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Three-Dimensional Rail-Bridge Coupling Element of Unequal

Lengths for Analyzing Train—Track—Bridge Interaction System

Abstract

A three-dimensional rail-bridge coupling element of unequal
lengths in which the length of the rail element is shorter than that
of the bridge element is presented in this paper to investigate the
spatial dynamic responses of a train-track-bridge interaction sys-
tem. Formulation of stiffness and damping matrices for the fasten-
er, ballast, and bearing, as well as the three-dimensional equations
of motion in matrix form for a train-track-bridge interaction sys-
tem using the proposed element are derived in detail using the
energy principle. The accuracy of the proposed three-dimensional
rail-bridge coupling element is verified using the existing two-
dimensional element. Three examples of a seven-span continuous
beam bridge are shown: the first investigates the influence of the
efficiency and accuracy of the lengths of the rail and bridge ele-
ments on the spatial dynamic responses of the train-track-bridge
interaction system, and the other two illustrate the influence of
two types of track models and two types of wheel-rail interaction
models on the dynamic responses of the system. Results show that
(1) the proposed rail-bridge coupling element is not only able to
help conserve calculation time, but it also gives satisfactory results
when investigating the spatial dynamic responses of a train-track-
bridge interaction system; (2) the double-layer track model is
more accurate in comparison with the single-layer track model,
particularly in relation to vibrations of bridge and rail; and (3) the
no-jump wheel-rail interaction model is generally reliable and
efficient in predicting the dynamic responses of a train-track-
bridge interaction system.
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1 INTRODUCTION

A considerable amount of research has been conducted on the dynamic responses of railway
bridge/track structures subjected to a moving train (Sun and Dhanasekar, 2002; Liu et al., 2009; Lu
et al., 2009; Wang et al., 2010; Kim, 2011; Zakeri et al., 2014; Lei and Wang, 2014; Xu et al., 2015).
Such research has been conducted particularly in the past three decades and mostly in relation to
the rapid development of high-speed railways worldwide. However, due to the massive volume of
work conducted, it is difficult to have a complete count of the number of studies and it is only pos-
sible to cite a few of those that are most relevant here.

The dynamic response of structures in relation to moving vehicles has been studied by previous
researchers by modeling a moving vehicle as a moving load, moving mass, or a moving sprung mass
with consideration of suspension (Ayre et al., 1950; Fryba, 1972; Chu et al., 1979; Wu and Dai,
1987; Chatterjee et al., 1994; Ichikawa et al., 2000). More sophisticated models that also consider
the vertical dynamic interaction between the moving train and structures have also been imple-
mented by a large number of researchers in recent years. For example, Zhai and Sun (1994) devel-
oped a new and detailed model to investigate the vertical interaction between a vehicle and the
track in which the vehicle was modeled as a multi-body system with 10 degrees of freedom (DOFs),
the track as an infinite Euler beam, and the wheel-rail interaction as a Hertzian nonlinear contact
spring. In addition, Yang et al. (1999) derived a vehicle-bridge interaction element by considering a
vehicle as a rigid beam supported by two suspension units and a bridge as beam elements, and
Cheng et al. (2001) proposed a bridge-track-vehicle element in which the vehicles were modeled as
mass-spring-damper systems, the rails as an upper beam element, and the bridge deck as a lower
beam element. Furthermore, Lei and Noda (2002) developed a dynamic computational model for a
vehicle and track coupling system using the finite element method (FEM), in which the vehicle-
track coupling dynamic responses were analyzed in time and frequency domains due to the random
irregularity of the track vertical profile. Thereafter, Wu and Yang (2003) investigated the vertical
dynamic responses of a vehicle-rails-bridge interaction system using a condensation technique, which
included the steady-state response and riding comfort of the train as well as the impact response of
the rails and bridges. Based on the principle of a stationary value of total potential energy of dy-
namic system, Zeng (2003), Lou (2005), and Lou and Zeng (2005) derived equations of motion in a
matrix form for three types of vehicle-track-bridge vertical interaction elements, in which the rails
and the bridge deck were represented by an elastic Bernoulli-Euler upper beam with finite length
and a simply supported Bernoulli-Euler lower beam, respectively. A later study by Lou (2007) in-
vestigated the vertical dynamic responses of a train-track-bridge interaction (TTBI) system using
FEM, and by discretizing the slab track subsystem into track elements that flow with the moving
vehicle, Lei and Wang (2014) developed a new approach with finite elements in a moving frame of
reference to investigate the dynamic behavior of the train and slab track coupling system.

In addition, with the exception of work that has been restricted to mainly analyzing the two-
dimensional (2D) dynamic responses of a train-track/bridge interaction system, a great volume of
research has also dealt with three-dimensional (3D) aspects of the system. For example, Zhai et al.
(1996) presented a new vertical and lateral coupling model of vehicle-track interaction, and investi-
gated the safety limits against derailment due to track twist and the combined alignment and cross-
level irregularities. In addition, Xia et al. (2000) studied the dynamic responses of the bridge-train
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system, and the derailment and the offload factors related to the running safety of the train, using a
3D finite element model to represent the bridge. Furthermore, Wu et al. (2001) developed a vehicle-
rail-bridge interaction model to analyze the 3D dynamic interaction between moving trains and the
railway bridge, and Dinh et al. (2009) developed a formulation for 3D dynamic interactions between
a bridge and a high-speed train using wheel-rail interfaces, where the bridge eccentricities and deck
displacement due to torsion were accounted for in bridge deck modeling. Papers have also been
written addressing the dynamic interaction between the track/bridge and the moving train, and
some monographs have focused on this subject. For example, Song et al. (2003), Kwasniewski et al.
(2006), Nguyen et al. (2009), Lei and Zhang (2011), Xin and Gao (2011), and Zhai et al. (2013)
proposed a theory and method for dealing with the dynamic problem of the vehicle-track/bridge
interaction system, respectively.

In the aforementioned works, most researchers have established the track-bridge interaction
model using FEM, in which a rail-bridge coupling element of equal lengths (i.e., with the length of
the rail element equal to that of the bridge element) is adopted. When the length of the bridge in-
creases, the DOFs of the track-bridge interaction system also increase, and thus making a dynamic
analysis of a track-bridge interaction system is a relatively time consuming process when using a
rail-bridge coupling element of equal lengths. Therefore, the aim of this paper is to present a 3D
rail-bridge coupling element of unequal lengths, in which sleepers are considered and where the
length of the bridge element is longer than that of the rail element, to investigate the spatial dy-
namic responses of a TTBI system under the action of track irregularities. This paper can therefore
be regarded as an extension of the theory presented by Lou et al. (2012), in which a 2D (vertical)
rail-bridge coupling element of unequal lengths was proposed to analyze the vertical dynamic re-
sponses of a TTBI system. However, the possibility of considering the lateral responses of a TTBI
system in the current work allows for a more realistic analyses.

In this study, a seven-span continuous beam bridge is used as an example, the influences of the
lengths of the bridge and rail elements, two types of track models, and two types of wheel-rail in-
teraction models on the efficiency and accuracy for calculating the spatial dynamic responses of the
TTBI system excited by track irregularities are carried out, based on which some conclusions are

drawn.

