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Abstract 
This paper implements the higher order Hamiltonian method to an-
alyze an electrostatically actuated nonlinear micro beam-based mi-
cro electro mechanical oscillator. First, second and third approxi-
mate solutions are obtained, and the frequency responses of the sys-
tem are compared with energy balance method solution and previ-
ously solved Variational Approach (VA) and exact solution. After 
driving the equation of motion based on the Euler-Bernoulli beam 
theory, Galerkin method has been used to simplify the nonlinear 
equation of motion. Higher order Hamiltonian approach has been 
used to solve the problem and introduce a design strategy. Phase 
plane diagram of electrostatically actuated micro beam has plotted 
to show the stability of presented nonlinear system and natural fre-
quencies are calculated to use for resonator design. According to the 
numerical results, the second approximate is more acceptable and 
results show that one could obtain a predesign strategy by predic-
tion of effects of mechanical properties and electrical coefficients on 
the stability and free vibration of common electrostatically actuated 
micro beam. 
 
Keywords 
Higher order Hamiltonian, MEMS, Electrostatically actuated mi-
cro beam, Free Vibrations, Euler-Bernoulli theory, Galerkin 
method. 
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1 INTRODUCTION 

Micro Electro Mechanical Systems (MEMS) are used in various engineering fields such as aerospace, 
optical and biomedical engineering and are enormously used in applications such as micro-switches, 
transistors, accelerometers, pressure sensors, micro-mirrors, micro-pumps, micro-grippers and bio-
MEMS.(Davis, Green et al. 1998, Wang and Musameh 2003, Atashbar, Bejcek et al. 2004, Lin, Taylor 
et al. 2004, Gu, Elkin et al. 2005, Osiander, Darrin et al. 2005, Balasubramanian and Burghard 2006, 
Allen, Kichambare et al. 2007, Yogeswaran and Chen 2008, Yogeswaran, Thiagarajan et al. 2008, 
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Jain and Goodson 2011). MEMS are merged devices that join electrical and mechanical components. 
The study of dynamic and static behavior of atomic force microscope (AFM) cantilevers and vibration 
control of AFM cantilevers are one of the challenges that coupled electrical and mechanical compo-
nents (Korayem, Sadeghzadeh et al. 2011, Korayem, Sadeghzadeh et al. 2012, Korayem, Homayooni 
et al. 2013, Korayem, Karimi et al. 2014). Ghalambaz et al.(Ghalambaz, Ghalambaz et al. 
2015)studied the effects of the van der Waals attractions, Casimir force, the small size, the fringing 
field, the mid-plane stretching, and the axial load on the oscillation frequency of resonators. 

Intrinsic intricacy of nonlinear vibration problem of MEMS forces numerical solutions instead of 
exact analytical responses. Shooting method(Abdel-Rahman, Younis et al. 2002), δ- perturbation 
method(He 2003), differential quadrature method(Kuang and Chen 2004) , Lindstedt–Poincaré 
method(He 2002), integral equation method(Pouya 1997), homotopy analysis method (HAM)(Belén-
dez, Beléndez et al. 2008), variational approach (VA) (He 2007), Max–Min approach (He 2008, Zeng 
2009, Zeng and Lee 2009) and Energy Balance Method (He 2002)are some of the numerical and 
approximate analytical approaches could be addressed. Ganji, Azimi et al.(Ganji, Azimi et al. 2012) 
applied the Energy Balance Method (EBM) and Amplitude Frequency Formulation (AFF) to govern 
the approximate analytical solution for motion of two mechanical oscillators. They showed that in 
comparison with the fourth order Runge-Kutta method, their solution ismore comfortable and useful 
for solving strong non-linear oscillators. Ganji and Azimi. (Ganji and Azimi 2012) used the Max-Min 
Approach (MMA) and Amplitude Frequency Formulation (AFF) to derive the approximate analyti-
cal solution for motion of nonlinear free vibration of conservative, single degree of freedom systems, 
and they concluded that both methods have the same results. The results showed these methods are 
very convenient for solving nonlinear equations and also can be utilized for a wide range of time and 
boundary conditions for nonlinear oscillators. Yildirim, Saadatnia et al(Yildirim, Saadatnia et al. 
2011) applied the Hamiltonian approach to obtain the natural frequency of the Duffing oscillator, the 
nonlinear oscillator with discontinuity and the quantic nonlinear oscillator. Obtained results were 
completely inagreement with the approximate frequencies and the exact solution. H. Askari et al. 
(Askari 2013)utilized the higher order Hamiltonian approach to elicit approximate solutions for the 
model of buckling of a column and mass-spring system. Y. Khan and M. Akbarzade. (Khan and 
Akbarzade 2012) used variational approach, Hamiltonian approach, and amplitude-frequency formu-
lation to analysis of nonlinear oscillator equation arising in double-sided clamped microbeam-based 
electromechanical resonator. Qian, Ren et al.(Qian, Ren et al. 2012)utilized the homotopy analysis 
method (HAM) to derive analytical approximate solutions for nonlinear vibration of an electrostati-
cally actuated microbeam and for verifying the accuracy of this approach, they compared their method 
with other analytical and exact solutions. 

Fu et al.(Fu, Zhang et al. 2011)applied the Energy Balance Method (EBM) to study a nonlinear 
oscillation problem in the micro beam model. They governed equation of free vibration of a micro 
beam, based on the Euler- Bernoulli hypothesis and also compared the results with fourth-order 
Runge-Kutta method.  

