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Abstract 
A three-dimensional rail-bridge coupling element of unequal 
lengths in which the length of the rail element is shorter than that 
of the bridge element is presented in this paper to investigate the 
spatial dynamic responses of a train-track-bridge interaction sys-
tem. Formulation of stiffness and damping matrices for the fasten-
er, ballast, and bearing, as well as the three-dimensional equations 
of motion in matrix form for a train-track-bridge interaction sys-
tem using the proposed element are derived in detail using the 
energy principle. The accuracy of the proposed three-dimensional 
rail-bridge coupling element is verified using the existing two-
dimensional element. Three examples of a seven-span continuous 
beam bridge are shown: the first investigates the influence of the 
efficiency and accuracy of the lengths of the rail and bridge ele-
ments on the spatial dynamic responses of the train-track-bridge 
interaction system, and the other two illustrate the influence of 
two types of track models and two types of wheel-rail interaction 
models on the dynamic responses of the system. Results show that 
(1) the proposed rail-bridge coupling element is not only able to 
help conserve calculation time, but it also gives satisfactory results 
when investigating the spatial dynamic responses of a train-track-
bridge interaction system; (2) the double-layer track model is 
more accurate in comparison with the single-layer track model, 
particularly in relation to vibrations of bridge and rail; and (3) the 
no-jump wheel-rail interaction model is generally reliable and 
efficient in predicting the dynamic responses of a train-track-
bridge interaction system. 
 
Keywords 
Three-dimensional rail-bridge, coupling element, unequal length, 
bridge, track, finite element method 
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1 INTRODUCTION 

A considerable amount of research has been conducted on the dynamic responses of railway 
bridge/track structures subjected to a moving train (Sun and Dhanasekar, 2002; Liu et al., 2009; Lu 
et al., 2009; Wang et al., 2010; Kim, 2011; Zakeri et al., 2014; Lei and Wang, 2014; Xu et al., 2015). 
Such research has been conducted particularly in the past three decades and mostly in relation to 
the rapid development of high-speed railways worldwide. However, due to the massive volume of 
work conducted, it is difficult to have a complete count of the number of studies and it is only pos-
sible to cite a few of those that are most relevant here.  

The dynamic response of structures in relation to moving vehicles has been studied by previous 
researchers by modeling a moving vehicle as a moving load, moving mass, or a moving sprung mass 
with consideration of suspension (Ayre et al., 1950; Frýba, 1972; Chu et al., 1979; Wu and Dai, 
1987; Chatterjee et al., 1994; Ichikawa et al., 2000). More sophisticated models that also consider 
the vertical dynamic interaction between the moving train and structures have also been imple-
mented by a large number of researchers in recent years. For example, Zhai and Sun (1994) devel-
oped a new and detailed model to investigate the vertical interaction between a vehicle and the 
track in which the vehicle was modeled as a multi-body system with 10 degrees of freedom (DOFs), 
the track as an infinite Euler beam, and the wheel–rail interaction as a Hertzian nonlinear contact 
spring. In addition, Yang et al. (1999) derived a vehicle–bridge interaction element by considering a 
vehicle as a rigid beam supported by two suspension units and a bridge as beam elements, and 
Cheng et al. (2001) proposed a bridge-track-vehicle element in which the vehicles were modeled as 
mass-spring-damper systems, the rails as an upper beam element, and the bridge deck as a lower 
beam element. Furthermore, Lei and Noda (2002) developed a dynamic computational model for a 
vehicle and track coupling system using the finite element method (FEM), in which the vehicle-
track coupling dynamic responses were analyzed in time and frequency domains due to the random 
irregularity of the track vertical profile. Thereafter, Wu and Yang (2003) investigated the vertical 
dynamic responses of a vehicle-rails-bridge interaction system using a condensation technique, which 
included the steady-state response and riding comfort of the train as well as the impact response of 
the rails and bridges. Based on the principle of a stationary value of total potential energy of dy-
namic system, Zeng (2003), Lou (2005), and Lou and Zeng (2005) derived equations of motion in a 
matrix form for three types of vehicle-track-bridge vertical interaction elements, in which the rails 
and the bridge deck were represented by an elastic Bernoulli-Euler upper beam with finite length 
and a simply supported Bernoulli-Euler lower beam, respectively. A later study by Lou (2007) in-
vestigated the vertical dynamic responses of a train-track-bridge interaction (TTBI) system using 
FEM, and by discretizing the slab track subsystem into track elements that flow with the moving 
vehicle, Lei and Wang (2014) developed a new approach with finite elements in a moving frame of 
reference to investigate the dynamic behavior of the train and slab track coupling system.  

In addition, with the exception of work that has been restricted to mainly analyzing the two-
dimensional (2D) dynamic responses of a train-track/bridge interaction system, a great volume of 
research has also dealt with three-dimensional (3D) aspects of the system. For example, Zhai et al. 
(1996) presented a new vertical and lateral coupling model of vehicle-track interaction, and investi-
gated the safety limits against derailment due to track twist and the combined alignment and cross-
level irregularities. In addition, Xia et al. (2000) studied the dynamic responses of the bridge-train 
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system, and the derailment and the offload factors related to the running safety of the train, using a 
3D finite element model to represent the bridge. Furthermore, Wu et al. (2001) developed a vehicle-
rail-bridge interaction model to analyze the 3D dynamic interaction between moving trains and the 
railway bridge, and Dinh et al. (2009) developed a formulation for 3D dynamic interactions between 
a bridge and a high-speed train using wheel-rail interfaces, where the bridge eccentricities and deck 
displacement due to torsion were accounted for in bridge deck modeling. Papers have also been 
written addressing the dynamic interaction between the track/bridge and the moving train, and 
some monographs have focused on this subject. For example, Song et al. (2003), Kwasniewski et al. 
(2006), Nguyen et al. (2009), Lei and Zhang (2011), Xin and Gao (2011), and Zhai et al. (2013) 
proposed a theory and method for dealing with the dynamic problem of the vehicle-track/bridge 
interaction system, respectively. 

In the aforementioned works, most researchers have established the track-bridge interaction 
model using FEM, in which a rail-bridge coupling element of equal lengths (i.e., with the length of 
the rail element equal to that of the bridge element) is adopted. When the length of the bridge in-
creases, the DOFs of the track-bridge interaction system also increase, and thus making a dynamic 
analysis of a track-bridge interaction system is a relatively time consuming process when using a 
rail-bridge coupling element of equal lengths. Therefore, the aim of this paper is to present a 3D 
rail-bridge coupling element of unequal lengths, in which sleepers are considered and where the 
length of the bridge element is longer than that of the rail element, to investigate the spatial dy-
namic responses of a TTBI system under the action of track irregularities. This paper can therefore 
be regarded as an extension of the theory presented by Lou et al. (2012), in which a 2D (vertical) 
rail-bridge coupling element of unequal lengths was proposed to analyze the vertical dynamic re-
sponses of a TTBI system. However, the possibility of considering the lateral responses of a TTBI 
system in the current work allows for a more realistic analyses.  

In this study, a seven-span continuous beam bridge is used as an example, the influences of the 
lengths of the bridge and rail elements, two types of track models, and two types of wheel-rail in-
teraction models on the efficiency and accuracy for calculating the spatial dynamic responses of the 
TTBI system excited by track irregularities are carried out, based on which some conclusions are 
drawn. 
 
2 A 3D RAIL-BRIDGE COUPLING ELEMENT OF UNEQUAL LENGTHS 

2.1 Model 

A typical 3D rail-bridge coupling element of unequal lengths is shown in Figure 1 in which the 
length of the rail element is shorter than that of the bridge element (the corresponding physical 
parameters in Figure 1 are defined in Table 1). In the present study, the spatial dynamic behavior 
is studied while the axial deformations of the rail and bridge are ignored. Using a case of a double-
track bridge, the dynamic responses of only one track is investigated and the other track is consid-
ered to be the dead load of the bridge, because the flexural rigidity of the bridge is usually thou-
sands of times greater than that of the rails (or even tens of thousands). The proposed 3D coupling 
element ultimately consists of several rail elements of equal lengths (including the left and right 
rail), a bridge element, a few sleepers, a series of fasteners, and a series of discrete ballasts. It can 
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also include a bearing that connects a pier node at a supporting point of the bridge. The rails, 
bridges, and piers are modeled as uniform Bernoulli-Euler beams, while each sleeper is modeled as a 
rigid body, and the lateral and vertical elasticity and damping properties of the fastener, ballast, 
and bearing are modeled using discrete massless springs and dampers. The mass of the ballast is 
also added to the dead load of the bridge. As the longitudinal vibrations are neglected, each node in 
the rail and bridge elements has five DOFs, i.e., a lateral displacement along the y-axis, a vertical 
displacement along the z-axis, and three rotations about the x-, y-, and z-axes. Each sleeper and 
each node in the pier element has three DOFs, i.e., a lateral displacement along the y-axis, a verti-
cal displacement along the z-axis, and a rotation about the x-axis. The positive directions of these 
DOFs accord with those of the co-ordinate, as shown in Figure 1. In addition, it is assumed that the 
length of the bridge element (LBE) is an integer number of times of the length of the rail element 
(LRE). 
 

