



Ebh
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(20a)

 

For single side crack  (Ostachowicz and Krawczuk, 1991): 
 

 65432
2

2
1 4909.2332.753.71773.57201.3035.16384.072 


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With the appropriate spring expression, depending on crack type and direction of loading , the 
present model holds to be true to simulate both single side crack, occurring due to fluctuating load-
ing, and double sided crack, occurring due to cyclic loading (Ostachowicz and Krawczuk, 1991). It 
should be noted that for single side crack, the expression given by (20b) does not change regardless 
of the crack being on the top side or the bottom side of the beam. Hence, this model cannot distin-
guish if the crack on the top or the bottom side of the beam.  
 

 

Figure 2: Mode I stress field. 
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3 INVERSE PROBLEM 

For a given crack located at distance L, measured from the left end, and total depth ratio , the 
solution procedure will be briefly described. To detect the crack location and depth using measure-
ment of the longitudinal and bending natural frequencies, one can follow the procedure summarized 
as follows: 

1. Measure the first axial and bending natural frequencies. In absence of the measurements, pro-
cedure can be tested using numerically calculated natural frequencies. The measurement 
techniques of the natural frequencies are beyond the scope of this research.  

2. According to the beam boundary conditions, select the two appropriate equations derived for 
both axial and bending modes as per Table 1 below.  

3. Substitute the natural frequencies, from step (1), in the right hand sides of the corresponding 
equations. 

4. With  unknown, use expressions given by Eq. (18) and (19) to evaluate the left hand side of 
equations selected in step (2). 

5. Solve the resulting coupled system of equations for the crack depth  and location . 

The above procedure can be applied not only to the first natural frequencies but also to higher 
frequencies that can be used to confirm the accuracy of the crack quantification.  

It worth noting that the above procedure can be applied using any combination of axial and 
bending natural frequencies, not necessarily to be first natural frequency in each direction. This 
allows using higher natural frequencies to confirm the accuracy of the predicted crack quantification 
as discussed below. Moreover, this procedure can be applied to quantify more than one crack. If the 
number of cracks is already estimated, using enough number of natural frequencies in each direc-
tion, and applying the compatibility conditions at each crack will lead to set of equations with crack 
locations and depths are unknown. Solving these equations leads to estimate the location and depth 
of each crack.  
 

Boundary Conditions Axial mode Eq. Bending mode Eq. 

Fixed-Free 
 

(5) (14) 

Fixed-Roller 
 

(5) (17) 

Fixed-Hinged 
 

(7) (17) 

Hinged-Hinged 
 

(7) (16) 

Hinged-Roller 
 

(5) (16) 

Table 1: Equations used to estimate a crack. 
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4 NUMERICAL VALIDATION 

4.1 Natural Frequencies Evaluation Using Finite Element Method 

To the best of authors’ knowledge, there is no published measurements for the natural frequencies 
of a cracked beam in axial and bending directions. Therefore to test the proposed procedure, and 
due to lack of measurements, finite element method (FEM) is utilized to calculate the natural fre-
quencies of cracked cantilever beam described in Table 2. The FEM is constructed in the commer-
cial package, ANSYS®, as shown in Figure 3. Utilizing the FEM allows to provide an independent 
platform for evaluating the natural frequencies necessary for the proposed procedure. The beam is 
meshed using ANSYS built-in tetrahedral elements SOLID187. The SOLID187 is a 10-node element 
that is used in analysis of 3-D models. Figure 4 shows a schematic sketch showing the 10 nodes of 
this element. The Mesh density is increased near the crack tip. The beam is cracked with double-
edge open crack simulated by two sharp wedges removed away from the beam. The crack is as-
sumed to vary in location and depth. The location of the crack starts from 100 mm to 700 mm from 
the fixed end with step of 100 mm. while the crack depth ranges from 10% to 90% of the section 
depth for these locations.  
 

Beam Dimensions Material Properties 

L b h E   

800mm 20mm 60mm 210 GPa 7800 kg/m3 0.3 

Table 2: Beam Specifications. 

 

  

Figure 3: FEM of the test beam using ANSYS® 
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Figure 4: Schematic sketch of tetrahedral SOLID187 element 

 
To evaluate the accuracy of the natural frequencies obtained using ANSYS, the natural fre-

quencies have been calculated analytically by solving the relations derived in section 2 for the wave 
numbers  and  for the axial and bending modes respectively for each crack location L and depth 
. The relative difference in estimating the natural frequency by both FE and analytical models is 
defined by the following relation for both axial and bending frequencies: 
 

analytical

analyticalFEM







 (21)
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Figure 5: Relative difference in estimating first bending natural frequency of cantilever beam.  

 
Figure 5 and Figure 6 show the relative difference in estimating the first two natural frequencies 

in bending directions as per equation (21). The relative difference in the axial direction is found to 
be less than 1%. It can be seen that the error is acceptable in the entire range except when the 
crack depth exceeds 60% of the depth.  
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Figure 6: Relative difference in estimating second bending natural frequency of cantilever beam. 