H. Rafieipour et al.(Rafieipour, Lotfavar et al. 2013)used the He’s frequency amplitude method 
and presented an analytical closed form solution. Obtained results were in a good agreement with 
numerical methods.  
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Bayat et al.(Bayat, Bayat et al. 2014) investigated He’s Variational Approach (VA) to solve nonlinear 
vibration of an electro statically actuated clamped- clamped micro beam that was equivalent to the 
first order of higher Hamiltonian method(Yildirim, Askari et al. 2012). They demonstrated that VA 
can be a good candidate for precise periodic solution of nonlinear systems. Final results of mentioned 
works are listed in table 1. 
 

Fu et al (Fu, Zhang et al. 2011), 2011 ߱ா஻ெ ൌ ඨ
4ܽସ ൅ 3ܽହܣଶ ൅ 7ܽ଺ܣସ/3 ൅ 15ܽ଻ܣ଺/8

ܽଵܣସ ൅ 2ܽଶܣଶ ൅ 4ܽଷ
 

H. Rafieipour et al  
(Rafieipour, Lotfavar et al. 2013), 2013  

߱ ൌ
√2
4
ඨ
64ܽସ ൅ ଶܽହܣ48 ൅ ସܽ଺ܣ40 ൅ ଺ܽ଻ܣ35

ସܽଵܣ5 ൅ ଶܽଶܣ6 ൅ 8ܽଷ
 

Bayat et al (Bayat, Bayat et al. 2014), 2014 ߱௏஺ ൌ
√2
4
ඨ
64ܽସ ൅ ଶܽହܣ48 ൅ ସܽ଺ܣ40 ൅ ଺ܽ଻ܣ35

ସܽଵܣ3 ൅ ଶܽଶܣ4 ൅ 8ܽଷ
 

Table 1: Comparison of natural frequency of a micro beam from recent related works. 
 

This research investigated high order approximate solutions by using higher order Hamiltonian 
method(He 2010) for solving a non-linear dynamic problem, in order to have a highly accurate nu-
merical approximation. Contrarily to some recent researches such as (Bayat, Bayat et al. 2014), we 
showed that the second order is extremely close to the EBM solution and exact solution.  The meth-
odology of the higher order Hamiltonian for solving an ordinary differential equation with strong 
power nonlinearity is presented. Numerical comparisons and results were carried out to confirm the 
rightness and accuracy of the applied method.  

To use higher order Hamiltonian approach, a clamped-clamped micro beam is modeled that placed 
between two completely fixed electrodes. Deriving the dimensionless equation of motion and separa-
tion with assumed mode method, first and higher order approximation of Hamiltonian of system have 
proposed and then, natural frequency calculated for each case. Finally, we show the effects of various 
parameters on the frequency of electrostatically actuated micro beam, concluding Hamiltonian ap-
proach is completely efficient and agreeable. 
 
2 MATHEMATICAL MODEL 

Figure 1 and 2 depict the clamped-clamped micro beam with length	݈, width	݄, constant thickness ‘b’, 
initial gap ݃଴and electrostatic applied voltage ܸ. The micro beam is doubly clamped and placed 
between two completely fixed electrodes. Applied voltage is due to the electric field that could be 
divided into two parts; a DC polarization and an AC electric field.  
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Figure 1: Schematics of clamped-free-clamped-free micro electromechanical resonator. 

 

 

Figure 2: Schematics of deformed micro electromechanical resonator due to an electrostatic voltage. 

 
Applying an AC electric field or a periodic mechanical load results in dynamic deflection and 

vibration of the micro beam (Younis and Nayfeh 2003). For more design options and facilities, com-
putational studies are essential beside experiments. On the other hand, there are not exact (analytical) 
closed form solutions for all boundary conditions of mechanical systems. As a good alternative, by 
applying the Galerkin Method (GM) and utilizing the classical beam theory, the free vibration prob-
lem of MEMS could be solved.  

The nonlinear partial differential equation of the transverse motion regarding the effect of mid-
plane deformation could be expressed as (Rao 2007):  
 

ܫതܧ
߲ସݓ
ସݔ߲

൅ ܵߩ
߲ଶݓ
ଶݐ߲

ൌ ቈ ഥܰ ൅
തܵܧ
2݈
න ൬

ݓ߲
ݔ߲
൰
ଶ௟

଴
቉
߲ଶݓ
ଶݔ߲

൅ ,ݔሺݍ  ሻ (1)ݐ

 

Where ݓ	ሺݔ,  is the Young’s modulus, ߭is the Poisson's ratio andܧ ,ሻ is the transverse deflection	ݐ
 changes with different thicknesses ofܧ ത is the effective modulus of the micro beam. The quantity ofܧ
the micro beam as follows (Rafieipour, Lotfavar et al. 2013):  
 

തܧ ൌ ൝
ܧ

1 െ ߭ଶ
										 			for	wide micro beam ሺܾ ൒ 5݄ሻ

ܧ 										 for	narrow micro beam ሺܾ ൏ 5݄ሻ
 (2)

 



482     S. Sadeghzadeh and A. Kabiri / Application of Higher Order Hamiltonian Approach to the Nonlinear Vibration of Micro Electro… 