2 A 3D RAIL-BRIDGE COUPLING ELEMENT OF UNEQUAL LENGTHS
2.1 Model

A typical 3D rail-bridge coupling element of unequal lengths is shown in Figure 1 in which the
length of the rail element is shorter than that of the bridge element (the corresponding physical
parameters in Figure 1 are defined in Table 1). In the present study, the spatial dynamic behavior
is studied while the axial deformations of the rail and bridge are ignored. Using a case of a double-
track bridge, the dynamic responses of only one track is investigated and the other track is consid-
ered to be the dead load of the bridge, because the flexural rigidity of the bridge is usually thou-
sands of times greater than that of the rails (or even tens of thousands). The proposed 3D coupling
element ultimately consists of several rail elements of equal lengths (including the left and right
rail), a bridge element, a few sleepers, a series of fasteners, and a series of discrete ballasts. It can
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also include a bearing that connects a pier node at a supporting point of the bridge. The rails,
bridges, and piers are modeled as uniform Bernoulli-Euler beams, while each sleeper is modeled as a
rigid body, and the lateral and vertical elasticity and damping properties of the fastener, ballast,
and bearing are modeled using discrete massless springs and dampers. The mass of the ballast is
also added to the dead load of the bridge. As the longitudinal vibrations are neglected, each node in
the rail and bridge elements has five DOFs, i.e., a lateral displacement along the y-axis, a vertical
displacement along the zaxis, and three rotations about the a-, 1y, and zaxes. Each sleeper and
each node in the pier element has three DOFs, i.e., a lateral displacement along the y-axis, a verti-
cal displacement along the zaxis, and a rotation about the a-axis. The positive directions of these
DOFs accord with those of the co-ordinate, as shown in Figure 1. In addition, it is assumed that the
length of the bridge element (LBE) is an integer number of times of the length of the rail element
(LRE).
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Figure 1: Typical 3D rail-bridge coupling element of unequal lengths:

(a) frontal view, (b) left side view, and (c) top view.
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Track
Notation Parameter Value
Ar (m?) Sectional area of rail 77.45E-4
E- (N/ m2) Young’s modulus of rail 2.10E11
Gr (N/mQ) Shear modulus of rail 8.08E-10
m, (kg/m) Mass per unit length of rail 60.64
hrt1 (m) Vertical distance between rail top and its center of torsion 94.53E-3
hrt2 (m) Vertical distance between rail bottom and its center of torsion 81.47E-3
brt (m) Half of width of rail bottom 75.00E-3
Ire (m Length of rail element (LRE) -
Iz (m4) Torsional moment of inertia about x-axis of rail 2.43E-5
Iry (In4) Flexural moment of inertia about y-axis of rail 3.22E-5
- (m4) Flexural moment of inertia about z-axis of rail 5.24E-6
ms (kg) Mass of a sleeper 340
Jsz (kg m2) Moment of inertia about x-axis of sleeper 74.2
lsp (m Sleeper space 0.625
Dy (m) Half of transverse distance between center lines of two rails 0.75
Dhial (m) Half of transverse distance between the two supporting points of ballast 0.75
krsy (N/m) Lateral stiffness of discrete spring reflecting the property of fastener 3.0E7
Ve (N / m) Vertical stiffness of discrete spring reflecting the property of fastener 6.0E7
crsy (N-s/m) Lateral damping coefficient of discrete damper reflecting the property of fastener 5.0E4
crsz (N-s/m) Vertical damping coefficient of discrete damper reflecting the property of fastener 7.5E4
ksby (N/m) Lateral stiffness of discrete spring reflecting the property of ballast under single rail 5.0E7
ksvz (N/m) Vertical stiffness of discrete spring reflecting the property of ballast under single rail 2.25E8
o (N~S /m) Lateral damping coefficient of dlbcretes(ilsgmlepzifeﬂectmg the property of ballast under 4 OEA
e (1 ) Vertical damping coefficient of dlscretesizr;}lzri 1reﬂectmg the property of ballast under 6.0E4
Bridge
Notation Parameter Value
Ap (m2) Sectional area of bridge 12.83
Ey (N/ m2) Young’s modulus of bridge 3.45E10
Gy (N/ m2) Shear modulus of bridge 1.44E10
my (kg/m) Mass per unit length of bridge 4.38E10
hbt1 (m) Vertical distance between bridge deck and its center of torsion 1.42
hbto (m) Vertical distance between bridge bottom and its center of torsion 1.88
Dty (m) Half of transverse distance between center lines of two tracks 2.5
Devpy (m) Half of transverse distance between center lines of bearing 2.4
lbe (m) Length of bridge element (LBE) =
Ivz (m4) Torsional moment of inertia about x-axis of bridge 51.9
Iy (m4) Flexural moment of inertia about y-axis of bridge 19.2
Ty (m4 Flexural moment of inertia about z-axis of bridge 134.0
kvby (N/m) Half of lateral stiffness of discrete spring reflecting the property of bearing 2.5E8
kbbz (N /m) Half of vertical stiffness of discrete spring reflecting the property of bearing 3.0E9
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coby (N-s/ m) Half of lateral damping coefficient of discrete damper reflecting the property of bearing 1.0E5
cobz (N-s/m) Half of vertical damping coefficient of discrete damper reflecting the property of bearing 1.0E6
) Damping ratio of bridge 0.05
Pier
Notation Parameter Value
Ap (m?) Sectional area of pier 22.07
Eyp (N/mQ) Young’s modulus of pier 3.15E10
m, (kg/m) Mass per unit length of pier 5.51E4
lpe (m) Length of pier element (LPE) -
Ips (m4) Flexural moment of inertia about x-axis of pier 101.9
kvby (N/m) Half of lateral stiffness of discrete spring reflecting the property of bearing 2.5E8
kvbz (N/m) Half of vertical stiffness of discrete spring reflecting the property of bearing 3.0E9
coby (N-s/m) Half of lateral damping coefficient of discrete damper reflecting the property of bearing 1.0E5
cbbz (N-s/m) Half of vertical damping coefficient of discrete damper reflecting the property of bearing 1.0E6
Cp Damping ratio of pier 0.05

Table 1: Major parameters of track and bridge.

2.2 Formulation of Stiffness and Damping Matrices of Fastener

For both the vertical and lateral discrete springs and dampers representing a fastener, one end
point connects with an element of the left or right rail, while the other end point connects with a
sleeper, as shown in Figures 1 and 2. Taking as an example the vertical discrete spring modeling
with a left fastener connecting the ith left rail element and a sleeper (Figure 2(a) and (b)), the up-
per end point has a dependent DOF depending on the vertical displacement, zrr, and rotation, thLr,
about the z-axis of the ith left rail element, while the lower end point also has a dependent DOF
depending on the vertical displacement, zs, and rotation, hs, about the z-axis of the corresponding
sleeper. The elastic strain energy of the vertical spring, 1%, can then be expressed as

1k 1k
e = — ;” (21 +b4bugp —2, = (D, +5,)0,,)° +3%(Zu ~byOy, 2, ~(Dyy ~b,)0,,)°

fas 2
1k ,
= 7 rzxz (er,IZLr,i + er,ZgyLr,i + NV:,3ZLr,i+1 + er,40yLr,i+1 + brt(NrH)‘,lngr,i + NI‘HX,ZGXLI‘,HI) —Zs— (Drr + br! )gx:)
1k R
+ E%(er,lszi + er,ZHyLr,[ + er.3er,[+1 + er.49yLr,[+1 - brl (Nraw.lgxl,r.[ + Nrﬂx,ngLr,Hl) —Zs— (Drr - brl )gn)
r T 1T ar o 1T A1) 1
ZLri N1 N, N,., Nopzy ZLri
HyLr‘[ er.Z er,2 er.Z er,2 gyLr,[ 1
ZLr.i+l Ny Ny Ny Noos ZLr.i+l ( )
1 krsz aer,H-l er,4 er,4 er,4 er¢4 gyLr.H—l
=— X X + X X
2 ngr,i brt N"Hx,l brfNH%c,l - brtNer‘,l - brINrb‘x,l Her,i
ngr,Hl brtNrHXJ brtNr@(.Z - hrtNer,Z - brrNrQ’r,Z HaniJrl
zg -1 -1 -1 -1 zg
Con | |m0, 0] m0, a0 |m0, b0 |m0, -0 | | 6
. 0 0 Ouri O 0, IxkLEe 0 0 Ouri O 0,1"
= E[er,i yLrii ZLritl YyLrivl Oxiri Usirivl Z5 Uxs Ix fas % (Z1ri yLrii ZLrivl YyLrivl Oxiri Usirisvl Zs Uxs 1

with
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er,ler,l er,ler,Z er,ler,3 er,ler,4 0 0 _Nr:,l _Drrer,l
er,Zer,2 er,Zer,3 er,2er,4 0 0 - er,2 - Drrer,Z
er,Ser,S er,3er,4 0 0 - er,} - Drrer,S
kLZ,e =k er,4er,4 0 0 - N;z,4 - Drr er,4
fas  — "rsz 2 2 2
/ brtNer,lNrﬁx,l brt Nr()x,lNr&,Z 0 _brt Nr()x,l
2 2
Symim. byN.goNias 0 —byNogo (2)
1 D,
2 2
L Dy, + brt i
Nppa =130 /1) + 2060 /1)’ N = Enl=14 20 /1) = (G 117)7]
Ny =3 )" =260 1)’ Nopa = &= /1)" + (& 1))
Nr&,l =1 7§rs /]re Ner,Z = él‘s /]re

where &rs denotes the longitudinal distance between the left node of the ith left rail element and the

discrete spring, and k% denotes the stiffness matrix of the vertical discrete spring for a left fasten-

er.