(a)  

(b) 

 

(c) 

Figure 1: Typical 3D rail–bridge coupling element of unequal lengths:  

(a) frontal view, (b) left side view, and (c) top view. 
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Track 

Notation Parameter Value 

Ar (m2) Sectional area of rail 77.45E-4 

Er (N/m2) Young’s modulus of rail 2.10E11 

Gr (N/m2) Shear modulus of rail 8.08E-10 

 (kg/m) Mass per unit length of rail 60.64 

hrt1 (m) Vertical distance between rail top and its center of torsion 94.53E-3 

hrt2 (m) Vertical distance between rail bottom and its center of torsion 81.47E-3 

brt (m) Half of width of rail bottom 75.00E-3 

lre (m) Length of rail element (LRE) - 

Irx (m4) Torsional moment of inertia about x-axis of rail 2.43E-5 

Iry (m4) Flexural moment of inertia about y-axis of rail 3.22E-5 

Irz (m4) Flexural moment of inertia about z-axis of rail 5.24E-6 

ms (kg) Mass of a sleeper 340 

Jsx (kg·m2) Moment of inertia about x-axis of sleeper 74.2 

lsp (m) Sleeper space 0.625 

Drr (m) Half of transverse distance between center lines of two rails 0.75 

Dbal (m) Half of transverse distance between the two supporting points of ballast 0.75 

krsy (N/m) Lateral stiffness of discrete spring reflecting the property of fastener 3.0E7 

krsz (N/m) Vertical stiffness of discrete spring reflecting the property of fastener 6.0E7 

crsy (N·s/m) Lateral damping coefficient of discrete damper reflecting the property of fastener 5.0E4 

crsz (N·s/m) Vertical damping coefficient of discrete damper reflecting the property of fastener 7.5E4 

ksby (N/m) Lateral stiffness of discrete spring reflecting the property of ballast under single rail 5.0E7 

ksbz (N/m) Vertical stiffness of discrete spring reflecting the property of ballast under single rail 2.25E8 

csby (N·s/m) 
Lateral damping coefficient of discrete damper reflecting the property of ballast under 

single rail 
4.0E4 

csbz (N·s/m) 
Vertical damping coefficient of discrete damper reflecting the property of ballast under 

single rail 
6.0E4 

Bridge 

Notation Parameter Value 

Ab (m2) Sectional area of bridge 12.83 

Eb (N/m2) Young’s modulus of bridge 3.45E10 

Gb (N/m2) Shear modulus of bridge 1.44E10 

 (kg/m) Mass per unit length of bridge 4.38E10 

hbt1 (m) Vertical distance between bridge deck and its center of torsion 1.42 

hbt2 (m) Vertical distance between bridge bottom and its center of torsion 1.88 

Dctb (m) Half of transverse distance between center lines of two tracks 2.5 

Dcbb (m) Half of transverse distance between center lines of bearing 2.4 

lbe (m) Length of bridge element (LBE) - 

Ibx (m4) Torsional moment of inertia about x-axis of bridge 51.9 

Iby (m4) Flexural moment of inertia about y-axis of bridge 19.2 

Ibz (m4) Flexural moment of inertia about z-axis of bridge 134.0 

kbby (N/m) Half of lateral stiffness of discrete spring reflecting the property of bearing 2.5E8 

kbbz (N/m) Half of vertical stiffness of discrete spring reflecting the property of bearing 3.0E9 
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cbby (N·s/m) Half of lateral damping coefficient of discrete damper reflecting the property of bearing 1.0E5 

cbbz (N·s/m) Half of vertical damping coefficient of discrete damper reflecting the property of bearing 1.0E6 

ζb Damping ratio of bridge 0.05 

Pier 

Notation Parameter Value 

Ap (m2) Sectional area of pier 22.07 

Ep (N/m2) Young’s modulus of pier 3.15E10 

(kg/m)  Mass per unit length of pier 5.51E4 

lpe (m) Length of pier element (LPE) - 

Ipx (m4) Flexural moment of inertia about x-axis of pier 101.9 

kbby (N/m) Half of lateral stiffness of discrete spring reflecting the property of bearing 2.5E8 

kbbz (N/m) Half of vertical stiffness of discrete spring reflecting the property of bearing 3.0E9 

cbby (N·s/m) Half of lateral damping coefficient of discrete damper reflecting the property of bearing 1.0E5 

cbbz (N·s/m) Half of vertical damping coefficient of discrete damper reflecting the property of bearing 1.0E6 

ζp Damping ratio of pier 0.05 

Table 1: Major parameters of track and bridge. 

 
2.2 Formulation of Stiffness and Damping Matrices of Fastener 

For both the vertical and lateral discrete springs and dampers representing a fastener, one end 
point connects with an element of the left or right rail, while the other end point connects with a 
sleeper, as shown in Figures 1 and 2. Taking as an example the vertical discrete spring modeling 
with a left fastener connecting the ith left rail element and a sleeper (Figure 2(a) and (b)), the up-
per end point has a dependent DOF depending on the vertical displacement, zLr, and rotation, θxLr, 
about the x-axis of the ith left rail element, while the lower end point also has a dependent DOF 
depending on the vertical displacement, zs, and rotation, θxs, about the x-axis of the corresponding 
sleeper. The elastic strain energy of the vertical spring, e,

fas
LZ , can then be expressed as 
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where ξrs denotes the longitudinal distance between the left node of the ith left rail element and the 
discrete spring, and e,
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LZk  denotes the stiffness matrix of the vertical discrete spring for a left fasten-
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ment and a sleeper has a dependent DOF depending on the lateral displacement, yLr, and rotation, 
θxLr, about the x-axis of the ith left rail element, while the other end point has an independent DOF, 
i.e., the lateral displacement, ys, of the corresponding sleeper (Figure 2(b) and (c)). The stiffness 
matrix of the lateral discrete spring for a left fastener, e,
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The vertical and lateral damping matrices, e,

fas
LZc  and e,

fas
LYc , of the discrete damper for a left fas-

tener can be obtained simply by replacing “krsz” and “krsy” in the corresponding stiffness matrices, 
e,

fas
LZk  and e,

fas
LYk , using “crsz” and “crsy”, respectively. 

The vertical stiffness and damping matrices for a right fastener, e,
fas
RZk  and e,

fas
RZc , as well as the 

lateral stiffness and damping matrices, e,
fas
RYk  and e,

fas
RYc , can be obtained by following a procedure 

similar to that given above. 
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(a)  

(b)  

 

(c)  

Figure 2: Sleeper attached to the ith left rail element by fastener: 

frontal view, (b) left side view, (c) top view. 

 
2.3 Formulation of Stiffness and Damping Matrices of Ballast 

For both the vertical and lateral discrete spring and damper representing a ballast, one end point 
connects to a sleeper, while the other end point connects to a bridge element, as shown in Figures 1 
and 3. If we use as an example the vertical discrete spring in modeling a ballast connecting a sleeper, 
and the ith bridge element (Figure 3(a) and (b)), the upper end point has a dependent DOF that 
depends on the vertical displacement, zs, and the rotation, θxs, about the x-axis of the sleeper, while 
the lower end point also has a dependent DOF depending on the vertical displacement, zb, and the 
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rotation, θxb, about the x-axis of the ith bridge element. The stiffness matrix of the vertical discrete 
spring for a ballast, e,

bal
Zk , can then be expressed as follows, 
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where ξsb denotes the longitudinal distance between the left node of the ith bridge element and the 
discrete spring. 

Similarly, one end point of the lateral spring for a ballast connecting a sleeper and the ith 
bridge element has an independent DOF, i.e., the lateral displacement, ys, of the sleeper, while the 
other end point has a dependent DOF depending on the lateral displacement, yb, and the rotation, 
θxb, about the x-axis of the ith bridge element (Figure 3(b) and (c)). The stiffness matrix of the 
lateral discrete spring for a ballast, e,

bal
Yk , can then be derived as follows, 
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The vertical and lateral damping matrices, e,

bal
Zc  and e,

bas
Yc , of the discrete damper for a ballast can 

be obtained simply by replacing “ksbz” and “ksby” in the corresponding stiffness matrices, e,
bal
Zk  and 

e,
bal
Yk , using “csbz” and “csby”, respectively. 

 



Z.-P. Zeng et al. / Three-Dimensional Rail–Bridge Coupling Element of Unequal Lengths for Analyzing Train–Track–Bridge Interaction System     2499 

Latin American Journal of Solids and Structures 13 (2016) 2490-2528 

(a) 

 

(b) 

 

(c) 

Figure 3: Sleeper attached to ith bridge element of by ballast: 

(a) frontal view, (b) left side view, (c) top view. 

 
2.4 Formulation of Stiffness and Damping Matrices of Bearing 

For both the vertical and lateral discrete springs and damper that represent a bearing, one end 
point connects a bridge element, while the other end point connects a node of the pier element, as 
shown in Figures 1 and 4. If we take the model of a vertical discrete spring and bearing connecting 
the ith bridge element and the ith node of pier element as an example (Figure 4(a) and (b)), the 
upper end point has a dependent DOF depending on the vertical displacement, zb, and rotation, θxb, 
about the x-axis of the ith bridge element. In addition, the lower end point also has a dependent 
DOF relating to the vertical displacement, zp,i, and rotation, θxp,i, about the x-axis of the ith node of 
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the pier element. In this case, the stiffness matrix of the vertical discrete spring for a bearing, e,
bea
Zk , 

can be expressed as 
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where ξbb denotes the longitudinal distance between the left node of the ith bridge element and the 
discrete spring. 