Latin American Journal of Solids and Structures 13 (2016) 478-497 
 

ഥܰ symbolizes the tensile or compressive axial load and is related to the discrepancy of both 
thermal expansion coefficient and crystal lattice period between substrate and the micro beam. 
,ݔ	ሺ	ݍ  ሻ is normalized motivating force that derived from electrostatic excitation as(Pelesko and	ݐ
Bernstein 2002):  
 

,ݔሺݍ ሻݐ ൌ
ଶݒ௩ܾߝ

2
൥

1

൫݃଴ െ ,ݔሺݓ ሻ൯ݐ
ଶ െ

1

൫݃଴ ൅ ,ݔሺݓ ሻ൯ݐ
ଶ൩ (3)

 

Where ߝ௩ ൌ 8. -is the dielectric constant of the interface. Boundary conditions are as fol݉/ܨ݌	85
lows;  
 

,ሺ0ݓ ሻݐ ൌ ,ሺ݈ݓ ሻݐ ൌ 0 (4)
 

ݓ߲
ݔ߲

ሺ0, ሻݐ ൌ
ݓ߲
ݔ߲

ሺ݈, ሻݐ ൌ 0 (5)
 

The following dimensionless parameters are used to normalize equation (1); 
 

ߦ ൌ
ݔ
݈
	 ,ܹ ൌ

ݓ
݃଴

, ߬ ൌ ඨݐ
ܫതܧ

ସ݈݄ܾߩ
	 , ߙ ൌ 6 ቀ

݃௢
݄
ቁ
ଶ
, ܰ ൌ

ഥ݈ܰଶ

ܫതܧ
, ܸ ൌ ඨ

ଶݒ௩݈ସߝ24

ത݄ଷ݃଴ܧ
ଷ  (6)

 

Then, dimensionless boundary conditions could be written as:  
 

,ሺ0ݓ ߬ሻ ൌ ,ሺ1ݓ ߬ሻ ൌ 0 (7)
 

ݓ߲
ݔ߲

ሺ0, ߬ሻ ൌ
ݓ߲
ݔ߲

ሺ1, ߬ሻ ൌ 0 (8)
 

Based on presented formulas, dimensionless equation of motion could be implemented for MEMS 
resonators by the following equation;  
 

߲ସܹ
ସߦ߲

൅
߲ଶܹ
߲߬ଶ

ൌ ቈܰ ൅ නߙ ൬
߲ܹ
ߦ߲

൰
ଶଵ

଴
቉
߲ଶܹ
ଶߦ߲

൅
ܸଶ

4
൤

1
ሺ1 െܹሻଶ

െ
1

ሺ1 ൅ܹሻଶ
൨ (9)

 

By using the assumed modes method, dimensionless deflection solution of Eq. (9) could be intro-
duced as; 
 

ܹሺߦ, ߬ሻ ൌ෍߶௜ሺߦሻݑ௜ሺ߬ሻ
௡

௜ୀଵ

 (10)

 

Where ߶௜ሺߦሻ is the ith Eigen function of micro beam that fulfills the appropriate boundary con-
ditions, ݑ௜ሺ߬ሻis the ith time dependent deflection coordinate and ݊is the supposed degrees of freedom 
of the micro beam.  

To solve Eq. (9), we consider a single degree of freedom model ሺ݊ ൌ 1ሻ and deflection function 
ܹሺߦ, ߬ሻ is assumed to be as:  
 

ܹሺߦ, ߬ሻ ൌ ߶ሺߦሻݑሺ߬ሻ (11)
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The trial function is  
 

߶ሺߦሻ ൌ ଶሺ1ߦ	16 െ ሻଶߦ (12)
 

This function satisfies the boundary conditions.  
Then by substitution of presented functions to the dimensionless equation of motion and inte-

grating from 0 to 1, dimensionless equation of motion changes to (Fu, Zhang et al. 2011):  
 

ሷݑ ሺܽଵݑସ ൅ ܽଶݑଶ ൅ ܽଷሻ ൅ ܽସݑ ൅ ܽହݑଷ ൅ ܽ଺ݑହ ൅ ܽ଻ݑ଻ ൌ 0 ሺ0ሻݑݎ݁݀݊ݑ ൌ ,ܣ ሶݑ ሺ0ሻ ൌ 0 (13)
 

Where 
 

ܽଵ ൌ න߶
଺
ߦ݀

ଵ

଴

, ܽଶ ൌ 2න߶
ସ
ߦ݀

ଵ

଴

, ܽଷ ൌ න߶
ଶ
ߦ݀

ଵ

଴

, ܽସ ൌ නቀ߶
′′′′
߶ െ ܰ߶

′′
߶ െ ܸଶ߶

ଶ
ቁ ߦ݀

ଵ

଴

 

ܽହ ൌ නቌെ2߶
′′′′
߶
ଷ
൅ 2ܰ߶

′′
߶
ଷ
െ ߶ߙ

′′
߶නሺ߶′ሻଶ

ଵ

଴

ߦቍ݀ߦ݀

ଵ

଴

 

ܽ଺ ൌ නቌ߶
′′′′
߶
ହ
െ ܰ߶

′′
߶
ହ
൅ ߶ߙ2

′′
߶
ଷ
නሺ߶′ሻଶ
ଵ

଴

ߦቍ݀ߦ݀

ଵ

଴

 