Similarly, one end point of the lateral spring for a left fastener connecting the ith left rail ele-
ment and a sleeper has a dependent DOF depending on the lateral displacement, yrr, and rotation,
thir, about the a-axis of the ith left rail element, while the other end point has an independent DOF,
i.e., the lateral displacement, ys, of the corresponding sleeper (Figure 2(b) and (c)). The stiffness

matrix of the lateral discrete spring for a left fastener, k%\¢, can then be expressed as

Nry,lNry,l Nry,lN)y,2 N)y,]Nr'v,:‘s Nry,lNry,4 hrIZNry,]Nr&r,l hrtZNry,lNr&r,Z =N,
Nry,ZNr'v,2 Nry,ZNr'v,S Nr'v,2N)y,4 hrt2Nry,2Nr$c,] hnZNr.v,2Nr62r,2 -N
an,San,S Nry,3N)y,4 hrtZN)y,fsNrQr,l hrt2Nry,3Nr|9.’c,2 -N

7,3
%L =k NpyaNus haNaNgy hoNpyaNegs  —Npy (3)
2 2
hrzZNrébc,lNrébc,l hrlZNer,lNer,2 - hrzZNrébc,l
symm. hrthNr&vJNr&r,Z *hrterax,z
L 1 d
with

Ny =130 11,07 + 2, 11,)° Ny = &l =208, 1) + (&1 110) ]

Npys =30 11,)? =250 11,)° Ny = &l 11)? = (&0 1 1))

The vertical and lateral damping matrices, C%“" and C%"", of the discrete damper for a left fas-

tener can be obtained simply by replacing “krs?’ and “krsy’ in the corresponding stiffness matrices,

k%f‘" and k%’e, using “crs?” and “crsy”’, respectively.

The vertical stiffness and damping matrices for a right fastener, k%"" and c%’e , as well as the

€

lateral stiffness and damping matrices, k¢ and ¢}y, can be obtained by following a procedure

similar to that given above.
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Figure 2: Sleeper attached to the ith left rail element by fastener:

frontal view, (b) left side view, (c) top view.

2.3 Formulation of Stiffness and Damping Matrices of Ballast

For both the vertical and lateral discrete spring and damper representing a ballast, one end point
connects to a sleeper, while the other end point connects to a bridge element, as shown in Figures 1
and 3. If we use as an example the vertical discrete spring in modeling a ballast connecting a sleeper,
and the ith bridge element (Figure 3(a) and (b)), the upper end point has a dependent DOF that
depends on the vertical displacement, zs, and the rotation, s, about the z-axis of the sleeper, while
the lower end point also has a dependent DOF depending on the vertical displacement, 2z, and the
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rotation, s, about the z-axis of the ith bridge element. The stiffness matrix of the vertical discrete
spring for a ballast, k%s , can then be expressed as follows,

10 =Ny, ~Np.» N3 Ny 4 =Dy, Ny =Dy, Ny 2
Diyy 0 0 0 0 ~Djy Npg -Djy Npor2

Ngz,lNgz,l Ngz,lNgz,Z Ngz,lNgz,S Ngz,lNgz,4 Dcth[fz,lNgﬁc,l Dcthgz,lNg&v,Z

kfzﬁ =2k, Ni-oNiz Nziz,zszzg Nziz,zNzizA DclelzzJle&‘,l DcthzZz,zszex,z (4)
Nipz3Npz3 Np- 3N 4 DNy 3Npges Doy Ny 3Npo 2
symm. Ny 4N 4 Dy Nz 4Njax, Doy Nz 4Njoc 2
(D2 + D )N iNger (Déy + D )N i N2
| (D% +D}72ul)Ngl9.x,2N;9x,2_

with
Niy =1=3(8y 11,07 + 2(&g 1 1)° Niog = &1+ 250 /) = (G / 1)
Nifz,s = 3(§sh //h@)z - 2(6851; /[he)3 Nifz,4 = ‘f.yh[—(;yh /lbe)z + (évh /lhe )]
Nipgeg =1=&g /e Nyoo =8&w e

)

where &5 denotes the longitudinal distance between the left node of the «th bridge element and the
discrete spring.

Similarly, one end point of the lateral spring for a ballast connecting a sleeper and the ith
bridge element has an independent DOF, i.e., the lateral displacement, ys, of the sleeper, while the
other end point has a dependent DOF depending on the lateral displacement, y», and the rotation,
b, about the z-axis of the ith bridge element (Figure 3(b) and (c)). The stiffness matrix of the
lateral discrete spring for a ballast, kY , can then be derived as follows,

s s s s N s
I =Ny, —Npyo “Npy 3 “Nipya My N o hy i Npor 2
5 s 5 s 5 s s s 5 s s s
NoyaNoya NoyaNoy2 NoyaiNoys NipiNippa —hpaNipiNpoer = hpa Ny 1N
s s s s s s s s s s
NpyoNpo NopyaNpys NigoNiy s —hpa Ny oNiger = hpaNiy o Nige

Ye _ s K s s s s s s
kbal - 2k5by be,SbeJ be,3be,4 - hbthby,}NbO):.l - hb[leyJNbOx,Z (5)
5 5 s s 5 5
Nhy,4Nhy,4 - hbllNhy,4Nth,] - hbanyANhﬁx,z
. 2 K] s 2 s s
symm . i NyoeiNpox, Dy NypoeiNpox2

2 K N
hii Nipoe 2 N2 |

with

N =1=3Eg 1) +2(Eg /1,)° Niyo=Egll=2(Eg /) + (£ 115)7]
Niy 3 =3(Eg ) = 2(8 1 1y,)° Niya=Egl(Eg ) = (Egy 1y

The vertical and lateral damping matrices, ¢z and Y, of the discrete damper for a ballast can
be obtained simply by replacing “ks2” and “ksby” in the corresponding stiffness matrices, k%; and

ke using “csvs” and “cshy’, respectively.
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Figure 3: Sleeper attached to ith bridge element of by ballast:

(a) frontal view, (b) left side view, (c) top view.

2.4 Formulation of Stiffness and Damping Matrices of Bearing

For both the vertical and lateral discrete springs and damper that represent a bearing, one end
point connects a bridge element, while the other end point connects a node of the pier element, as
shown in Figures 1 and 4. If we take the model of a vertical discrete spring and bearing connecting
the ith bridge element and the ith node of pier element as an example (Figure 4(a) and (b)), the
upper end point has a dependent DOF depending on the vertical displacement, z», and rotation, s,
about the z-axis of the ith bridge element. In addition, the lower end point also has a dependent
DOF relating to the vertical displacement, zpi, and rotation, i, about the z-axis of the ith node of
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the pier element. In this case, the stiffness matrix of the vertical discrete spring for a bearing, kZ¢ ,

can be expressed as

[Arb A b arb b arb b arb b
sz,lNl;z,l th,lth,Z sz,lez,S sz,lth,4 0 0 -N, z,1 0
b b b b b b b
sz,2sz,2 Nl)z,Zsz,3 Nl)z,2 Nl)z,4 0 0 Nl)z,Z 0
b b b b b
sz,Ssz,S sz,3sz,4 0 0 - sz,3 0
b b b
kZ,e _2kbb Nl;z,4sz,4 0 0 _sz,4 0 (6)
bea — z 2 b b 2 b b 2 b
“ DcthhQ’c,leQr,l chbNbQ’c,leQt,Z 0 - chbNhex,l
2 b b 2 arb
symm. DapNpoeaNpawy 0 = Doy Nygen
1 0
2
L D(‘bb
with
Npy=1=3(E M) + 2(E5 115 )° Npoo=Eml-1+2(E /) = (Epy 113,)7]
N;::,S =3 /e )2 = 2(&uy /e )3 N;y’z,4 =& [=(Epp /e )2 + (S /pe )]
Nl?&x,l =1-Ey /1, szax,z =S e

)

where & denotes the longitudinal distance between the left node of the ith bridge element and the
discrete spring.