Similarly, one end point of the lateral spring for a bearing connecting the ith bridge element 
and the ith node of pier element has a dependent DOF in relation to the lateral displacement, yb, 
and rotation, θxb, about the x-axis of the ith bridge element. In addition, the other end point has an 
independent DOF, i.e., the lateral displacement, yp,i, of the corresponding node of the pier element 
(Figure 4(b)). The stiffness matrix of the lateral discrete spring for a bearing, e,

bea
Yk , can then be 

expressed as 
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The vertical and lateral damping matrices, e,

bea
Zc  and e,

bea
Yc , respectively, of the discrete damper for 

a bearing can then be obtained simply by replacing “kbbz” and “kbby” in the corresponding stiffness 
matrices, e,

bea
Zk  and e,

bea
Yk , with “cbbz” and “cbby”, respectively. 
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(a) 

 

(b) 

Figure 4: Bridge element attached to the ith node of pier element by bearing: 

 (a) frontal view, (b) left side view. 

 
3 3D EQUATIONS OF MOTION FOR A TTBI SYSTEM WITH PROPOSED ELEMENT 

Figure 5 shows a train consisting of a series of four-wheelset vehicles moving with a constant speed, 
vt, on a ballasted track structure that rests on a multi-span continuous beam bridge.  

The train consists of Nv identical vehicles numbered 1, 2, …Nv, from right to left. Each vehicle 
in the train is modeled as a mass-spring-damper system consisting of one carbody, two bogies, four 
wheelsets, and two-stage suspensions. The carbody is modeled as a rigid body with mass, mc, and 
three moments of inertia, Icx, Icy, and Icz. Similarly, each bogie is considered as a rigid body with 
mass, mt, and three moments of inertia, Itx, Ity, and Itz, and each wheelset is considered as a rigid 
body with mass, mw, and two moments of inertia, Iwx and Iwz. The secondary suspension between 
the carbody and each bogie is characterized by a three-dimensional system of springs with stiffness-
es ksx, ksy, and ksz and dampers with damping coefficients csx, csy, and csz. Likewise, the springs and 
shock absorbers in the primary suspension for each wheelset are characterized by kpx, kpy, and kpz 
and cpx, cpy, and cpz, respectively. By neglecting longitudinal displacements, the motions of the car-
body of the jth vehicle with respect to its center of gravity may be described by ycj, zcj, θcj, φcj, and 
ψcj. Similarly, the motions of both the front and rear bogies of the jth vehicle may be described by 
yt1j, zt1j, θt1j, φt1j, and ψt1j and yt2j, zt2j, θt2j, φt2j, and ψt2j, respectively. In addition, the motion from 
right to left of the hth (h = 1–4) wheelset of the jth vehicle may be described by ywhj, zwhj, θwhj, and 
ψwhj, respectively. In this paper however, it is assumed that no jumps occur between the vehicle’s 
wheels and the rails; that is, the vertical and rolling displacements of each wheelset are constrained 
by the corresponding displacements of the rails. Consequently, each vehicle has 23 independent 
DOFs. 
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(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 5: 3D model for TTBI system: (a) frontal view, (b) jth vehicle moving  

on rail–bridge coupling elements of unequal lengths, 

 (c) left side view, (d) top view (without bridge). 
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By using the energy principle, such as the principle of the stationary value of total potential en-
ergy of a dynamic system (Zeng, 2000; Lou and Zeng, 2005), it is possible to derive the 3D equa-
tions of motion written in a sub-matrix for a TTBI system that is shown in Figure 5, as 
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 (8) 

 

where the subscripts “t”, “r”, “s”, “b”, and “p” denote the train, rail, sleeper, bridge, and pier, respec-
tively; M , C , and K  denote the mass, damping, and stiffness sub-matrices, respectively; and X
and F  denote the displacement and force sub-vectors, respectively. The formation of equation (8) 
from terms in equations (2), (3), (4), (5), (6), and (7) is further explained below. 

In order to build up equation (8), the stiffness matrices, e,
fas
LZk , in equation (2) and, e,

fas
LYk , in 

equation (3) can be partitioned into four parts as follows, 
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
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
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TLYk ][ 2,21,24,3,2,1,
2,

xrrtxrrtryryryryrsy
e

fas NhNhNNNNk    (16) 
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][ 2,21,24,3,2,1,
3,

xrrtxrrtryryryryrsy
e

fas NhNhNNNNk  LYk  (17)
 

and 
 

rsy
e

fas k4,LYk (18)
 

Elements in matrices 1e,
fas
LZk  and 1e,

fas
LYk  should be placed in the stiffness sub-matrix LrrK (see 

equation (27)); elements in matrices 2e,
fas
LZk  and 2e,

fas
LYk  should be placed in the stiffness sub-matrix 

LrsK ; elements in matrices 3e,
fas
LZk  and 3e,

fas
LYk  should be placed in the stiffness sub-matrix sLrK ; and 

elements in matrices 4e,
fas
LZk  and 4e,

fas
LYk  should be placed in the stiffness sub-matrix ssK . Furthermore, 

in a similar manner to e,
fas
LZk  and e,

fas
LYk , the damping matrices, e,

fas
LZc  and e,

fas
LYc , can be partitioned 

into four parts and placed in the damping sub-matrices, LrrC , LrsC , sLrC , and ssC , respectively. 

The stiffness matrix, e,
fas
RZk , can be partitioned into four parts and used as follows in building 

equation (8). Elements in the first six rows and the first six columns should be placed in the stiff-
ness sub-matrix RrrK ; elements in the first six rows and the last two columns should be placed in 

the stiffness sub-matrix RrsK ; elements in the first six columns and the last two rows should be 

placed in the stiffness sub-matrix sRrK ; and the remaining elements should be placed in the stiffness 

sub-matrix ssK . 

The stiffness matrix, e,
fas
RYk , can be partitioned into four parts and used as follows in building up 

equation (8). Elements in the first six rows and the first six columns should be placed in the stiff-
ness sub-matrix RrrK ; elements in the first six rows and the last column should be placed in the 

stiffness sub-matrix RrsK ; elements in the first six columns and the last row should be placed in the 

stiffness sub-matrix sRrK ; and the remaining element should be placed in the stiffness sub-matrix 

ssK . In a similar manner as e,
fas
RZk  and e,

fas
RYk , the damping matrices, e,

fas
RZc  and e,

fas
RYc , can be parti-

tioned into four parts and placed in the damping sub-matrices, RrrC , RrsC , sRrC , and ssC , respec-

tively. 
Furthermore, the stiffness matrix, e,

bal
Zk , in equation (4) can be partitioned into four parts and 

used as follows in building up equation (8). Elements in the first two rows and the first two col-
umns should be placed in the in the stiffness sub-matrix ssK ; elements in the first two rows and the 

last six columns should be placed in the stiffness sub-matrix sbK ; elements in the first two columns 

and the last six rows should be placed in the stiffness sub-matrix bsK ; and the remaining elements 

should be placed in the stiffness sub-matrix bbK .  

The stiffness matrix, e,
bal
Yk , in equation (5) can be partitioned into four parts as follows and 

used as follows in building up equation (8). Elements in the first row and the first column should be 
placed in the in the stiffness sub-matrix ssK ; elements in the first row and the last six columns 

should be placed in the stiffness sub-matrix sbK ; elements in the first column and the last six rows 

should be placed in the stiffness sub-matrix bsK ; and the remaining elements should be placed in 

the stiffness sub-matrix bbK . In a similar manner as e,
bal
Zk  and e,

bal
Yk , the damping matrices, e,

bal
Zc  and 

e,
bal
Yc , can be partitioned into four parts and placed in the damping sub-matrices, ssC , sbC , bsC , and 

bbC , respectively. 
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The stiffness matrix, e,
bea
Zk , in equation (6) can be partitioned into four parts and used as fol-

lows in building up equation (8). Elements in the first six rows and the first six columns should be 
placed in the stiffness sub-matrix bbK ; elements in the first six rows and the last two columns 

should be placed in the stiffness sub-matrix bpK ; elements in the first six columns and the last two 

rows should be placed in the stiffness sub-matrix pbK ; and the remaining elements should be placed 

in the stiffness sub-matrix ppK .  

The stiffness matrix, e,
bea
Yk , in equation (7) can be partitioned into four parts and used as fol-

lows in building up equation (8). Elements in the first six rows and the first six columns should be 
placed in the stiffness sub-matrix bbK ; elements in the first six rows and the last column should be 

placed in the stiffness sub-matrix bpK ; elements in the first six columns and the last row should be 

placed in the stiffness sub-matrix pbK ; and the remaining elements should be placed in the stiffness 

sub-matrix ppK . In a similar manner as e,
bea
Zk  and e,

bea
Yk , the damping matrices, e,

bea
Zc  and e,

bea
Yc , can 

be partitioned into four parts and placed in the damping sub-matrices, bbC , bpC , pbC , and ppC , 

respectively. 
The displacement sub-vectors, the mass, damping, and stiffness sub-matrices, as well as the 

force sub-vectors of the train, rail, sleeper, bridge, and pier are explained briefly in the following 
sections, and a detailed explanation is found in Lou (2005, 2007) and Lou and Zeng (2005). 
 