ܽ଻ ൌ െනቌߙ߶
ᇱᇱ
߶
ହ
නሺ߶ᇱሻଶ
ଵ

଴

ߦቍ݀ߦ݀

ଵ

଴

 

(14)

 
3 SOLUTION PROCEDURE 

For the following general oscillator 
 

ሷݑ ൅ ݂൫ݑሺݐሻ൯ ൌ 0										 ሺ0ሻݑ ൌ ሶݑܣ ሺ0ሻ ൌ 0 (15)
 

Where u and t are generalized dimensionless displacement and dimensionless time andܣ is ampli-
tude of oscillator.  Based on the variational principle, by implementing the semi-inverse method(He 
1997, He 2004) and He’s method(He 2007, Bayat and Pakar 2011), variation parameter could be 
written as; 
 

ሻݑሺܬ ൌ න ൜െ
1
2
ሶݑ ଶ ൅ ሻൠݑሺܨ ݐ݀

௧

଴

 (16)

 

Where ܶ ൌ is period of the oscillator and  డி߱/ߨ2
డ௨
ൌ ݂ሺݑሻ. Thus, Hamiltonian of presented prob-

lem could be expressed as;  
 

H ൌ
1
2
uሶ ଶ ൅ Fሺuሻ ൌ FሺAሻ (17)

 

Then defining a new function as; 
 

Rሺtሻ ൌ
1
2
uሶ ଶ ൅ Fሺuሻ െ FሺAሻ (18)
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By choosing any arbitrary point like ߱ݐ	 ൌ 	ݐand setting ܴሺ ,4/ߨ	 ൌ గ

ସఠ
ሻ ൌ 0, an approximate 

frequency–amplitude relationship could be obtained. Such approach is much simpler and has been 
widely used(Jamshidi and Ganji 2010). The accuracy of such location method, however, strongly 
depends upon the chosen location point. To overcome the shortcomings of the energy balance method, 
a new approach based on Hamiltonian has been suggested (He 2010) . Differentiating the Hamiltonian 
leads to natural frequency of the system; 
 

ܪ߲
ܣ߲

ൌ 0 (19)
 

For more convenience, a new function ܪ෩ሺݑሻ defined as;  
 

ሻݑ෩ሺܪ ൌ න ൜
1
2
ሶݑ ଶ ൅ ሻൠݑሺܨ ݐ݀

்/ସ

଴

ൌ
1
4
(20) ܪܶ

 

And then for natural frequencies of the system, one could use the following relation; 
 

డ

డ஺
ቀ
డு෩

డ்
ቁ ൌ 0  or  డ

డ஺
ቆ
డு෩

డభ
ഘ

ቇ ൌ 0 (21)

 

From Eq. (21)we can obtain approximate frequency–amplitude relationship of a nonlinear oscil-
lator(Shou 2009, He 2010). For current special problem, we have following Hamiltonian equation:  
 

ሻݑ෩ሺܪ ൌ න
1
2
ሺܽଵݑସ ൅ ܽଶݑଶ ൅ ܽଷሻݑሶ ଶ ൅ ൬

1
2
ܽସݑଶ ൅

1
4
ܽହݑସ ൅

1
6
ܽ଺ݑ଺ ൅

1
8
ܽ଻଼ݑ൰ ݐ݀

்/ସ

଴

 (22)

 
3.1 First Order Hamiltonian Approach 

With satisfying the initial conditions, utilizing ݑ ൌ ܣ cos߱ݐ as the trial function into equation 
(22), we obtain; 
 

ሻݑ෩ሺܪ ൌ න
1
2
ሺܽଵሺܣ cos߱ݐሻ	ସ ൅ ܽଶሺܣ cos߱ݐሻ ଶ ൅ ܽଷሻሺെ߱ܣ sin߱ݐሻଶ

೅
ర

଴

൅ ൬
1
2
ܽସሺܣ cos߱ݐሻ	ଶ ൅

1
4
ܽହሺܣ cos߱ݐሻସ ൅

1
6
ܽ଺ሺܣ cos߱ݐሻ଺ ൅

1
8
ܽ଻ሺܣ cos߱ݐሻ଼൰  ݐ݀

(23)

 

That leads to; 
 

ሻݑ෩ሺܪ ൌ න
1
2
ଶ߱ܣ sinଶ ݐ ሺܽଵሺܣ cos ሻݐ ସ ൅ ܽଶሺܣ cos ሻݐ ଶ ൅ ܽଷሻ 																							

ഏ
మ

଴

൅
1
߱
൬
1
2
ܽସሺܣ cos ሻݐ ଶ ൅

1
4
ܽହሺܣ cos ሻସݐ ൅

1
6
ܽ଺ሺܣ cos ሻ଺ݐ ൅

1
8
ܽ଻ሺܣ cos ሻ଼൰ݐ  ݐ݀

(24)

 

Then, the frequency–amplitude relationship can be obtained from; 
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߲
ܣ߲

ቌ
෩ܪ߲

߲
ଵ

ఠ

ቍ ൌ 0 → .ሺെ0ܣ 785aଷ ൅ 0. 785aସ߱ଶ ൅ െ0. ଶaଶܣ392 ൅ 0. ଶaହ߱ଶܣ589 ൅ െ0. ସaଵܣ294

൅ 0. ସa଺߱ଶܣ490 ൅ 0. ଺a଻߱ଶሻܣ429 ൌ 0

(25)