Similarly, one end point of the lateral spring for a bearing connecting the ith bridge element
and the ith node of pier element has a dependent DOF in relation to the lateral displacement, s,
and rotation, ths, about the z-axis of the ith bridge element. In addition, the other end point has an
independent DOF, i.e., the lateral displacement, yp,i, of the corresponding node of the pier element
(Figure 4(b)). The stiffness matrix of the lateral discrete spring for a bearing, kY, can then be

expressed as

[A7b b b b b b b b b b b b b
Nhy,l be,] Nhy,l be,Z Nhy,l be,3 be,] Nhy,4 hthNhy,l Nb(‘)x,] hthbe,] Nb@c,l _be,]
b b b b b b b b b b b
NipaNpas NigoNpys NigoNpys hyoNpyoNpaeyr hea Ny 2 Nie o ~Niya
b b b b b b b b b
v NipysNpys NppsNppa hpaNy 3Ny hpoNiy 3Nygeo ~Nys
e _ b b b b b b b
K poa = 2kppy Ny aNppa hoaNp aNpoy hpaNpgaNpocs =Ny (7)
2 arb b 2 b b b
hiaNpaeiNogen hiaNpociNoger = hoaNpaca
2 arb b b
symm . hiaNpoeaNpoges = hoaNiae
L 1 _
with
Ny =1=3 1) + 28 11)° Niyo = &= 2(Ep o) + (S /1]
nyj =3 M) = 2(Ep /1e)? NIZZVA = E [(Eny 1100)* = (Epy 1130)] )

The vertical and lateral damping matrices, <% and c)¢, respectively, of the discrete damper for
a bearing can then be obtained simply by replacing “kws;” and “kbby” in the corresponding stiffness

matrices, kZ¢ and kY¢, with “cp’” and “coby’, respectively.

bea
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Figure 4: Bridge element attached to the ith node of pier element by bearing;:

(a) frontal view, (b) left side view.

3 3D EQUATIONS OF MOTION FOR A TTBI SYSTEM WITH PROPOSED ELEMENT

Figure 5 shows a train consisting of a series of four-wheelset vehicles moving with a constant speed,
v, on a ballasted track structure that rests on a multi-span continuous beam bridge.

The train consists of Ny identical vehicles numbered 1, 2, ... Ny, from right to left. Each vehicle
in the train is modeled as a mass-spring-damper system consisting of one carbody, two bogies, four
wheelsets, and two-stage suspensions. The carbody is modeled as a rigid body with mass, me, and
three moments of inertia, Iez, Iy, and Ic.. Similarly, each bogie is considered as a rigid body with
mass, mt, and three moments of inertia, iz, Iy, and I, and each wheelset is considered as a rigid
body with mass, mw, and two moments of inertia, lus and Iw.. The secondary suspension between
the carbody and each bogie is characterized by a three-dimensional system of springs with stiffness-
es ks, ksy, and ks: and dampers with damping coefficients csz, csy, and csz. Likewise, the springs and
shock absorbers in the primary suspension for each wheelset are characterized by kpz, kpy, and kp-
and cpz, cpy, and cpz, respectively. By neglecting longitudinal displacements, the motions of the car-
body of the jth vehicle with respect to its center of gravity may be described by yej, 2, ¥, @ej, and
yej. Similarly, the motions of both the front and rear bogies of the jth vehicle may be described by
yng, 25, Oaj, eaj, and waj and yej, 22, i, @rj and prj, respectively. In addition, the motion from
right to left of the hth (h = 1-4) wheelset of the jth vehicle may be described by yuwhj, zuhj, Huhj, and
punj, respectively. In this paper however, it is assumed that no jumps occur between the vehicle’s
wheels and the rails; that is, the vertical and rolling displacements of each wheelset are constrained
by the corresponding displacements of the rails. Consequently, each vehicle has 23 independent
DOFs.
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Figure 5: 3D model for TTBI system: (a) frontal view, (b) jth vehicle moving
on rail-bridge coupling elements of unequal lengths,

(c) left side view, (d) top view (without bridge).
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By using the energy principle, such as the principle of the stationary value of total potential en-
ergy of a dynamic system (Zeng, 2000; Lou and Zeng, 2005), it is possible to derive the 3D equa-
tions of motion written in a sub-matrix for a TTBI system that is shown in Figure 5, as

M, O 0 0 0 K C, C, O 0 0 X, Ky K, 0 0 0 X F,
0 M, 0 0 0 [[x||CiCrCy 0 0 ][x | |KiKnKy 0 0 [|X]| |F
0 0 My 0 0 ||% || 0CuoCyCyp 0 ||x%, [+ 0KyKyKyp 0 ||X|=|F, (8)
0 0 0 My O X, 0 0 Cp Cpp Cpp | | Xy 0 0 Kp Kpp Kpp | | Xp Fp
0 0 0 0 My |[X,| [0 0 0CwChl||X,| [0 0 0 KpKy||X,| [F,

where the subscripts “t”, “r”, “s”, “b”, and “p” denote the train, rail, sleeper, bridge, and pier, respec-
tively; M, C, and K denote the mass, damping, and stiffness sub-matrices, respectively; and X
and F denote the displacement and force sub-vectors, respectively. The formation of equation (8)
from terms in equations (2), (3), (4), (5), (6), and (7) is further explained below.

In order to build up equation (8), the stiffness matrices, x'2<, in equation (2) and, kX<, in

Jas"

equation (3) can be partitioned into four parts as follows,

LZ el LZ 2
kLZ e _ Jas k fas
fas T kLZ,e} kLZ,e4 (9)
Jas Jas

_ fas fas
- LY ,e3 LY 4
k Jfas k fas

LY,
k¢

KLY el kLY,eZ}

er,ler,l er,ler,Z Ni‘z,ler,f) er,ler,4 0 0
er,Zer,2 er,Zer,3 er,Zer,4 0 0
KLz _p N3Nz N3N, 4 0 0
fas rsz ]er4 er’4 0 0 (1 1)
symim. brthch,lNrQr,l brthrdv,lNr@c,Z
L brtherlNr@c,Z i

T
kLZ’ez —k - er,l - NVz,Z - er,3 - er,4 0 0 (12)
as = s 2 2
fas |- Drrer,l - Drrer,Z - Drrer,3 - Drrer,4 - brtNVQrc,l - brtNrébc,Z
kLLe} -k _er,l _er,2 _er,B _er,4 0 0 (13)
=k 2 2
fas |- Drrer,l - Drrer,2 - Drrer,S - Drrer,4 - brtNrQr,l - brtNrQr,Z
1 D,
kLZ,e4 k. rr
Jfas rsz DW Dyzr + brzt (14)
_Nnv,lNry,l Nry,lNry,Z Nnv,lNryJ Nry,lNry,4 hrt2Nry,1Nr6k,l hrlZNry,lNr@c,Z 1
N’%ZN”}’,Z Nry,ZNry,S Nry,ZNryA hrtZNry,ZNrdx,] hrtZNry,ZNr@r,Z
kLY,e] —k NI')',3N v,3 Nry,3N v, 4 h)'tZNry,3N)'@r,1 hrtZNiy,3Nr6bc,2 (15)
Jas " Nry,4Nry,4 hrIZNryANHQt,l hrt2Nry,4Nr@c,2
2 2
symm. BN o a Ny N o i N o 2
L hftZNrQ(,ZNrQ\',Z_
LYe2 _ T
kﬁzse =k [Nt =Niy2 ~Nip3 ~Nipa o Neg) 0N 2] (16)
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LY,e3
kﬁ:se :krsy[_]vry,l _Nry,2 _Nry,3 _]vry,4 _hrtZN réx,1 _hrtZJVch,Z] (17)
and
LY 4 _
KN =k, (18)

Elements in matrices k'2< and k¥ should be placed in the stiffness sub-matrix K, (see
equation (27)); elements in matrices k%< and k%< should be placed in the stiffness sub-matrix
K, ; elements in matrices k%< and k%Y should be placed in the stiffness sub-matrix K, ; and
elements in matrices k%% and k%¥<* should be placed in the stiffness sub-matrix K,, . Furthermore,
in a similar manner to k'2< and k<, the damping matrices, ¢'%< and ¢}, can be partitioned
into four parts and placed in the damping sub-matrices, C,,., C.,, C,,. , and C, , respectively.