3.1 Displacement Vectors 

The displacement sub-vector of the total train, tX , of order 1dofT ( vdof NT  23 ) can be written as 
 

TXXXX ][ 21 vvNvvt   (19)
 

where the superscript “ T ” denotes the transpose of the matrix, and vjX (j = 1, 2, …, vN ) are the 

displacement vectors of the jth vehicle, which can be expressed as 
 

jtjtjztjytjxtjtjtzcjycjxcjcjcjvj zyzyzy 2211111[ X ]44332211222 jzwjwjzwjwjzwjwjzwjwjztjytjxt yyyy  . 
 

The displacement sub-vector of the rail, rX , of order 12 rN , which is composed of the dis-

placement vectors LrX  of the left rail of order rN1 , and RrX
 
of the right rail of order rN1 , can be 

written as 
 

TXXX ][ RrLrr   
][ 21

rNrrrRrLr qqq XX  (20)

 

where rN  denotes the total number of DOFs of each rail. 

The displacement sub-vector of the sleeper, sX , of order 1sN  can be written as 
 

TXXXX ][ 21 ssNsss   (21)
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where siX (i = 1, 2, …, sN ) of order 3 denotes the displacement vector of the ith sleeper, sN  de-

notes the total number of sleepers, and sN  denotes the total number of DOFs of all sleepers with 

ss NN 3 . The displacement vector, siX , can be expressed as 
 

][ xsisisisi zy X . 
 

The displacement sub-vector, bX , of order 1bN  for multi-span continuous beams used to model 

the bridge can be written as 
 

TXXXX ][ 21 bbNbbb   (22)
 

where biX (i = 1, 2, …, bN ) denotes the displacement vector of the ith bridge, bN  denotes the total 

number of bridges, and bN  denotes the total number of DOFs of all bridges. The displacement vec-

tor, biX , of order bin1 , and the number of DOFs, bN , can be expressed as 
 

][ 21 binbbbbi qqq X

 




bN

i
bib nN

1
,
 

 

where bin  denotes the total number of DOFs of the ith bridge. 

The displacement sub-vector of the pier, pX , of order 1pN  can be written as 
 

TXXXX ][ 21 ppNppp   (23)
 

where piX (i = 1, 2, …, pN ) denotes the displacement vector of the ith pier, pN  denotes the total 

number of piers, and pN  denotes the total number of DOFs of all piers. The displacement vector, 
piX , of order pin1  and the number of DOFs, pN , can be expressed as 

 

][ 21 pinppppi qqq X ,
 





pN

i
pip nN

1  
 

where pin  denotes the total number of DOFs of the ith pier. 

 
3.2 Sub-Matrices of Train 

The sub-matrices of the train are marked with the subscript “tt”. The mass sub-matrix, ttM , of the 

train of order )23()23( vv NN   can be written as 
 

][diag 21 vvNvvtt MMMM  (24)
 

where vjM (j = 1, 2, …, vN ) of order 2323  denotes the mass matrix of the jth vehicle, and can be 

expressed as 
 

diag[   ]vj c c cx cy cz t t tx ty tz t t tx ty tz w wz w wz w wz w wzm m I I I m m I I I m m I I I m I m I m I m IM . 
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The stiffness sub-matrix, ttK , of the train of order )23()23( vv NN   can be written as 
 

][diag 21 vvNvvtt KKKK  (25)
 

where vjK (j = 1, 2, …, vN ) of order 2323  denotes the stiffness matrix of the jth vehicle, and can 

be expressed by the stiffness of the suspension systems of the jth vehicle. 
The damping sub-matrix, ttC , of the train of order )23()23( vv NN   can be obtained by simp-

ly replacing k in the corresponding stiffness sub-matrix, ttK , with c. 

 
3.3 Sub-Matrices of Rail 

The matrices of the rail are marked with the subscript “rr”. The mass sub-matrix of the rail, rrM , of 

order rr NN 22  , composed of the mass matrices of the left and right rails, LrrM  and , respective-

ly, both of order rr NN  , can be written as 
 

][diag RrrLrrrr MMM   

1 2 3 4Lrr Rrr rr rr rr rr    M M M M M M  (26)

 

with 
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r ren
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egrzegrzrrr dm
1 0
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 
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r ren

g

l
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r

rxr
rr d

A

Im

1 0
,,3  NNM T

 


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
vN

j h
zjhzjh

w
rr

m

1

4

1
4 2

NNM T

 
]0000000000[ 4,3,2,1,,  ryryryryegry NNNNN  
]0000000000[ 4,3,2,1,,  rzrzrzrzegrz NNNNN  

]000000000000[ 2,1,,  xrxregr NN  N  

jhrzrzrzrzzjh NNNN   ]0000000000[ 4,3,2,1, N , 
 

where 1rrM , 2rrM , and 3rrM  denote the overall mass matrices in the xy plane, in the xz plane, and 

rotation about the x-axis of the rail itself, respectively; 4rrM  denotes the overall mass matrix in-

duced by the wheel masses of all vehicles; rm  denotes the mass per unit length of the rail; Ar de-

notes the cross-sectional area of the rail; Irx denotes the torsional moment of inertia of the rail about 
the x-axis; nr denotes the total number of elements of each rail; ξ denotes the local coordinate 
measured from the left node of a rail element; egry ,N , egrz ,N , and egr ,N  of order rN1  are the shape 

function vectors in the xy plane, the xz plane, and in rotation about the x-axis for the gth rail ele-
ment, respectively. In addition, each element in egry ,N , egrz ,N , and egr ,N  is zero except those corre-

sponding to the DOFs, respectively, in the xy plane, the xz plane, and in rotation about the x-axis 
of the two nodes of the gth rail element; zjhN  of order rN1  denotes the time-dependent shape func-

tion vector in the xz plane for the rail element, which is evaluated at the position of the hth wheel-

RrrM
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set of the jth vehicle; ξj1, ξj2, ξj3, and ξj4 denote, respectively, the distances between the 1st, 2nd, 3rd, 
and 4th wheelsets of the jth vehicle and the left node of the rail element on which the wheelsets are 
acting. Furthermore, each element in zjhN  is zero except for those corresponding to the four DOFs 

in the xz plane of the two nodes of the rail element on which the hth wheelset of the jth vehicle is 
acting. 

The stiffness sub-matrix of the rail, rrK , of order rr NN 22  , which is composed of the stiffness 

matrices of the left and right rails, LrrK  and , of order rr NN  , and the left rail–right rail inter-

action stiffness matrices, LrRrK  and RrLrK , of order rr NN  , can be written as 
 

Lrr LrRr
rr

RrLr Rrr

 
  
 

K K
K

K K

1 2 3 4 5 6 7 8Lrr Rrr rr rr rr rr rr rr rr rr        K K K K K K K K K K  
TKK RrLrLrRr   

(27)
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jhryryryryyjh NNNN   ]0000000000[ 4,3,2,1, N  

jhxrxrjh NN   ]000000000000[ 2,1, N  

prryryryrypry NNNN
,

]0000000000[ 4,3,2,1,,   N  

prrzrzrzrzprz NNNN
,

]0000000000[ 4,3,2,1,,   N  

prxrxrpr NN
,

]000000000000[ 2,1,,   N , 
 

where 1rrK , 2rrK , and 3rrK  denote the overall stiffness matrices in the xy plane, the xz plane, and in 

rotation about the x-axis of the rail itself, respectively; 4rrK  denotes the overall stiffness matrix 

induced by the vertical displacement of all vehicles; 5rrK  denotes the overall stiffness matrix in-

RrrK
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duced by the train’s weight; 6rrK , 7rrK , and 8rrK  denote, respectively, the lateral, vertical, and 

torsional stiffness matrices induced by the stiffness of all fasteners; LrRrK  denotes the left rail–right 

rail interaction stiffness matrix induced by the train’s weight; Er denotes Young’s modulus of the 
rail; Gr denotes the shear modulus of the rail; Iry and Irz denote the flexural moments of inertia 
about the y- and z-axes of the cross section of the rail, respectively; hrt1 denotes the vertical distance 
between the top surface and torsional center of the cross section of the rail; Waxle denotes the axle 
weight of each vehicle; b0 denotes half of the transverse distance between the contact points of the 
wheel and rail; λ denotes the slope of the wheel tread which is a variable depending on the wheel–
rail contact position; nf denotes the total number of the fastener underneath each rail; ξr, p denotes 
the distance between the pth fastener and the left node of the rail element containing the pth fas-
tener; yjhN  and jhN  of order rrN1  denote, respectively, the time-dependent shape function vectors 

in the xy plane and in rotation about the x-axis for the rail element, when evaluated at the position 
of the hth wheelset of the jth vehicle; pry ,N , prz ,N , and pr ,N  (p = 1, 2, …, nf) denote, respectively, 

the time-independent shape function vectors in the xy plane, the xz plane, and in rotation about the 
x-axis for the rail element, when evaluated at the position of the pth fastener. 

By omitting the damping of the rail itself, the damping sub-matrix of the rail, rrC , of order 

rr NN 22   can be derived according to the lateral creep between the rails and the wheels of all vehi-

cles (Zhang et al., 2010), the damping of the primary suspension of all vehicles, and the lateral, 
vertical, and torsional damping of all fasteners.  
 