 

Therefore, after some approximations and simplifications, equation (25) could be solved and the 
natural frequency could be obtained as; 
 

߱ ൎ ඨ
0. 785aସ ൅ 0. ଶaହܣ589 ൅ 0. ସa଺ܣ490 ൅ 0. ଺a଻ܣ429

0. ସaଵܣ294 ൅ 0. ଶaଶܣ392 ൅ 0. 785aଷ
 (26) 

 

That is approximately equal to; 
 

߱ ൎ
√2
4
ඨ
64aସ ൅ ଶaହܣ48 ൅ ସa଺ܣ40 ൅ ଺ܽ଻ܣ35

ସaଵܣ3 ൅ ଶaଶܣ4 ൅ 8aଷ
 (27)

 

The variational approach (Bayat, Bayat et al. 2014) and analytical approximate solu-
tion(Rafieipour, Lotfavar et al. 2013) resulted the same response for this problem.  
 
3.2 Second Order Hamiltonian Approach 

To improve the accuracy of this approach, a higher order periodic solution was assumed as time 
response function as;  
 

ݑ ൌ ܽ cos߱ݐ ൅ ܾ cos (28) ݐ3߱
 

Where the initial condition is 
 

ܣ ൌ ܽ ൅ ܾ (29)
 

Substituting Eq. (29) into Eq. (22), we obtain:  
 

ሻݑ෩ሺܪ ൌ න
1
2
߱ሺܽଵሺܽ cos ݐ ൅ ܾ cos ସ	ሻݐ3 ൅ ܽଶሺܽ cos ݐ ൅ ܾ cos ሻݐ3 ଶ ൅ ܽଷሻሺെܽ sin ݐ െ 3ܾ sin ሻଶݐ3

ഏ
మ

଴

൅
1
߱
൬
1
2
ܽସሺܽ cos ݐ ൅ ܾ cos ሻଶݐ3 ൅

1
4
ܽହሺܽ cos ݐ ൅ ܾ cos ሻସݐ3

൅
1
6
ܽ଺ሺܽ cos ݐ ൅ ܾ cos ሻ଺ݐ3 ൅

1
8
ܽ଻ሺܽ cos ݐ ൅ ܾ cos ሻ଼൰ݐ3  ݐ݀

(30)

 

And then the frequency–amplitude relationship can be obtained from following equation; 
 

0. 343ܽହaଵ ൅ 0. 392ܽଷaଶ ൅ 3. 239ܽସaଵܾ ൅ 3. 926ܽଶaଶܾ ൅ 7. 068aଷܾ ൅ 4. 417ܽଷaଵܾଶ ൅ 11. 191ܽଶaଵܾଷ

൅ 3. 534aଶܾଷ ൅ 2. 650aଵܾହ ൅ 0. 196ܽଷaହ߱ଶ ൅ 0. 245ܽହa଺߱ଶ ൅ 0. 257ܽ଻a଻߱ଶ

൅ 0. 785aସܾ߱ଶ ൅ 1. 178ܽଶaହܾ߱ଶ ൅ 1. 472ܽସa଺ܾ߱ଶ ൅ 1. 803ܽ଺a଻ܾ߱ଶ

൅ 1. 472ܽଷa଺ܾଶ߱ଶ ൅ 3. 865ܽହa଻ܾଶ߱ଶ ൅ 0. 589aହܾଷ߱ଶ ൅ 2. 945ܽଶa଺ܾଷ߱ଶ

൅ 7. 731ܽସa଻ܾଷ߱ଶ ൅ 4. 295ܽଷa଻ܾସ߱ଶ ൅ 0. 490a଺ܾହ߱ଶ ൅ 5. 154ܽଶa଻ܾହ߱ଶ

൅ 0. 429a଻ܾ଻߱ଶ ൌ 0 

(31)
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To obtain natural frequency, substituting equation (29) in (31) as ܾ ൌ ܣ െ ܽ, a second order 
algebraic equation set will be ready to solve to get the natural frequency and values of ‘a’, ‘b’ for 
various values of ܣ and ܸ, some of the results are listed in table 2. 
 

ሺ࡭,  ࢈ ࢇ ሻࢂ

(0. 3, 10) 0. 29835 0. 00164 

(0. 4, 10) 0. 39554 0. 00445 

(0. 5, 10) 0. 49015 0. 00984 

(0. 6, 10) 0. 58094 0. 01905 

(0. 7, 10) 0. 66653 0. 03346 

Table 2: ܽ, ܾ  parameters for differentܣ and ܸvalues (ܰ ൌ 10, ߙ ൌ 24ሻ. 

 
3.3 Third Order Hamiltonian Approach 

One could use a third order time response for micro beam as;  
 

ݑ ൌ ܽ cos߱ݐ ൅ ܾ cos ݐ3߱ ൅ ܿ cos (32) ݐ5߱
 

Where the initial condition is 
 

ܣ ൌ ܽ ൅ ܾ ൅ ܿ (33)
 

Same as the second order Hamiltonian approach, with some mathematical simplification, values 
of ܽ, ܾ	ܽ݊݀	ܿcould be obtained for various values of A and V such as what listed in table 3.  
 