The stiffness matrix, k%<, can be partitioned into four parts and used as follows in building
equation (8). Elements in the first six rows and the first six columns should be placed in the stiff-
ness sub-matrix Ky, ; elements in the first six rows and the last two columns should be placed in
the stiffness sub-matrix Kg, ; elements in the first six columns and the last two rows should be
placed in the stiffness sub-matrix K, ; and the remaining elements should be placed in the stiffness
sub-matrix K.

The stiffness matrix, k%<, can be partitioned into four parts and used as follows in building up
equation (8). Elements in the first six rows and the first six columns should be placed in the stiff-
ness sub-matrix Kg, ; elements in the first six rows and the last column should be placed in the
stiffness sub-matrix Ky, ; elements in the first six columns and the last row should be placed in the
stiffness sub-matrix K, ; and the remaining element should be placed in the stiffness sub-matrix
K. In a similar manner as k%~ and k% <, the damping matrices, ¢%< and % <, can be parti-
tioned into four parts and placed in the damping sub-matrices, Cg, , Cry , Csx , and C,, respec-
tively.

Furthermore, the stiffness matrix, kZ%¢, in equation (4) can be partitioned into four parts and
used as follows in building up equation (8). Elements in the first two rows and the first two col-
umns should be placed in the in the stiffness sub-matrix K ; elements in the first two rows and the
last six columns should be placed in the stiffness sub-matrix Ky, ; elements in the first two columns
and the last six rows should be placed in the stiffness sub-matrix K, ; and the remaining elements
should be placed in the stiffness sub-matrix K, .

The stiffness matrix, k¢ , in equation (5) can be partitioned into four parts as follows and

used as follows in building up equation (8). Elements in the first row and the first column should be
placed in the in the stiffness sub-matrix K, ; elements in the first row and the last six columns

should be placed in the stiffness sub-matrix K ; elements in the first column and the last six rows
should be placed in the stiffness sub-matrix K, ; and the remaining elements should be placed in
the stiffness sub-matrix K,,. In a similar manner as k7f and ks , the damping matrices, ¢Z; and
ey, can be partitioned into four parts and placed in the damping sub-matrices, Cy, Cy, Gy, and

C,, , respectively.
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The stiffness matrix, k%¢ , in equation (6) can be partitioned into four parts and used as fol-

lows in building up equation (8). Elements in the first six rows and the first six columns should be
placed in the stiffness sub-matrix K, ; elements in the first six rows and the last two columns
should be placed in the stiffness sub-matrix K,, ; elements in the first six columns and the last two
rows should be placed in the stiffness sub-matrix K,,; and the remaining elements should be placed
in the stiffness sub-matrix k,, .

The stiffness matrix, k., in equation (7) can be partitioned into four parts and used as fol-

lows in building up equation (8). Elements in the first six rows and the first six columns should be

placed in the stiffness sub-matrix K, ; elements in the first six rows and the last column should be
placed in the stiffness sub-matrix K,, ; elements in the first six columns and the last row should be
placed in the stiffness sub-matrix K, ; and the remaining elements should be placed in the stiffness
sub-matrix K,, . In a similar manner as k7; and kp, , the damping matrices, ¢f: and ¢, , can
be partitioned into four parts and placed in the damping sub-matrices, €, , C,,, C,,, and C,, ,
respectively.

The displacement sub-vectors, the mass, damping, and stiffness sub-matrices, as well as the
force sub-vectors of the train, rail, sleeper, bridge, and pier are explained briefly in the following

sections, and a detailed explanation is found in Lou (2005, 2007) and Lou and Zeng (2005).

3.1 Displacement Vectors

The displacement sub-vector of the total train, X., of order 7,, x1 (7,, =23xN, ) can be written as
Xt :[le Xv2 XVNV ]T (19)

where the superscript “T ” denotes the transpose of the matrix, and X, (j = 1, 2, ..., N, ) are the

displacement vectors of the jth vehicle, which can be expressed as
Xw‘ :[y(j Zgj qu‘ ‘9ij gz(j Yij Zn, thlj ‘9yx1j 9::1,' Yi2j Z2j 9;:2,/ Hytlj HZIZj Ywij 9:w1j Ywaj sz2j Yw3j sz3j Ywa j sz4j] .

The displacement sub-vector of the rail, X,, of order 2n,x1, which is composed of the dis-
placement vectors X of the left rail of order 1xn, , and Xz of the right rail of order 1xn, , can be

written as

X, =Xy, XRV‘]T

XLr :XRV =[qu 9 qr]T/,] (20)
where N, denotes the total number of DOFs of each rail.
The displacement sub-vector of the sleeper, X, , of order N,x1 can be written as
X, :[Xxl X XSM ]T (21)
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where X, (i = 1, 2, ..., N,) of order 3 denotes the displacement vector of the ith sleeper, N, de-

notes the total number of sleepers, and ~, denotes the total number of DOFs of all sleepers with

N ,=3n, . The displacement vector, X, , can be expressed as
Xsi =[y5i Zsi exsi] .

The displacement sub-vector, X, , of order ~,x1 for multi-span continuous beams used to model

the bridge can be written as
X, =[X1 Xy - Xy 11 (22)

where Xu (i = 1, 2, ..., N, ) denotes the displacement vector of the ith bridge, N, denotes the total
number of bridges, and ¥, denotes the total number of DOF's of all bridges. The displacement vec-

tor, X , of order 1xn , and the number of DOFs, ~,, can be expressed as
Xy =1q51 952 - qor, ]
p— Nh
Ny=2 1y
i=1

where m; denotes the total number of DOFs of the ith bridge.

The displacement sub-vector of the pier, X, , of order ~,x1 can be written as
X, =X, X, o X 1" (23)

where X, (i = 1, 2, ..., N, ) denotes the displacement vector of the ith pier, ~, denotes the total
number of piers, and ~, denotes the total number of DOFs of all piers. The displacement vector,

X, , of order 1x7, and the number of DOFs, ¥,, can be expressed as
Xpi :[Qpl 9p2 " qpﬁp'] B
— N!'
N ]F;npi
where 7, denotes the total number of DOFs of the ith pier.

3.2 Sub-Matrices of Train

The sub-matrices of the train are marked with the subscript “t’. The mass sub-matrix, M, , of the

train of order (23xN,)x(23xN,) can be written as
M, =diag [M,; M, = My ] (24)
where M, (j = 1, 2, ..., N, ) of order 23x23 denotes the mass matrix of the jth vehicle, and can be
expressed as
M, =diaglm, m_ I, I, I. m m I I, 1. m m I, I, I m, I  m, I, m, I_ m, I.].

¢ ox cy ez t t i 1y tz t t g ty iz w wz w wz w wz w
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The stiffness sub-matrix, K. , of the train of order (23xN,)x(23xN,) can be written as
Kn‘:diag [Kvl Kv2 KVN\‘] (25)

where K, (j = 1, 2, ..., N,) of order 23x23 denotes the stiffness matrix of the jth vehicle, and can

be expressed by the stiffness of the suspension systems of the jth vehicle.
The damping sub-matrix, C, , of the train of order (23xN,)x(23xN,) can be obtained by simp-

ly replacing k in the corresponding stiffness sub-matrix, K, , with c.

3.3 Sub-Matrices of Rail

The matrices of the rail are marked with the subscript “rr”. The mass sub-matrix of the rail, M,,, of
order 2w, x2N, , composed of the mass matrices of the left and right rails, Mz, and Mgz~ , respective-

ly, both of order ~,x~,, can be written as

M, = diag[Mer Mg, ]

(26)
M, =M, =M, +M,_,+M ,+M,,
with
u L,
—NT
Mrrl = Zl_‘.mrNry,egle,egdg
g=10
n, 1,.(_ T
MrrZ = jmrNrz,egl\lrz,egdét
g=10
n, lmﬁ I
. T
Mrr3 = ZJ‘ :4 = Nrg,ggNrH,egdSE
g=lo r
N, 4 m
v N T
Mrr4 = Z; 2“ szthjh
j=th=1
Nyyeg =[00 -+ Nyj 000N, , Nyy 000N, -~ 00]

Ny =[00 0N 0ON_,00N.;0N,_, 0 00]