3.4 Sub-Matrices of Sleeper 

The sub-matrices of the sleeper are marked with the subscript “ss”. The mass sub-matrix, ssM , 

stiffness sub-matrix, ssK , and the damping sub-matrix, ssC , of order ss NN   of all of the sleepers can 

be written respectively, as 
 

]diag[ 21 ssNssss MMMM  (28)
 

]diag[ 21 ssNssss KKKK   (29)
 

]diag[ 21 ssNssss CCCC   

]diag[ sxsssi JmmM  
]2)(22222diag[ 222

sbzbalrszrtrrsbzrszsbyrsysi kDkbDkkkk K  

]2)(22222diag[ 222
sbzbalrszrtrrsbzrszsbyrsysi cDcbDcccc C  

(30) 

 

where sm  and sxJ  denote the mass and the moment of inertia about x-axis of each sleeper, respec-

tively. 
 
3.5 Sub-Matrices of Bridge and Pier 

The sub-matrices of the bridge and pier, marked with the subscripts “bb” and “pp”, respectively, can 
be obtained in a similar way to derivation of the sub-matrices of the rail. It should be noted that 
the damping property is assumed to be of a Rayleigh type (Yang et al., 2004) in the derivation of 
the damping sub-matrices of the bridge and pier.  
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3.6 Sub-Matrices of Train–Rail–Sleeper–Bridge–Pier Interaction 

The sub-matrices of train–rail interaction, marked with the subscripts “tr” or “rt”, are induced by 
the interaction of the wheel and rail, and consist of the train–left rail and train–right rail interaction 
matrices, which are marked with the subscripts “tLr” and “tRr”, respectively. The stiffness sub-
matrices, trK  and rtK , of order rdof NT 2 , and the damping sub-matrices, trC  and rtC , of order 

rdof NT 2 , for train–rail interaction can be written respectively, as 
 

rdof NTtRrtLrtr 2][  KKK (31)
 

rdof NTtRrtLrtr 2][  CCC  
TKK trrt   
TCC trrt   

(32)

 

where the stiffness matrices, tLrK  and tRrK , and the damping matrices, tLrC  and tRrC , of order 

rdof NT 2  can be expressed respectively, as 
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in which V
Lrv hj 

K  and  represent, respectively, the stiffness matrices induced by the vertical inter-

action between the hth wheelset of the jth vehicle and the left and right rails;  and V
Rrv hj 

C  rep-

resent, respectively, the damping matrices induced by the vertical interaction between the hth 
wheelset of the jth vehicle and the left and right rails; and L

Lrv hj 
C   represent, respectively, the 

damping matrices induced by the lateral creepage between the hth wheelset of the jth vehicle and 
the left and right rails (Zhang et al., 2010; Kalker, 1967). 

The sub-matrices of rail–sleeper interaction, marked with the subscripts “rs” or “sr”, are induced 
by the stiffness and damping of all fasteners between the rail and sleeper. The sub-matrices of 
sleeper–bridge interaction, marked with the subscripts “sb” or “bs”, are induced by the stiffness and 
damping of all ballasts between the sleeper and bridge. In addition, the sub-matrices of bridge–pier 
interaction, marked with the subscripts “bp” or “pb”, are induced by the stiffness and damping of all 
bearings between the bridge and pier. To reduce repetitions, the deviations of all sub-matrices for 
rail–sleeper–bridge–pier interaction are not listed here, but can be calculated according to equations 
(1) to (32). 
 
3.7 Load Sub-Vectors of Train, Rail, Sleeper, Bridge, and Pier 

The load sub-vector of the train, tF , of order 1dofT  can be written as 
 

V
Rrv hj 

K

V
Lrv hj 

C

L
Rrv hj

C
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21
ttt FFF   

TFFFF ][ 11
2

1
1

1
vvNvvt   

TFFFF ][ 22
2

2
1

2
vvNvvt   

(33)

 

The load vector of the jth vehicle, 1
vjF  and 2

vjF , of order 123   can be written respectively, as 
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where )( V
jhxr , )( C

jhxr , )( A
jhxr , and )( G

jhxr  denote the track elevation, cross level, alignment, and gauge 

irregularities, respectively, at the hth wheel–rail contact point of the jth vehicle; )(r  denotes the 

first derivative of track irregularity; b2 denotes half of the transverse distance between the vertical 
primary suspension system and Lt denotes half of the bogie axle base; 22

Ljhf  denotes the lateral creep 

coefficient between the left rail and the hth (h = 1–4) wheelset of the jth vehicle, and 22
Rjhf  denotes 

the lateral creep coefficient between the right rail and the corresponding wheelset. 
The load sub-vector of the rail, rF , of order 12 rN  can be written as 
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(34)

 

where 0L
rF , 1L

rF , 2L
rF , 3L

rF , and 4L
rF  of order 1rN  represent the load vectors of each wheelset acting on 

the left rail caused by the train’s weight, the track elevation irregularity, the cross level irregularity, 
the alignment irregularity, and the gauge irregularity, respectively; 5L

rF , 6L
rF , 7L

rF , and 8L
rF  of order 

1rN  represent the load vectors of each wheelset acting on the left rail caused by the velocities of 

the track elevation, cross level, alignment, and gauge irregularities, respectively; and 9L
rF  10L

rF  of 

order 1rN  represent the load vectors of each wheelset acting on the left rail that are caused by 
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accelerations in the track elevation and cross level irregularities, respectively; and 0R
rF  to 

10R
rF  simi-

larly represent the load vectors of each wheelset acting on the right rail. 
Each of the elements of the load sub-vector of the sleeper, sF , of order 1sN , the load sub-vector 

of the bridge, bF , of order 1bN , and the load sub-vector of the pier, pF , of order 1pN  are zero. 

 
4 NUMERICAL VERIFICATION 

To verify the theory presented in this paper, the vertical dynamic responses of a TTBI system, 
which were obtained using the proposed 3D rail–bridge coupling element (3D element) and the 2D 
rail–bridge coupling element presented by Lou et al. (2012) (2D element), respectively, are used. A 
train consisting of five identical vehicles is considered to run over a single–track bridge along the 
centerline of the bridge, with no consideration made for torsional action. The railway track is as-
sumed to be smooth and continuous throughout and has a total length of 100 m and LRE = 0.625 
m. The central part of the railway track is supported on a 3-span continuous bridge with spans of 
20 m and LBE = 5.0 m, while the left and right parts of track are supported on embankments, both 
with lengths of 20 m. The vertical parameters of vehicle, track, and bridge can be found in Lou et 
al. (2012), the spatial parameters of the identical vehicle can be found in Yang et al. (2004), and the 
spatial parameters of the identical track and bridge are listed in Table 1. To solve the equation of 
motion for the TTBI system, the Wilson-θ method is used with θ = 1.4 and a moving length of the 
vehicles of 0.1 m along the track for each time step. The analysis is performed by applying the train 
speeds from 25 m/s to 200 m/s at 25 m/s intervals. The vertical dynamic responses of bridge, sleep-
er, rail, and vehicle obtained by the 3D element and the 2D element at various train speeds are 
shown in Table 2, where the term “Carbody acceleration” means the maximum vertical acceleration 
at the centroid of the last carbody, “Rail displacement” means the maximum vertical displacement 
of the rail at the middle of the central span, “Sleeper displacement” means the maximum vertical 
displacement of the sleeper immediately to the right of the middle of the central span, and “Bridge 
displacement” means the maximum vertical displacement of the bridge at the middle of central span. 
It can be observed from Table 2 that there are only minimal differences between the solutions ob-
tained using the 3D element and those using the 2D element, where the differences of the displace-
ments of bridge, sleeper, and rail are less than 1.00%, and the differences between the carbody ac-
celeration at various train speeds are not larger than 4.00%. This thus confirms the accuracy of the 
proposed 3D rail–bridge coupling element in simulating the dynamic responses of a TTBI system. 
 

Train speed (m/s) 25 50 75 100 125 150 175 200 

Bridge displacement (mm) 
3D element 0.165 0.181 0.176 0.196 0.205 0.503 0.517 0.411
2D element 0.166 0.181 0.176 0.195 0.204 0.501 0.515 0.410

Sleeper displacement (mm) 
3D element 0.268 0.289 0.305 0.327 0.342 0.600 0.652 0.559
2D element 0.270 0.290 0.304 0.325 0.339 0.598 0.649 0.556

Rail displacement (mm) 
3D element 0.725 0.730 0.734 0.750 0.774 1.062 1.120 0.997
2D element 0.729 0.733 0.732 0.747 0.769 1.056 1.116 0.992

Carbody acceleration (m/s2) 
3D element 0.008 0.015 0.021 0.025 0.029 0.043 0.041 0.055
2D element 0.008 0.015 0.021 0.026 0.030 0.044 0.042 0.053

Table 2: Comparsion of vertical dynamic responses of TTBI system at various train speeds. 
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5 ILLUSTRATIVE EXAMPLES 

5.1 Parameters of a TTBI System 

The proposed 3D rail–bridge coupling element is applied in the following three examples. The first 
example is shown in relation to an investigation of the influence of the efficiency and accuracy of 
LRE and LBE on the spatial dynamic responses of a TTBI system. The other two examples are 
shown in relation to an investigation of the effects of two types of track models and two types of 
wheel–rail interaction models on the spatial dynamic responses of a TTBI system, respectively. A 
seven-span continuous beam bridge, with a span length of 40 m + 5 × 60 m + 40 m = 380 m, is 
considered. The heights of the piers are 20 m, and the length of the pier element (LPE) is 2.5 m. 
However, to save the length of the paper, the influence of LPE is not considered in this paper. The 
parameters of the track and bridge already listed in Table 1 are adopted unless otherwise stated. A 
train consisting of five identical vehicles is considered to move over the bridge from left to right, 
and the major parameters of each vehicle are listed in Table 3. The PSDs of a German high-speed 
track spectrum of low irregularity (Zhai and Xia, 2011) are adopted, i.e., 
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track cross level irregularity: 
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and track gauge irregularity: 
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where Ω = 2π/λr denotes the spatial frequency (rad/m), λr denotes the wavelength of the irregulari-
ty (m), Ωc = 0.8246 rad/m, Ωr = 0.0206 rad/m, Ωs = 0.438 rad/m, AV = 4.032 × 10−7 m·rad, AA 
= 2.119 × 10−7 m·rad, and AG = 0.532 × 10−7 m·rad. 
 