ሺܣ, ܸሻ ܽ ܾ ܿ 

(0. 3, 10) 0. 29830 0. 00165 0. 000046 

(0. 4, 10) 0. 39531 0. 00446 0. 000218 

(0. 5, 10) 0. 48932 0. 00992 0. 000754 

(0. 6, 10) 0. 57849 0. 01937 0. 002135 

(0. 7, 10) 0. 66036 0. 03442 0. 005215 

Table 3: ܽ, ܾ, ܿ parameters for some ܣ and ܸ (ܰ ൌ 10, ߙ ൌ 24ሻ 

 
4 VALIDATIONS, RESULTS AND DISCUSSIONS 

4.1 Computational Efficiency 

Presented nonlinear algebraic equations are solved by using Wolfram Mathematica software on In-
tel(R) Core (TM) i5-3230M CPU @ 2.6 GHz processor, includes 6 GB installed memory on a 64-bit 
operating system. Required time for calculation of natural frequencies was 5 to 10 seconds, 30 to 40 
seconds and 3.5 to 4 minutes for first, second and third order Hamiltonian approach respectively. In 
terms of accuracy and computational efficiency, second order solution was the best. 
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4.2 Validation 

In comparison with previous works, where higher order approximations had not been used, more 
accurate dynamic response and natural frequencies are observed. Energy Balance Method (EBM) is 
the best criterion for comparisons. Figure 3 depicts comparison of the dynamic response of a micro 
beam under an electric excitation (V=24 Volt), with parameters N ൌ 10, a ൌ 24	and	A ൌ 0. 4 obtained 
with the first, 2nd and 3rd order Hamiltonian approaches. Figure 4 repeated the comparisons with 
changing the A value to 0.5. 
 

 

Figure 3: Comparison of dynamic response obtained with higher order Hamiltonian approaches  

and EBM solution (ࡺ ൌ ૚૙, ࢇ ൌ ૛૝, ࢂ ൌ ૚૙, ࡭ ൌ ૙. ૝	ሻ.	

	

 

Figure 4: Comparison of dynamic response obtained with higher order Hamiltonian approaches  

and EBM solution (ࡺ ൌ ૚૙, ࢇ ൌ ૛૝, ࢂ ൌ ૛૙, 	࡭ ൌ ૙. ૞). 
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Table 4 compares frequency commensurate for different parameters of system, obtained from 
Hamiltonian method and energy balance method (EBM (Fu, Zhang et al. 2011)). The exact values 
for some cases are also reported. Accuracy increases with increasing the order of approximations. 
When the order increases more accurate results are achieved. Increasing applied voltage or initial 
amplitude leads to more errors. Thus, in the case of larger initial amplitude and applied voltage, 
higher order approximations would be more useful. 
 

 ࢞ࢋ࣓
(Qian, Ren et 

al. 2012) 
 

 ࡹ࡮ࡱ࣓
 

 ࢘ࢋࢊ࢘࢕ࢊ࢘࢏ࢎࢀ࣓
(Relative Errors %) 

 ࢘ࢋࢊ࢘࢕ࢊ࢔࢕ࢉࢋࡿ࣓
(Relative Errors %)

 ࢘ࢋࢊ࢘࢕࢚࢙࢘࢏ࡲ࣓
(Relative Errors %)

 ࡭ࢂ࣓
(Relative Errors %)

ሺ࡭,  ሻࢂ

26.8372 26. 3867 
26. 3669 

(0. 0750 %) 
26. 3672 

(0. 0739 %) 
26. 3644 

(0. 0845 %) 
26. 3644 

(0. 0845 %) 
(0. 3, 0) 

- 24. 2753 
24. 2543 

(0. 0865 %) 
24. 2547 

(0. 0848 %) 
24. 2526 

(0. 0935 %) 
24. 2526 

(0. 0935 %) 
(0. 3, 10) 

16.6486 16. 3829 
16. 3547 

(0.1724%) 
16. 3552 

(0. 1690 %) 
16. 3556 

(0. 1666 %) 
16. 3556 

(0. 1666 %) 
(0. 3, 20) 

- 27. 2759 
27. 2195 

(0. 2067 %) 
27. 2214 

(0. 1998 %) 
27. 2053 

(0. 2588 %) 
27. 2053 

(0. 2588 %) 
(0. 4, 0) 

- 25. 1217 
25. 0621 

(0. 2373 %) 
25. 0639 

(0. 2300 %) 
25. 0500 

(0. 2854 %) 
25. 0500 

(0. 2854 %) 
(0. 4, 10) 

- 17. 1023 
17. 0219 

(0. 4701 %) 
17. 0238 

(0. 4590 %) 
17. 0187 

(0. 4888 %) 
17. 0187 

(0. 4888 %) 
(0. 4, 20) 

- 28. 1758 
27. 0605 

(0. 4092 %) 
28. 0657 

(0. 3907 %) 
28. 0019 

(0. 6171 %) 
28. 0019 

(0. 6171 %) 
(0. 5, 0) 

- 25. 9365 
25. 8155 

(0. 4665 %) 
25. 8203 

(0. 4480 %) 
25. 7611 

(0. 6762 %) 
25. 7611 

(0. 6762 %) 
(0. 5, 10) 

- 17. 5835 
17. 4241 

(0. 9065%) 
17. 4270 

(0. 8900 %) 
17. 3839 

(1. 1351 %) 
17. 3839 

(1. 1351 %) 
(0. 5, 20) 