Ngeg =[00 -+ 00 Ny 0000 Ny, 00 00]

r6.eg

szlx =[00--0 er,l 0 er,Z 00 er,3 0 er,4 0--0 0]5:5”’ ’

where M,,;, M,.,, and M,; denote the overall mass matrices in the zy plane, in the zz plane, and
rotation about the a-axis of the rail itself, respectively; M,., denotes the overall mass matrix in-
duced by the wheel masses of all vehicles; m, denotes the mass per unit length of the rail; A, de-
notes the cross-sectional area of the rail; I denotes the torsional moment of inertia of the rail about
the a-axis; nr denotes the total number of elements of each rail; & denotes the local coordinate
and N, of order 1xN, are the shape

measured from the left node of a rail element; N N

ry.eg ) rzeg 9 rf.eg

function vectors in the zy plane, the zz plane, and in rotation about the z-axis for the gth rail ele-

ment, respectively. In addition, each element in N, , N.., and N,,,, is zero except those corre-

sponding to the DOFSs, respectively, in the xy plane, the zz plane, and in rotation about the z-axis
of the two nodes of the gth rail element; N_, of order 1x¥, denotes the time-dependent shape func-

tion vector in the zz plane for the rail element, which is evaluated at the position of the ith wheel-
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set of the jth vehicle; &1, &2, &3, and &4 denote, respectively, the distances between the 1st, 2nd, 3rd,
and 4th wheelsets of the jth vehicle and the left node of the rail element on which the wheelsets are
acting. Furthermore, each element in N, is zero except for those corresponding to the four DOFs

in the zz plane of the two nodes of the rail element on which the hth wheelset of the jth vehicle is
acting.

The stiffness sub-matrix of the rail, K,., of order 2~,x2n,, which is composed of the stiffness
matrices of the left and right rails, K, and K. , of order ~,xn,, and the left rail-right rail inter-

action stiffness matrices, Kz and K, of order N, xN,, can be written as

K :{Km KLrRr:|

Ky Ky,
27
K, =K;, =K +K ,+K ;+K ,+K ;+K (+K ,+K ; ( )
Kz = KR"LV
with
n, L.
oT "
Krrl = Z J.EI‘II‘ZNI',} LgNr"x Lgdé:
g=10
n, e
% S~
Krr2 = Z IE N;z Lger egd(;
g=10
l'l 1
Kn3= jG 1 N;Bcg iHLgdé:
g=10
N, 4 T
Krr4 =ZZkPZNZ.thZ.fh
J=1h=1
T
K,s= zz (N}/hN}/h + 1NN g
J=lh=1
H,
T
Krr6 = Zkrser} pN
p=1
Z kryz rz p
’l/ T
KWB = ZbrtkrszN ro, erH, Y2
p=l
K —ZZ W +h Ny + haNguN iy = b NG N
LrRr — y]h yh ;tl vﬂz Gh rt1*N Gh N yjh rt1* N Gh @'h)
Jj=lh=1 0
Noyn =000+ Nyy 000N, Nys 000N, 4 0 0],
Ny =[0 0 00 Nypy 0000 Nygr 000 0],
N”,_I) =00 N,,000N,, N,J,‘3 000 Nry,4 - 0 0]5:5
Nop=[00-0N_; 0ON_, 00N_530N_.,0- 00
N,.g,p =[00 - 00 N,p; 0000 Nyyo 00--0 O]EC:; .
where K,,;, K,,,, and K,; denote the overall stiffness matrices in the zy plane, the zz plane, and in
) ) ) )

rotation about the a-axis of the rail itself, respectively; K,., denotes the overall stiffness matrix

induced by the vertical displacement of all vehicles; K,s denotes the overall stiffness matrix in-
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duced by the train’s weight; K, , K,.;, and K, denote, respectively, the lateral, vertical, and
torsional stiffness matrices induced by the stiffness of all fasteners; k,, denotes the left rail-right
rail interaction stiffness matrix induced by the train’s weight; Er denotes Young’s modulus of the
rail; Gr denotes the shear modulus of the rail; Iy and Ir. denote the flexural moments of inertia
about the y- and zaxes of the cross section of the rail, respectively; hr1 denotes the vertical distance
between the top surface and torsional center of the cross section of the rail; Waue denotes the axle
weight of each vehicle; bo denotes half of the transverse distance between the contact points of the
wheel and rail; A denotes the slope of the wheel tread which is a variable depending on the wheel—
rail contact position; nf denotes the total number of the fastener underneath each rail; & , denotes
the distance between the pth fastener and the left node of the rail element containing the pth fas-

tener; N, and N, of order 1xN, denote, respectively, the time-dependent shape function vectors

yih
in the zy plane and in rotation about the z-axis for the rail element, when evaluated at the position

of the hth wheelset of the jth vehicle; N

the time-independent shape function vectors in the xy plane, the zz plane, and in rotation about the

wprs Nopyand N, (p =1, 2, ..., nf) denote, respectively,

r-axis for the rail element, when evaluated at the position of the pth fastener.
By omitting the damping of the rail itself, the damping sub-matrix of the rail, C,, of order

2N, x2N, can be derived according to the lateral creep between the rails and the wheels of all vehi-

cles (Zhang et al., 2010), the damping of the primary suspension of all vehicles, and the lateral,
vertical, and torsional damping of all fasteners.

3.4 Sub-Matrices of Sleeper

The sub-matrices of the sleeper are marked with the subscript “ss’. The mass sub-matrix, M ,
stiffness sub-matrix, K, , and the damping sub-matrix, C,, of order ¥, xn, of all of the sleepers can

be written respectively, as

M, :diag[[v[sl M, - MSN\] (28)
K.vs =diag[Ksl K.VZ KSN\] (29)

Cxx = diag[csl C.&‘2 CxN\ ]
Mxi = dlag[ mg ms Js-x]
+ stby 2k, + 2ksbz Z(D}Zr + brzt)krsz + 2Dl§alksbz]

rsz

K,; =diag[2k

rsy

2

Csi = diag[zc + chby 26)‘3‘2 + chbz Z(D)zr + brt )Crsz + ZDlga/Csbz]

sy

where m; and J,, denote the mass and the moment of inertia about z-axis of each sleeper, respec-

tively.

3.5 Sub-Matrices of Bridge and Pier

The sub-matrices of the bridge and pier, marked with the subscripts “bb” and “pp”, respectively, can
be obtained in a similar way to derivation of the sub-matrices of the rail. It should be noted that
the damping property is assumed to be of a Rayleigh type (Yang et al., 2004) in the derivation of
the damping sub-matrices of the bridge and pier.
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3.6 Sub-Matrices of Train—Rail-Sleeper-Bridge—Pier Interaction

The sub-matrices of train—rail interaction, marked with the subscripts “tr” or “rt’, are induced by
the interaction of the wheel and rail, and consist of the train—left rail and train—right rail interaction
matrices, which are marked with the subscripts “tLr” and “tRr’, respectively. The stiffness sub-
matrices, K, and K, , of order 7, x2n, , and the damping sub-matrices, C, and C., of order

Tur 2N, , for train—rail interaction can be written respectively, as
K, :[KtLr Kth]]},(,/x2N, ( 31)

Ctr =[CtLr CtRV]Tm./ x2N,
K, =K} (32)
Crt :C;E

where the stiffness matrices, K, and K , and the damping matrices, C, and Cg , of order

Tar 2N, can be expressed respectively, as

N

4
l(tLr :ZZKL{/*LV,’ s

j=lh=1

N, 4
_ v
Kth _ZZKVFR’/’ 5
J=lh=1

N, 4 v N, 4
CtLr :zzcvﬁbfh +zzcvﬁLrﬁ s

j=lh=1 j=lh=1

N, 4 v N, 4 L
Cth =Z:Z:Cv;Rr,Y +ZZCV/*RV,, Y

j=lh=1 J=lh=1

in which k7 ~and k), represent, respectively, the stiffness matrices induced by the vertical inter-

v,~Rr,

action between the hth wheelset of the jth vehicle and the left and right rails; ¢/, and ¢, rep-
resent, respectively, the damping matrices induced by the vertical interaction between the hth

wheelset of the jth vehicle and the left and right rails; and ¢t , ¢, represent, respectively, the

damping matrices induced by the lateral creepage between the hth wheelset of the jth vehicle and
the left and right rails (Zhang et al., 2010; Kalker, 1967).