 
One final remark has to be indicated here, to help interpreting results shown in the coming sec-

tion, is that ANSYS FE model has overestimated the axial natural frequency. This caused the axial 
natural frequency for a small crack to be slightly greater than the axial natural frequency for intact 
beam. Hence, the method in hand fails to predict these cracks. However, this can be detected in 
early beginning by comparing the natural frequencies of intact beam with the estimated naturals 
frequencies obtained by numerical simulation, or measurements obtained in lab or real life testing.  
 
4.2 Higher Order Modes 

During preliminary numerical studies, it was noticed that the method is not able to detect some 
crack with a reasonable accuracy using the first axial and bending modes. This is attributed to ac-
curacy of the natural frequencies estimation using ANSYS. To improve the results, the second axial 
and second bending natural frequencies were also used along with the first ones. This gives four 
different combinations of the axial and bending natural frequencies. This allows confirming the cor-
rectness of the detection of other combinations, or providing a different solution when it cannot be 
obtained using other combination(s). Additional combinations can be used if higher modes where 
made available.  
 
4.3 Case Studies 

For the cantilever beams with dimensions and cracks described earlier, and with the natural fre-
quencies, estimated using ANSYS FEM, four combinations of the natural frequencies have been 
used; these combinations are as follows: 

- Combination I: 1st axial mode with the 1st Bending mode,  
- Combination II: 1st axial mode with the 2nd Bending mode,  
- Combination III: 2nd axial mode with the 1st Bending mode,  
- Combination IV: 2nd axial mode with the 2nd Bending mode.  

To quantify the soundness of the prediction, the crack property estimation Success Ratio (SRj) 
is introduced. The SRj relates to the crack location  and crack depth δ as follows:  
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Where the subscripts Actual and Predict are the actual and predicted crack property respective-
ly. Points with ratio of 0% are the points where crack detection has failed, while approaching 100% 
indicates accurate crack location detection. 

Here, the accuracy of crack detection is related to the total length of the beam rather than to 
the correct location of the crack. This is more realistic, since, in practical aerospace and wind ener-
gy applications, the beam-like components searched for cracks, such as aircraft wings and wind 
turbine blades, are usually large. Accordingly, it indicates the actual search area for the crack out of 
the total beam length. In other words, it shows the saved effort in searching the entire beam. For 
example, if the error in crack location is 10% of beam length, in a 60m wind turbine blade or civil 
aircraft wing, the total search area will be 6 meters instead of searching the whole 60 meters. This 
enormously reduces the effort, down time, and hence inspection cost. Figures from Figure 7 through 
Figure 13 show SRj for various crack location and depths. In each figure, all crack depths are exam-
ined for the same crack location. At each point, SRj of the detection of crack location and depth is 
calculated using equation (22) for all combinations.  

It can be noticed that at least one combination achieves reasonably high success ratio indicating 
reasonably accurate prediction. However, as indicated earlier, some cracks have not been detected 
with certain combinations. This is attributed to the estimation accuracy of the natural frequencies 
in FEM. Hence, more accurate estimation of the natural frequencies will lead to more accurate 
crack detection. For crack with depth 10%, the FEM overestimated the axial natural frequencies so 
that their values are greater than of the natural frequencies of the intact beam. This causes the 
proposed method to fail in the prediction of the crack.  
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Figure 7: Crack Properties Estimation Success Ratio (for crack located at 100mm). 
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Figure 8: Crack Properties Estimation Success Ratio (for crack located at 200mm). 
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Figure 9: Crack Properties Estimation Success Ratio (for crack located at 300mm). 
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Figure 10: Crack Properties Estimation Success Ratio (for crack located at 400mm). 
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Figure 11: Crack Properties Estimation Success Ratio (for crack located at 500mm).  
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Figure 12: Crack Properties Estimation Success Ratio (for crack located at 600mm). 
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Figure 13: Crack Properties Estimation Success Ratio (for crack located at 700mm). 
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5 DISCUSSION AND CONCLUSIONS 

The proposed approach is a simple straight forward procedure to solve the inverse problem of crack 
detection in Euler-Bernoulli beams. The approach can be applied to any set of boundary conditions. 
In general, utilizing this approach gives accurate results in estimating the crack properties in terms 
of crack location  and depth. However, the error in estimating the crack properties is affected by 
accuracy of the natural frequency measurements or estimation. Using different combinations of axial 
and bending natural frequencies give a set of crack properties estimations. These estimations help 
increasing the accuracy of the crack prediction and highly reducing the total search area for cracks 
within the structure, leading to enormous saving in effort, downtime and cost.  
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Appendix 

The boundary and compatibility conditions cast in matrix form for: 
 

- Cracked cantilever (Fixed-Free) beam:  
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- Cracked simply supported (either Hinged-Hinged or Hinged-Roller) beams:  
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- Cracked Fixed-Hinged and Fixed-Roller beams:  
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