28.5382 28. 9227 
28. 7499 

(0. 5974 %) 
28. 7564 

(0. 5749 %) 
28. 5579 

(1. 2612 %) 
28. 5579 

(1. 2612 %) 
(0. 6, 0) 

- 26. 5324 
26. 3562 

(0. 6640 %) 
26. 3600 

(0. 6497 %) 
26. 1671 

(1. 3768 %) 
26. 1671 

(1. 3768 %) 
(0. 6, 10) 

18.5902 17. 5017 
17. 3013 

(1. 1450 %) 
17. 2901 

(1. 2238 %) 
17. 0940 

(2. 3294 %) 
17. 0940 

(2. 3294 %) 
(0. 6, 20) 

Table 4: Comparison of natural frequencies (rad/s) and relative errors for various  
parameters of system (ܰ ൌ 10, ߙ ൌ 24ሻ. 

 
Table 5 lists the effect of increasing the initial amplitude onto the natural frequencies obtained 

by various approximations. 
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 ࡹ࡮ࡱ࣓
 

 ࢘ࢋࢊ࢘࢕ࢊ࢘࢏ࢎࢀ࣓
(Relative Errors %) 

 ࢘ࢋࢊ࢘࢕ࢊ࢔࢕ࢉࢋࡿ࣓
(Relative Errors %)

 ࢘ࢋࢊ࢘࢕࢚࢙࢘࢏ࡲ࣓
(Relative Errors %)

 ࡭ࢂ࣓
(Relative Errors %)(A, V) 

28. 6812 
28. 5410 

(0. 4888%) 
28. 5188 

(0. 5662%) 
27. 9997 

(2. 3761%) 
27. 9997 

(2. 3761%) 
(0. 7, 5) 

22. 9459 
22. 8612 

(0. 3691%) 
22. 8028 

(0. 6236%) 
22. 2646 

(2. 9691%) 
22. 2646 

(2. 9691%) 
(0. 7, 15) 

Table 5: Effect of increasing initial amplitude to natural frequencies obtained  
by using higher order Hamiltonian approaches 

 
Dynamic response of micro beam is depicted in figure 4.By reduction of parameters a, b and c for 

each order, amplitude decreases and it decreases more by increasing the order of approximate solution. 
Furthermore, second and third order approximations have almost the same range of amplitudes. 
 
4.3 Phase Diagram of Micro Beam 

Simplifying the convolution of a nonlinear system to a linear wise model could provide a useful view 
on the stability and controllability of system. For example, assume that a nonlinear MEMS micro 
beam has a linear wise model as below that includes all nonlinearities on the second part of its 
dynamics; 
 

ሶݔ ൌ ݔܣ ൅ ݑܤ ൅ Ψே௢௡௟௜௡௘௔௥ሺݔ, ,ݐ ሻ (34)ݑ
 

Nonlinear term (Ψ୒୭୬୪୧୬ୣୟ୰ሺx, t, uሻ) could contain a high level of nonlinearity because of including 
space variables, time and also inputs as operands. It could exert some amazing variations on the 
dynamics of system. For more clarity, phase diagram of electrostatically actuated micro beam has 
plotted to demonstrate the effects of nonlinear part of MEMS micro beam. Figures 5 and 6 show 
compares phase diagram of obtained values by the higher Hamiltonian approach with the energy 
balance method (EBM). These figures depict the effects of ܣ and ܸ parameters on the phase plan of 
the system in second order Hamiltonian method. 
 

 

Figure 5: Comparison of phase diagram obtained from the higher order Hamiltonian method  

with the EBM solution (ࡺ ൌ ૚૙, ࢻ ൌ ૛૝, ࢂ ൌ ૚૙, ࡭ ൌ ૙. ૝). 
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Figure 6: Comparison of phase diagram obtained from the higher order Hamiltonian method  

with the EBM solution (ࡺ ൌ ૚૙, ࢇ ൌ ૛૝, ࢂ ൌ ૛૙, 	࡭ ൌ ૙. ૞).	

 
Figure 7 shows the effect of parameter	Aon the phase plan of system for N ൌ 10, a ൌ 24, V ൌ 5	 

simulated by using the second order of Hamiltonian method. As it can be seen on the figure, by 
increase in the order of Hamiltonian approach, amplitude parameters (a, b, c) decreased, thus overall 
amplitude decreases too. When micro beam resonates near the zero point as the basal condition, a 
notable reduction in the velocity of resonator is observable. This phenomenon disappears immediately 
after passing from basal condition. This means that dynamics of this nonlinear system also depends 
on the position of the point that is being measured on the MEMS micro beam.  Same analysis 
figure 8, where shows the effect of V parameter on the phase plan of the system for N ൌ 10, a ൌ
24, A ൌ 0. 6	simulated by using the second order of Hamiltonian method. 
 

 

Figure 7: Effect of ࡭ on the phase plan of the system for ࡺ ൌ ૚૙, ࢇ ൌ ૛૝, ࢂ ൌ ૞  

simulated by using the second order of Hamiltonian. 
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Figure 8: Effect of ࢂ parameter on the phase plan of the system for ࡺ ൌ ૚૙, ࢇ ൌ ૛૝, ࡭ ൌ ૙. ૟  

simulated by using the second order of Hamiltonian. 