Notation Value Notation Value Notation Value 

mc (kg) 4.4E4 Iwz (kg·m2) 1.1E3 cpy (N·s/m) 0.0 

mt (kg) 2.4E3 ksx (N/m) 2.8E5 cpz (N·s/m) 5.0E4 

mw (kg) 2.4E3 ksy (N/m) 2.8E5 h1 (m) 1.14 

Waxle (kg) 1.46E4 ksz (N/m) 3.0E5 h2 (m) −0.14 

Icx (kg·m2) 1.0E5 kpx (N/m) 1.5E7 h3 (m) 0.24 

Icy (kg·m2) 2.7E6 kpy (N/m) 5.0E6 b0 (m) 0.75 

Icz (kg·m2) 2.7E6 kpz (N/m) 7.0E5 b1 (m  0.95 

Itx (kg·m2) 1.8E3 csx (N·s/m) 1.0E6 b2 (m) 1.0 

Ity (kg·m2) 2.2E3 csy (N·s/m) 2.5E4 Lc (m) 8.6875 

Itz (kg·m2) 2.2E3 csz (N·s/m) 6.0E4 Lt (m) 1.25 

Iwx (kg·m2) 1.1E3 cpx (N·s/m) 0.0 R0 (m) 0.4575 

Table 3: Major parameters of vehicle. 
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The time domain samples of track irregularities with 1 m ≤ λr ≤ 120 m are simulated using the 
method proposed by Zhai and Xia (2011), and an analysis is performed by applying train speeds 
between 2.78 m/s and 97.2 m/s at 2.78 m/s intervals; that is, from 10 km/h to 350 km/h at 10 
km/h intervals. 
 
5.2 Example 1: Influence of the Efficiency and Accuracy of LRE and LBE on the Dynamic Responses of the 

TTBI System 

To illustrate the efficiency and accuracy of the proposed 3D rail–bridge coupling element, the follow-
ing six cases are studied, as shown in Table 4. The rail–bridge coupling element with LRE = LBE is 
used in Cases 1-1 to 1-5, while the proposed element is adopted in Case 1-6. The spatial dynamic re-
sponses of the TTBI system for Cases 1-1 to 1-6 at various train speeds are plotted in Figures 6 to 19 
and the calculation time and differences, De1, for Cases 1-1 to 1-6 at a train speed of 350 km/h are 
shown in Table 5. Herein, the differences, De1, between the dynamic responses of different calculation 
cases is defined as De1 = (Dyn11–Dyn12)/Dyn11 × 100%, where Dyn11 and Dyn12 denote the dynamic re-
sponses obtained by the proposed element (Case 1-6) and the rail–bridge coupling element of equal 
length (Cases 1-1 to 1-5), respectively. For convenience hereafter, the “bridge midpoint” means the 
midpoint of the fourth span for the seven-span bridge; “sleeper”, “rail” and “fastener” mean the sleeper, 
left rail and left fastener immediately on the bridge midpoint, respectively; “carbody” and “bogie” 
mean the carbody and front bogie of the third vehicle, respectively; and the “derailment factor” and 
“offload factor” mean the derailment factor and offload factor of the left wheel for the second wheelset 
of the third vehicle, respectively. The derailment factor is defined as the ratio of the lateral wheel–rail 
force to the vertical wheel–rail force of the same wheel, while the offload factor is defined as the ratio 
of the offload in the vertical wheel–rail force to the static vertical wheel–rail force of the same wheel 
(Xia et al., 2006). Figures 6 and 7 show the maximum lateral and vertical accelerations of the bridge 
midpoint, respectively; Figures 8 and 9 show the maximum lateral and vertical accelerations of the 
sleeper, respectively; Figures 10 and 11 show the maximum lateral and vertical accelerations of the 
left rail, respectively; Figures 12 and 13 show the maximum lateral and vertical accelerations of the 
carbody, respectively; Figures 14 and 15 show the maximum lateral and vertical accelerations of the 
bogie, respectively; Figures 16 and 17 show the maximum lateral force and vertical pressure of the left 
fastener, respectively; and Figures 18 and 19 plot the maximum derailment factor and offload factor, 
respectively. As is shown, the differences in the dynamic responses between Cases 1-1 to 1-5 appear to 
decrease as the lengths of the elements are reduced, indicating that the use of a shorter length of ele-
ment tends to greatly improve the calculation accuracy. However, the corresponding calculation time 
increases significantly in relation to an increase in the number of DOFs. When the LBE is shorter 
than 2.5 m (Cases 1-3 to 1-5), the differences in the accelerations of the bridge midpoint (Figures 6 
and 7) are much smaller than those of the accelerations of the sleeper (Figures 8 and 9), of the accel-
erations of the rail (Figures 10 and 11), of the fastener forces (Figures 16 and 17), and of the wheel–
rail interactions (Figures 18 and 19), due to the fact that the mass and stiffness of the bridge are 
much larger than those of sleeper and rail. For instance, the ratios of lateral and vertical flexural ri-
gidity of the bridge to those of the single rail are respectively 4.28 × 106 and 9.99 × 104. Similar phe-
nomenon can also be observed for the lateral and vertical accelerations of the carbody (Figures 12 and 
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13) and for the lateral acceleration of the bogie (Figure 14), because the vehicle’s suspension systems 
and wheel–rail creepage serve to some extent as an energy dissipating mechanism. It is evident that a 
sufficiently fine mesh, i.e., LRE = lsp, should be adopted for the rail if accurate accelerations of sleeper 
and rail, fastener forces, and wheel–rail interactions are required. By comparing the dynamic responses 
of Case 1-2 with those of Case 1-6, it can be seen that the influence of LRE on the bridge dynamic 
responses is also important if the track irregularities are considered, which is different from the case 
that considers an ideal smooth track (Lou et al., 2010). As shown in Table 4, the major difference 
between the two calculation cases in modeling rail–bridge interaction is that Case 1-2 uses the rail–
bridge coupling element with LBE = LRE = 5.0 m, while Case 1-6 uses the proposed element with 
LBE = 5.0 and LRE = 0.625 m. Although LBE in Case 1-2 is equal to that in Case 1-6, the differ-
ences in the lateral and vertical accelerations of the bridge at a train speed of 350 km/h may reach 
8.87% and 13.90%, respectively. It is interesting to note that negligible differences between the bridge, 
sleeper, rail, and the vehicle dynamic responses can be observed in Cases 1-5 and 1-6. As shown in 
Table 4, the major differences between the two calculation cases in modeling rail–bridge interaction is 
that Case 1-5 uses the rail–bridge coupling element with LBE = LRE = 0.625 m, while Case 1-6 uses 
the proposed element with LBE = 5.0 and LRE = 0.625 m. Although LBE in Case 1-6 is eight times 
that in Case 1-5, an excellent agreement of the dynamic responses can be obtained because of the high 
flexural rigidity of bridge. Furthermore, the proposed element helps to save calculation time compared 
with the rail–bridge coupling element of equal length, due to the reduction of DOFs. For example, the 
total CPU times for Case 1-5 and Case 1-6 are 1248.2 s and 902.4 s on a 2.8 GHz personal computer, 
respectively, and the ratio of the latter to the former is 0.723. Therefore, it is concluded that the pro-
posed 3D rail–bridge coupling element with shorter rail elements and longer bridge elements can not 
only help to save calculation time but can also provide satisfactory results when investigating the 
spatial dynamic responses of a TTBI system. 
 

Calculation case LBE (m) LRE (m) LPE (m) Number of DOFs 
Case 1-1 10.0 10.0 

2.5 

2628 
Case 1-2 5.0 5.0 3198 
Case 1-3 2.5 2.5 4338 
Case 1-4 1.25 1.25 6618 
Case 1-5 0.625 0.625 11178 
Case 1-6 5.0 0.625 8518 

Table 4: Calculation cases. 

 

 

Figure 6: Maximum lateral acceleration of bridge midpoint with respect to train speed. 
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Figure 7: Maximum vertical acceleration of bridge midpoint with respect to train speed. 

 

 

Figure 8: Maximum lateral acceleration of sleeper with respect to train speed. 

 

 

Figure 9: Maximum vertical acceleration of sleeper with respect to train speed. 

 

 

Figure 10: Maximum lateral acceleration of rail with respect to train speed. 
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Figure 11: Maximum vertical acceleration of rail with respect to train speed. 

 

 

Figure 12: Maximum lateral acceleration at centroid of carbody with respect to train speed. 

 

 

Figure 13: Maximum vertical acceleration at centroid of carbody with respect to train speed. 

 

 

Figure 14: Maximum lateral acceleration at centroid of bogie with respect to train speed. 
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Figure 15: Maximum vertical acceleration at centroid of bogie with respect to train speed. 