The sub-matrices of rail-sleeper interaction, marked with the subscripts “rs’ or “sr”, are induced
by the stiffness and damping of all fasteners between the rail and sleeper. The sub-matrices of
sleeper—bridge interaction, marked with the subscripts “sb” or “bs”’, are induced by the stiffness and
damping of all ballasts between the sleeper and bridge. In addition, the sub-matrices of bridge—pier
interaction, marked with the subscripts “bp” or “pb”, are induced by the stiffness and damping of all
bearings between the bridge and pier. To reduce repetitions, the deviations of all sub-matrices for
rail-sleeper—bridge—pier interaction are not listed here, but can be calculated according to equations
(1) to (32).

3.7 Load Sub-Vectors of Train, Rail, Sleeper, Bridge, and Pier

The load sub-vector of the train, F,, of order 7,,x1 can be written as
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F, =F + F}
1 1 1 1 T
F, =[F, F,, - Fy (33)

2 2 2 2 T
Fz =[Fvl FvZ FVA"‘]

The load vector of the jth vehicle, v} and r2 , of order 23 x1 can be written respectively, as

0 T 0
0 0
0
0
0 0
0 0
0 : VO SV
ko [27(x7) + 20 (2%, C;Jz[zf(_x/l}+2f(X,@z)]
kp:bz[r(x?])Jrr(x?z)] Cp:b2[r(x5;|)+r(-"§z)]
ke L2 (x")) = 2r (2] cp Lel27(x)) =27 (x)))]
0 0
0 0 ,
1 e (27 (x73) + 27 (27, P2 cpe [27(x)5) + 27 ()]
Fu =0 ko balr(xGy)+ r(x 6] K ep b2 [F(x§3) + F(x Gy
k,,,L,[Zr(x’I/g)er(xﬁ)] csz,[Zr(x’m)er(x’,A)]
! 1 0 1
W e A . . . . R
—[O r(xfl) fozl[r(~Kf|)+7r(x?1)]+/Rizl[’”(xf])_yr(x?[)]
0 0
Woate & a SR (x )+1—r'(xf" N+ f 0 (x ) = r(x 9]
bo X g Lj2 j2 > j2 R 2 j2 j2
0
W e A n s 1. . 1.
%r(xf]) /Lf‘23[r(x:/{i3)+7r(x?3)]+/15‘23[’()5/43)_7’(}(?3)]
0 0
W ave A 2 [y A L. ¢ 2 oA 1. ¢
‘—r(x;u) fL,4[r(fj4)+?r(l,'4)]+f/e]4[’"(l,'4)’7r(fj4)]
0
0
0

where %), r+$), rx4), and ,9) denote the track elevation, cross level, alignment, and gauge

irregularities, respectively, at the hth wheel-rail contact point of the jth vehicle; () denotes the
first derivative of track irregularity; b2 denotes half of the transverse distance between the vertical
primary suspension system and Lt denotes half of the bogie axle base; s% denotes the lateral creep
coefficient between the left rail and the hth (h = 1-4) wheelset of the jth vehicle, and s denotes

the lateral creep coefficient between the right rail and the corresponding wheelset.
The load sub-vector of the rail, F, , of order 2~,x1 can be written as

L
ro|F
r FR
!
FL=F0 L FI L FL2 4 FE3 L R4 4 FES RO 4 FL7 + FES 4 FLO 4 VO

(34)

R _ p RO R1 R2 R3 R4 RS R6 R7 R8 R9 R10
FR=FF 4+ ¥ L FF2 4 FR L PR 4 FRS L FRO 4 FR7 4 FRS 4+ B2 1 F)

where F*, £, F2, £, and F# of order N,x1 represent the load vectors of each wheelset acting on
the left rail caused by the train’s weight, the track elevation irregularity, the cross level irregularity,
the alignment irregularity, and the gauge irregularity, respectively; ¥, ¥, 7, and F# of order
N, x1 represent the load vectors of each wheelset acting on the left rail caused by the velocities of
the track elevation, cross level, alignment, and gauge irregularities, respectively; and F® Ft° of

order N,x1 represent the load vectors of each wheelset acting on the left rail that are caused by
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accelerations in the track elevation and cross level irregularities, respectively; and Ff° to FF° simi-
larly represent the load vectors of each wheelset acting on the right rail.
Each of the elements of the load sub-vector of the sleeper, F; , of order N,x1, the load sub-vector

of the bridge, F,, of order w,x1, and the load sub-vector of the pier, F,, of order n,x1 are zero.

4 NUMERICAL VERIFICATION

To verify the theory presented in this paper, the vertical dynamic responses of a TTBI system,
which were obtained using the proposed 3D rail-bridge coupling element (3D element) and the 2D
rail-bridge coupling element presented by Lou et al. (2012) (2D element), respectively, are used. A
train consisting of five identical vehicles is considered to run over a single-track bridge along the
centerline of the bridge, with no consideration made for torsional action. The railway track is as-
sumed to be smooth and continuous throughout and has a total length of 100 m and LRE = 0.625
m. The central part of the railway track is supported on a 3-span continuous bridge with spans of
20 m and LBE = 5.0 m, while the left and right parts of track are supported on embankments, both
with lengths of 20 m. The vertical parameters of vehicle, track, and bridge can be found in Lou et
al. (2012), the spatial parameters of the identical vehicle can be found in Yang et al. (2004), and the
spatial parameters of the identical track and bridge are listed in Table 1. To solve the equation of
motion for the TTBI system, the Wilson-# method is used with # = 1.4 and a moving length of the
vehicles of 0.1 m along the track for each time step. The analysis is performed by applying the train
speeds from 25 m/s to 200 m/s at 25 m/s intervals. The vertical dynamic responses of bridge, sleep-
er, rail, and vehicle obtained by the 3D element and the 2D element at various train speeds are
shown in Table 2, where the term “Carbody acceleration” means the maximum vertical acceleration
at the centroid of the last carbody, “Rail displacement” means the maximum vertical displacement
of the rail at the middle of the central span, “Sleeper displacement” means the maximum vertical
displacement of the sleeper immediately to the right of the middle of the central span, and “Bridge
displacement” means the maximum vertical displacement of the bridge at the middle of central span.
It can be observed from Table 2 that there are only minimal differences between the solutions ob-
tained using the 3D element and those using the 2D element, where the differences of the displace-
ments of bridge, sleeper, and rail are less than 1.00%, and the differences between the carbody ac-
celeration at various train speeds are not larger than 4.00%. This thus confirms the accuracy of the
proposed 3D rail-bridge coupling element in simulating the dynamic responses of a TTBI system.

Train speed (m/s) 25 50 75 100 125 150 175 200

3D element 0.165 0.181 0.176 0.196 0.205 0.503 0.517 0.411
2D element 0.166 0.181 0.176 0.195 0.204 0.501 0.515 0.410
3D element 0.268 0.289 0.305 0.327 0.342 0.600 0.652 0.559
2D element 0.270 0.290 0.304 0.325 0.339 0.598 0.649 0.556
3D element 0.725 0.730 0.734 0.750 0.774 1.062 1.120 0.997
2D element 0.729 0.733 0.732 0.747 0.769 1.056 1.116 0.992
3D element 0.008 0.015 0.021 0.025 0.029 0.043 0.041 0.055
2D element  0.008 0.015 0.021 0.026 0.030 0.044 0.042 0.053

Bridge displacement (mm)
Sleeper displacement (mm)
Rail displacement (mm)

Carbody acceleration (m/s?)

Table 2: Comparsion of vertical dynamic responses of TTBI system at various train speeds.
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5 ILLUSTRATIVE EXAMPLES
5.1 Parameters of a TTBI System

The proposed 3D rail-bridge coupling element is applied in the following three examples. The first
example is shown in relation to an investigation of the influence of the efficiency and accuracy of
LRE and LBE on the spatial dynamic responses of a TTBI system. The other two examples are
shown in relation to an investigation of the effects of two types of track models and two types of
wheel-rail interaction models on the spatial dynamic responses of a TTBI system, respectively. A
seven-span continuous beam bridge, with a span length of 40 m + 5 x 60 m + 40 m = 380 m, is
considered. The heights of the piers are 20 m, and the length of the pier element (LPE) is 2.5 m.
However, to save the length of the paper, the influence of LPE is not considered in this paper. The
parameters of the track and bridge already listed in Table 1 are adopted unless otherwise stated. A
train consisting of five identical vehicles is considered to move over the bridge from left to right,
and the major parameters of each vehicle are listed in Table 3. The PSDs of a German high-speed
track spectrum of low irregularity (Zhai and Xia, 2011) are adopted, i.e.,
4,0
@+ Q1) Q*+Q2)

track elevation irregularity: s” (@)=

4,02

track alignment irregularity: s$4(Q)=
g & y: 8, @+ 0302 +02)’

Ay 1 bEQ2Q?

track cross level irregularity: s€ Q)=
& Vi Sp(@) @2+ 0HQ?+Q2)Q*+ Q)

40207

and track gauge irregularity: s¢ Q)= ,
gaue & Vi S (@) Q2+ Q)2+ (Q%+0?)

where Q = 2r/Jr denotes the spatial frequency (rad/m), Ar denotes the wavelength of the irregulari-
ty (m), Qc = 0.8246 rad/m, r = 0.0206 rad/m, Qs = 0.438 rad/m, Av = 4.032 x 10 " mrad, Aa
= 2119 x 10 " mrad, and A¢ = 0.532 x 10 " m-rad.