 
4.4 Free Vibration 

Figure 9 shows the effect of ܰ parameter on natural frequency. It can be observed that the frequency 
is proportional with N. However, it decreases when initial amplitude (A) increases. The second order 
Hamiltonian has nearly same response in comparison to the EBM solution, even for higher values of 
N and amplitudes. 
 

 

Figure 9: Effect of ࡺ parameter on the frequency of electrostatically actuated  

micro beam with ࢂ ൌ ૛૙,ࢻ ൌ ૛૝ and various values for A. 
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Figure 10 depicts the effect of parameter	ߙ on natural frequency of electrostatically actuated micro 
beam with parameters ܰ ൌ ૚૙, ࢂ ൌ ૛૙and various values for A. It can be observed that the frequency 
increases with increasing	ߙ. Obtained results by the second order Hamiltonian are close to the EBM 
solution, especially for low amplitudes and ߙ values. 
 

 

Figure 10: Effect of parameter	ࢻ on natural frequency of electrostatically actuated  

micro beam with ࡺ ൌ ૚૙, ࢂ ൌ ૛૙ and various values of A.	

Figure 11 shows the effect of applied voltage on the natural frequency of electrostatically actuated 
micro beam. It can be seen that the frequency is decreased with increase in the voltage. Second order 
Hamiltonian is extremely close to EBM solution but they have considerable discrepancies in high 
amplitudes and voltages.  
 

 

Figure 11: Effect of ࢂ parameter on natural frequency of electrostatically actuated  

micro beam with ࡺ ൌ ૚૙, ࢂ ൌ ૛૙ and various values of A.	
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Nonlinear behavior of system leads to abrupt falling on high applied voltages. Natural frequency 
decreases dramatically on high voltages. On the other hand, natural frequency increases also with 
increasing the amplitude. This is due to the effect of more hardening the equivalent linear system of 
electrostatically actuated micro beam when initial amplitude increases. It is also observed that for 
higher amplitudes, discrepancy is less than lower values. 
Figure 12 shows the effect of modulus of elasticity of electrostatically actuated micro beam on the 
natural frequency with various initial amplitudes. As demonstrated clearly, natural frequency in-
creases with increasing the modulus of elasticity.  
 

 

Figure 12: Variation of natural frequency due to initial amplitude (A) and modulus of elasticity (E).	

	
Figure 13 shows the effect of thickness of electrostatically actuated micro beam on the natural 

frequency with various initial amplitudes. As demonstrated clearly, natural frequency decreases with 
increasing the thickness of micro beam.  
 

 

Figure 13: Variation of natural frequency due to thickness of micro beam (H).	
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Several simulations and plots could be introduced to consider the fundamental design rquirements 
before any manufacturing process. Based on the presented examples,the proposed nonlinear model 
based on Hamiltonian approach is completely efficient and acceptable to find the effects of parameters 
on the natural frequency and phase plane diagram of electrostatically actuated micro beam.	
 
5 CONCLUSION 

Applying the Hamiltonian approach to the nonlinear problem of electrostatically actuated micro 
beam, this paper studied the effect of various parameters on the dynamic response and phase diagram 
(stability) of the system. Due to the nonlinear manner of MEMS resonators on sensor design para-
digms, this would be used in practical work for more efficient and low cost experiments. Utilized 
approximate solution converged to the exact solution and obviously demonstrated a good level of 
accuracy. It was presented that increasing the order of Hamiltonian approach, more agreeable results 
could be achieved. Briefly, presented approach resulted in below findings; 

1. Time cost of presented approach was in an acceptable range (5 to 10 seconds, 30 to 40 
seconds and 3.5 to 4 minutes for first, second and third order Hamiltonian approach, re-
spectively). 

2. In terms of accuracy and computational efficiency, second order solution was the best. 
3. Increasing applied voltage or initial amplitude leads to more errors. Then, in the case of 

larger initial amplitude and applied voltage, higher order approximations will be useful. 
4. By increase in the order of Hamiltonian approach, amplitude parameters (a, b, c) decreased, 

thus overall amplitude decreases too.  
5. When micro beam resonates near the zero point as the basal condition, a few hardening 

manner could be observed that removed immediately after passing from basal condition. 
This means that dynamics of this nonlinear system also depends on the position of the point 
that is being measured on the MEMS micro beam.  

6. Natural frequency increases with external load increasing. However, it decreases with in-
creasing of initial amplitude (A). On the other hand, the second order Hamiltonian leads 
to extremely close response to the EBM solution, even for higher values of N and ampli-
tudes. 7. Natural frequency increases with increasing	ߙ.  

8. Natural frequency is decreasing with increase in the voltage.  
9. Nonlinear behavior of system leads to abrupt falling on high applied voltages. Natural fre-

quency decreases dramatically on high voltages. On the other hand, natural frequency in-
creases also with increasing the amplitude. This is due to the effect of more hardening the 
equivalent linear system of electrostatically actuated micro beam when initial amplitude 
increases. It is also observed that for higher amplitudes, discrepancy is less than lower 
values. 

10. Natural frequency increases with increasing the modulus of elasticity.  
11. Natural frequency decreases with increasing the thickness of micro beam.  

Finally, Based on presented examples to find the effects of parameters on the natural frequency 
and phase plane diagram of electrostatically actuated micro beam, it seems that this nonlinear model 
that was based on Hamiltonian approach is completely efficient and acceptable. 
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