 

 

Figure 16: Maximum lateral force of fastener with respect to train speed. 

 

 

Figure 17: Maximum vertical pressure of fastener with respect to train speed. 

 

 

Figure 18: Maximum derailment factor with respect to train speed. 

 

0.0 
2.0 
4.0 
6.0 
8.0 

10.0 
12.0 
14.0 
16.0 
18.0 
20.0 

0 40 80 120 160 200 240 280 320 360

Ve
rti

ca
l a

cc
ele

ra
tio

n (
m/

s2 )

Train speed (km/h)

Case 1-1

Case 1-2

Case 1-3

Case 1-4

Case 1-5

Case 1-6

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

0 40 80 120 160 200 240 280 320 360

La
ter

al 
fo

rc
e (

kN
)

Train speed (km/h)

Case 1-1

Case 1-2

Case 1-3

Case 1-4

Case 1-5

Case 1-6

-50.0 
-45.0 
-40.0 
-35.0 
-30.0 
-25.0 
-20.0 
-15.0 
-10.0 

-5.0 
0.0 

0 40 80 120 160 200 240 280 320 360

Ve
rti

ca
l p

re
ss

ur
e (

kN
)

Train speed (km/h)

Case 1-1
Case 1-2
Case 1-3
Case 1-4
Case 1-5
Case 1-6

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

0 40 80 120 160 200 240 280 320 360

D
er

ai
lm

en
t f

ac
to

r

Train speed (km/h)

Case 1-1
Case 1-2
Case 1-3
Case 1-4
Case 1-5
Case 1-6



Z.-P. Zeng et al. / Three-Dimensional Rail–Bridge Coupling Element of Unequal Lengths for Analyzing Train–Track–Bridge Interaction System     2519 

Latin American Journal of Solids and Structures 13 (2016) 2490-2528 

 

Figure 19: Maximum offload factor with respect to train speed. 

 
Calculation case Case 1-1 Case 1-2 Case 1-3 Case 1-4 Case 1-5 Case 1-6 

Calculation time (s) 303.4 358.7 475.9 711.9 1248.2 902.4 

De1 of bridge midpoint lateral acceleration (%) 27.45 8.87 1.22 1.03 0.29 0.00 

De1 of bridge midpoint vertical acceleration (%) 43.41 13.90 2.56 1.31 0.09 0.00 

De1 of sleeper lateral acceleration (%) 52.91 30.15 19.60 5.31 −0.01 0.00 

De1 of sleeper vertical acceleration (%) 49.55 26.74 15.96 4.29 −0.01 0.00 

De1 of rail lateral acceleration (%) 68.14 47.92 34.20 20.05 −0.01 0.00 

De1 of rail vertical acceleration (%) 58.88 44.53 23.26 5.47 −0.01 0.00 

De1 of carbody lateral acceleration (%) 6.03 4.17 3.25 1.61 0.00 0.00 

De1 of carbody vertical acceleration (%) 11.19 5.53 2.49 0.45 0.00 0.00 

De1 of bogie lateral acceleration (%) 6.22 4.22 2.30 1.60 −0.01 0.00 

De1 of bogie vertical acceleration (%) 28.00 19.63 9.06 2.05 0.01 0.00 

De1 of lateral force of fastener (%) 55.92 27.96 16.67 3.77 −0.26 0.00 

De1 of vertical pressure of fastener (%) 51.72 37.90 22.75 3.15 −0.04 0.00 

De1 of derailment factor (%) 27.40 25.00 19.09 4.60 0.00 0.00 

De1 of offload factor (%) 32.04 26.99 8.92 1.84 0.01 0.00 

Table 5: Calculation time and accuracy for different calculation cases at train speed of 350 km/h. 

 
5.3 Example 2: Influence of Two Types of Track Models on Dynamic Responses of TTBI System 

In this example, two types of track models are considered, with the same train, bridge, and track 
irregularity as presented in Section 5.1. One is a double-layer track model which has the same 
sleepers that were considered in Section 5.1, while the other is a single-layer track model in which 
the sleepers are ignored. The parameters LBE = 5.0 m and LRE = 0.625 m are adopted in both 
models. The lateral and vertical stiffnesses, krby and krbz, of the discrete springs between the rail and 
bridge in the single-layer track model can be obtained by considering krsy and ksby, krsz and ksbz, re-
spectively, in series in the double-layer track model with sleepers ignored, i.e., krby = krsy·ksby/(krsy + 
ksby) and krbz = krsz·ksbz/(krsz + ksbz). Similarly, the lateral and vertical damping coefficients, crby and 
crbz, of the discrete dampers between the rail and bridge in the single-layer track model can be ob-
tained as crby = crsy·csby/(crsy + csby) and crbz = crsz·csbz/(crsz + csbz). To investigate the influence of 
the mass, ms, of the sleeper on the spatial dynamic responses of the TTBI system, five masses of 
170 kg, 255 kg, 340 kg, 425 kg, and 510 kg are applied, which are equal to 0.50, 0.75, 1.00, 1.25, and 
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1.50 times the normal value, respectively. The other parameters are the same as those in Table 1. It 
is of note that the mass of the sleeper is added to the dead load of the bridge in the single-layer 
track model, but that a detailed derivation of the stiffness and damping matrices of the rail–bridge 
interaction is not given here. However, it can be obtained by following a procedure similar to that 
given in Sections 2.2 and 2.3. To investigate the influence of the track model on the spatial dynamic 
responses of the TTBI system, the difference, De2, between the dynamic responses based on the 
single-layer track model and those based on the double-layer track model can be defined as De2 = 
(Dyn21–Dyn22)/Dyn21 × 100%, where Dyn21 and Dyn22 denote the dynamic responses obtained by the 
single-layer track model and by the double-layer track model, respectively. The differences, De2, of 
the dynamic responses of the TTBI system at various train speeds based on the single-layer track 
model and the double-layer track model with ms = 170 kg, ms = 225 kg, ms = 340 kg, ms = 425 kg, 
and ms = 510 kg, are plotted in Figures 20 to 27. Figures 20 and 21 show the differences in the 
maximum lateral and vertical accelerations of the bridge midpoint, respectively; Figures 22 and 23 
show the differences in the maximum lateral and vertical accelerations of the rail, respectively; Fig-
ures 24 and 25 show the differences in the maximum lateral and vertical accelerations of the car-
body, respectively; and Figures 26 and 27 plot the differences in the maximum derailment factor 
and offload factor, respectively. Differences in the dynamic responses based on the single-layer and 
double-layer track models can be seen in Figures 20 to 27, and it is evident that the differences in 
both the maximum lateral and vertical dynamic responses generally increase with an increase in the 
mass of sleeper and train speed. Although the differences in the maximum lateral and vertical accel-
eration of the carbody (Figures 24 and 25) are negligibly small (≤ 2%), due to the energy dissipating 
effect of the vehicle’s suspension systems and wheel–rail creepage, the differences in other dynamic 
responses are quite visible, particularly at higher train speeds. For instance, the differences in lateral 
acceleration of the bridge (Figure 20), lateral acceleration of the rail (Figure 22), and the derailment 
factor (Figure 26) are larger than 100%, 10%, and 4%, respectively, in the present calculation cases. 
Figures 28 to 31 plot the maximum lateral and vertical accelerations of the bridge midpoint and rail 
with the single-layer track model and double-layer track model with ms = 170 kg, ms = 255 kg, ms 
= 340 kg, ms = 425 kg, and ms = 510 kg, respectively. As can be seen from Figures 28 to 31, the 
lateral and vertical accelerations of the bridge midpoint tend to increase steadily with an increase in 
the mass of the sleeper, while the lateral and vertical accelerations of the rail show a trend of slight 
decrease at higher train speeds. This can be explained by the fact that the sleepers serve as a medi-
um for transmitting the kinetic energy brought by the moving train from the rail to the bridge. The 
increase in the mass of the sleeper thus increases the train-induced impact effect on the bridge, 
while reducing the vibration amplitude of the rail. In addition, the two-layer track model allows us 
to compute not only the bridge responses, rail responses, vehicle responses, and wheel–rail interac-
tion, but also the sleeper responses and the fastener force. However, it is worth noting that the sin-
gle-layer track model saves calculation time because of the reduction of DOFs. For example, the 
DOFs of the single-layer and double-layer track models are 6691 and 8518 respectively, while the 
corresponding calculation times are 720.1 s and 902.4 s on a 2.8 GHz personal computer, respective-
ly. It is thus concluded that the double-layer model, although more time consuming, is shown to be 
more accurate. 
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Figure 20: Differences, De2, in maximum lateral acceleration of the bridge midpoint with respect to train speed. 

 

 

Figure 21: Differences, De2, in maximum vertical acceleration of bridge midpoint with respect to train speed. 

 

 

Figure 22: Differences, De2, in maximum lateral acceleration of rail with respect to train speed. 

 

 

Figure 23: Differences, De2, in maximum vertical acceleration of rail with respect to train speed. 
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Figure 24: Differences, De2, in maximum lateral acceleration at centroid of carbody with respect to train speed. 

 

 

Figure 25: Differences, De2, in maximum vertical acceleration at centroid of carbody with respect to train speed. 

 

 

Figure 26: Differences, De2, in maximum derailment factor with respect to train speed. 

 

 

Figure 27: Differences, De2, in maximum offload factor with respect to train speed. 
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Figure 28: Maximum lateral acceleration of bridge midpoint with respect to train speed. 

 

 

Figure 29: Maximum vertical acceleration of bridge midpoint with respect to train speed. 

 

 

Figure 30: Maximum lateral acceleration of rail with respect to train speed. 

 

 

Figure 31: Maximum vertical acceleration of rail with respect to train speed. 
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5.4 Example 3: Influence of Two Types of Wheel–Rail Interaction Models on Dynamic Responses of TTBI System 

In this example, two types of wheel-rail interaction models are considered, i.e., the no-jump model 
and the jump model. The same train, track, bridge, and track irregularity as that presented in Sec-
tion 5.1 is used, with LBE = 5.0 m and LRE = 0.625 m. The wheels of each vehicle are considered 
to be in full contact with the rails at all times for the no-jump model (Yang et al., 2004, Lou and 
Zeng, 2005), while the wheels are free to jump from the rails for the jump model (Zhai and Sun, 
1994).  

The running safety of trains has been of great concern in railway engineering for a long time, 
particularly in relation to the development of high-speed railways and the need to upgrade existing 
railways. Several mechanisms that can result in the derailment of a running train have been identi-
fied through analytical and experimental investigations, and a number of indices have been pro-
posed based on these to evaluate the possibility, or risk, of train derailment. One of these indices is 
the offload factor, PD, (Yang et al., 2004). Large PD values indicate that dynamic vertical wheel–
rail force acting on the wheel is substantially reduced. This is detrimental to the lateral stability of 
the wheelset, and thus a limit needs to be placed on the value of the PD index to prevent the 
wheelset from derailing. An upper limit of 0.60 on the PD value was used in Chinese specifications 
for the design of railways (Xia et al., 2006), which implies that jumps between the vehicle’s wheels 
and the rails are not usually permitted in practice. Therefore, the wheels of a vehicle are generally 
assumed to be in constant contact with the rails (i.e., the no-jump model) when most train–track–
bridge interaction problems occur. Based on this assumption, the dynamic contact forces between 
the wheels and rails are considered as internal forces, and it is thus not necessary to calculate the 
internal forces when setting up the equations of motion of a TTBI system (Lou and Zeng, 2005). As 
such, the vehicle response, wheel–rail contact force, track response, and bridge response can be 
computed with no iterations required. However, in some extreme cases, such as with poor track 
quality or during an earthquake, the wheels may jump upward and separate from the rails (i.e., the 
jump model) and the train then has a high risk of derailment. When studying the dynamic respons-
es of a TTBI system using the jump model, two sets of equations of motion can be written, one for 
the moving train subsystem and the other for the track–bridge subsystem. These equations are cou-
pled with the wheel–rail contact forces existing at the contact points of the two subsystems, and are 
usually solved using procedures of an iterative nature (Zhai and Sun, 1994). For instance, when first 
assuming a trial solution for the wheel–rail contact forces, the dynamic responses of the train and 
track–bridge subsystems can be solved from the two sets of equations of motion, respectively. An 
improved solution for the wheel–rail contact forces can then be obtained according to the displace-
ments of the wheels and rails at the contact points. By substituting these forces into the equations 
of motion within a train and track–bridge subsystems, an improved solution for the dynamic re-
sponses of the two subsystems can be solved. However, to avoid divergence and improve the con-
vergence rate of iteration, sufficiently small time steps are required in the process of calculation, 
which may thus result in more computer time.  

Seven cases with train speeds of 50 km/h, 100 km/h, 150 km/h, 200 km/h, 250 km/h, 300 
km/h, and 350 km/h are considered. The dynamic responses of the TTBI system obtained using the 
no-jump and jump wheel–rail interaction models at various train speeds are shown in Table 6. As is 
evident from the table, the solutions obtained using the no-jump model for the seven cases given 
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agree very well with those of the jump model, although the impact response induced by the jump 
model appears to increase slightly. The differences in bridge acceleration are no larger than 2.00%, 
due to the relatively larger stiffness and mass of the bridge. However, although the differences in 
the dynamic responses of the sleeper, rail, and vehicle are slightly larger, all of them are smaller 
than 5.00%. It should be noted that the total CPU times for the no-jump model and the jump 
model at a train speed of 350 km/h are 902.4 s and 7183.1 s on a 2.8 GHz personal computer, re-
spectively, and the ratio of the former to the latter is 0.126. Therefore, it is concluded that the no-
jump wheel-rail interaction model can be reliably and efficiently used to predict the spatial dynamic 
responses of a TTBI system. 
 

Train speed (km/h)  50 100 150 200 250 300 350 

Bridge midpoint lateral 
acceleration (m/s2) 

no-jump model 0.005 0.015 0.023 0.052 0.068 0.106 0.152 

jump model 0.005 0.015 0.023 0.053 0.069 0.107 0.153 

Bridge midpoint vertical 
acceleration (m/s2) 

no-jump model 0.008 0.036 0.100 0.151 0.253 0.403 0.610 

jump model 0.008 0.036 0.101 0.154 0.257 0.411 0.618 

Sleeper lateral acceleration 
(m/s2) 

no-jump model 0.096 0.743 2.378 6.209 10.047 14.180 18.651 

jump model 0.099 0.758 2.432 6.347 10.165 14.459 18.757 

Sleeper vertical acceleration 
(m/s2) 

no-jump model 0.194 0.909 3.005 6.865 10.822 20.809 39.986 

jump model 0.200 0.910 3.038 6.878 10.864 21.494 41.097 

Rail lateral acceleration 
(m/s2) 

no-jump model 0.557 2.436 5.917 12.511 21.175 36.174 49.852 

jump model 0.564 2.528 5.925 12.730 21.498 37.281 51.437 

Rail vertical acceleration 
(m/s2) 

no-jump model 1.151 7.542 18.837 44.083 83.549 148.46 238.90 

jump model 1.162 7.726 19.256 45.507 86.512 154.062 242.197 

Carbody lateral acceleration 
(m/s2) 

no-jump model 0.059 0.133 0.172 0.179 0.188 0.237 0.296 

jump model 0.060 0.134 0.173 0.179 0.190 0.241 0.298 

Carbody vertical acceleration 
(m/s2) 

no-jump model 0.103 0.150 0.237 0.320 0.368 0.462 0.531 

jump model 0.105 0.151 0.242 0.322 0.373 0.471 0.545 

Bogie lateral acceleration 
(m/s2) 

no-jump model 0.663 2.136 4.341 6.170 6.339 7.210 7.946 

jump model 0.678 2.165 4.356 6.193 6.379 7.361 7.996 

Bogie vertical acceleration 
(m/s2) 

no-jump model 0.558 1.599 3.434 5.444 8.510 13.558 18.209 

jump model 0.576 1.614 3.561 5.520 8.576 13.694 18.657 

Lateral force of fastener 
(kN) 

no-jump model 0.634 1.638 3.059 4.026 4.932 5.242 5.733 

jump model 0.643 1.655 3.135 4.096 5.013 5.386 5.782 

Vertical pressure of fastener 
(kN) 

no-jump model 28.543 29.600 31.462 33.908 37.420 41.791 47.013 

jump model 29.407 30.492 31.940 34.678 37.533 41.881 48.01 

Derailment factor 
no-jump model 0.047 0.092 0.138 0.166 0.227 0.304 0.471 

jump model 0.048 0.092 0.140 0.168 0.227 0.306 0.473 

Offload factor 
no-jump model 0.038 0.073 0.128 0.222 0.337 0.454 0.591 

jump model 0.039 0.074 0.129 0.228 0.341 0.467 0.603 

Table 6: Calculation results for two wheel–rail interaction models at various train speeds. 
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6 SUMMARY AND OUTLOOK 

Based on obvious differences in the flexural rigidity between the rail and bridge, a 3D rail–bridge 
coupling element of unequal lengths is presented. The spatial dynamic responses of a TTBI system 
with a seven-span continuous beam bridge are studied using a 3D rail–bridge coupling element of 
unequal lengths and equal lengths. Furthermore, the effects of two types of track models on the 
spatial dynamic responses of the TTBI system are investigated, and the following conclusions can 
be drawn from the numerical results. 

(1) The proposed 3D rail–bridge coupling element with shorter rail elements and longer bridge 
elements not only helps save calculation time, but it also delivers satisfactory results when investi-
gating the spatial dynamic responses of a TTBI system. 

(2) In analyzing the spatial dynamic responses of a TTBI system using a 3D rail–bridge cou-
pling element that has the same length as the bridge element, the influence of the length of the rail 
element is significant, not only on the rail dynamic responses but also on the bridge dynamic re-
sponses, when the track irregularities are considered. This differs from the case with an ideal 
smooth track. 

(3) There are differences in the dynamic responses based on the single-layer and double-layer 
track models, and the differences in both the maximum lateral and vertical dynamic responses gen-
erally increase with an increase in the mass of the sleeper and the train speed, particularly with 
respect to accelerations of the bridge and rail. In addition, the two-layer track model is more accu-
rate. 

(4) The no-jump assumption between the vehicle’s wheels and the rails can be reliably and effi-
ciently used for most train–track–bridge interaction problems. 

(5) Further studies on the efficiency and accuracy of the proposed 3D rail–bridge coupling ele-
ment are needed to investigate the spatial dynamic responses of a TTBI system during an earth-
quake, due to the fact that vibrations of the system may be more violent during such an occurrence. 
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