Notation Value Notation Value Notation Value
me (kg) 4.4F4 T (kg-m?) 1.1E3 cpy (N-s/m) 0.0
mt (kg) 2.4E3 ks (N/m) 2.8E5 cpz (N-s/m) 5.0E4
muw (kg) 2.4E3 ksy (N/m) 2.8E5 hi (m) 1.14
Waate (kg) 1.46E4 ksz (N/m) 3.0E5 ha (m) —0.14
Iz (kg-m?) 1.0E5 kpz (N/m) 1.5E7 hs (m) 0.24
Iy (kg-m?) 2.7E6 kpy (N/m) 5.0E6 bo (m) 0.75
I (kg-m?) 2.7E6 kp> (N /m) 7.0E5 b1 (m 0.95
e (kg-m?) 1.8E3 cse (N-s/m) 1.0E6 b2 (m) 1.0
Iy (kg-m?) 2.2E3 csy (N-s/m) 2.5E4 Le (m) 8.6875
It (kg-m?) 2.2E3 csz (N's/m) 6.0E4 Lt (m) 1.25
Tuw (kg-m®?) 1.1E3 cpo (N-s/m) 0.0 Ro (m) 0.4575

Table 3: Major parameters of vehicle.
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The time domain samples of track irregularities with 1 m < A < 120 m are simulated using the
method proposed by Zhai and Xia (2011), and an analysis is performed by applying train speeds
between 2.78 m/s and 97.2 m/s at 2.78 m/s intervals; that is, from 10 km/h to 350 km/h at 10
km/h intervals.

5.2 Example 1: Influence of the Efficiency and Accuracy of LRE and LBE on the Dynamic Responses of the
TTBI System

To illustrate the efficiency and accuracy of the proposed 3D rail-bridge coupling element, the follow-
ing six cases are studied, as shown in Table 4. The rail-bridge coupling element with LRE = LBE is
used in Cases 1-1 to 1-5, while the proposed element is adopted in Case 1-6. The spatial dynamic re-
sponses of the TTBI system for Cases 1-1 to 1-6 at various train speeds are plotted in Figures 6 to 19
and the calculation time and differences, De1, for Cases 1-1 to 1-6 at a train speed of 350 km/h are
shown in Table 5. Herein, the differences, De1, between the dynamic responses of different calculation
cases is defined as Der = (Dym1-Dyn12)/Dym1 x 100%, where Dyn1 and Dymi2 denote the dynamic re-
sponses obtained by the proposed element (Case 1-6) and the rail-bridge coupling element of equal
length (Cases 1-1 to 1-5), respectively. For convenience hereafter, the “bridge midpoint” means the

midpoint of the fourth span for the seven-span bridge; “sleeper”, ‘“rail” and “fastener” mean the sleeper,

left rail and left fastener immediately on the bridge midpoint, respectively; “carbody” and “bogie”
mean the carbody and front bogie of the third vehicle, respectively; and the “derailment factor” and
“offload factor” mean the derailment factor and offload factor of the left wheel for the second wheelset
of the third vehicle, respectively. The derailment factor is defined as the ratio of the lateral wheel-rail
force to the vertical wheel-rail force of the same wheel, while the offload factor is defined as the ratio
of the offload in the vertical wheel-rail force to the static vertical wheel-rail force of the same wheel
(Xia et al., 2006). Figures 6 and 7 show the maximum lateral and vertical accelerations of the bridge
midpoint, respectively; Figures 8 and 9 show the maximum lateral and vertical accelerations of the
sleeper, respectively; Figures 10 and 11 show the maximum lateral and vertical accelerations of the
left rail, respectively; Figures 12 and 13 show the maximum lateral and vertical accelerations of the
carbody, respectively; Figures 14 and 15 show the maximum lateral and vertical accelerations of the
bogie, respectively; Figures 16 and 17 show the maximum lateral force and vertical pressure of the left
fastener, respectively; and Figures 18 and 19 plot the maximum derailment factor and offload factor,
respectively. As is shown, the differences in the dynamic responses between Cases 1-1 to 1-5 appear to
decrease as the lengths of the elements are reduced, indicating that the use of a shorter length of ele-
ment tends to greatly improve the calculation accuracy. However, the corresponding calculation time
increases significantly in relation to an increase in the number of DOFs. When the LBE is shorter
than 2.5 m (Cases 1-3 to 1-5), the differences in the accelerations of the bridge midpoint (Figures 6
and 7) are much smaller than those of the accelerations of the sleeper (Figures 8 and 9), of the accel-
erations of the rail (Figures 10 and 11), of the fastener forces (Figures 16 and 17), and of the wheel-
rail interactions (Figures 18 and 19), due to the fact that the mass and stiffness of the bridge are
much larger than those of sleeper and rail. For instance, the ratios of lateral and vertical flexural ri-
gidity of the bridge to those of the single rail are respectively 4.28 x 10° and 9.99 x 10*. Similar phe-
nomenon can also be observed for the lateral and vertical accelerations of the carbody (Figures 12 and
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13) and for the lateral acceleration of the bogie (Figure 14), because the vehicle’s suspension systems
and wheel-rail creepage serve to some extent as an energy dissipating mechanism. It is evident that a
sufficiently fine mesh, i.e., LRE = Is, should be adopted for the rail if accurate accelerations of sleeper
and rail, fastener forces, and wheel-rail interactions are required. By comparing the dynamic responses
of Case 1-2 with those of Case 1-6, it can be seen that the influence of LRE on the bridge dynamic
responses is also important if the track irregularities are considered, which is different from the case
that considers an ideal smooth track (Lou et al., 2010). As shown in Table 4, the major difference
between the two calculation cases in modeling rail-bridge interaction is that Case 1-2 uses the rail-
bridge coupling element with LBE = LRE = 5.0 m, while Case 1-6 uses the proposed element with
LBE = 5.0 and LRE = 0.625 m. Although LBE in Case 1-2 is equal to that in Case 1-6, the differ-
ences in the lateral and vertical accelerations of the bridge at a train speed of 350 km/h may reach
8.87% and 13.90%, respectively. It is interesting to note that negligible differences between the bridge,
sleeper, rail, and the vehicle dynamic responses can be observed in Cases 1-5 and 1-6. As shown in
Table 4, the major differences between the two calculation cases in modeling rail-bridge interaction is
that Case 1-5 uses the rail-bridge coupling element with LBE = LRE = 0.625 m, while Case 1-6 uses
the proposed element with LBE = 5.0 and LRE = 0.625 m. Although LBE in Case 1-6 is eight times
that in Case 1-5, an excellent agreement of the dynamic responses can be obtained because of the high
flexural rigidity of bridge. Furthermore, the proposed element helps to save calculation time compared
with the rail-bridge coupling element of equal length, due to the reduction of DOFs. For example, the
total CPU times for Case 1-5 and Case 1-6 are 1248.2 s and 902.4 s on a 2.8 GHz personal computer,
respectively, and the ratio of the latter to the former is 0.723. Therefore, it is concluded that the pro-
posed 3D rail-bridge coupling element with shorter rail elements and longer bridge elements can not
only help to save calculation time but can also provide satisfactory results when investigating the
spatial dynamic responses of a TTBI system.

Calculation case LBE (m) LRE (m) LPE (m) Number of DOFs
Case 1-1 10.0 10.0 2628
Case 1-2 5.0 5.0 3198
Case 1-3 2.5 2.5 95 4338
Case 1-4 1.25 1.25 ' 6618
Case 1-5 0.625 0.625 11178
Case 1-6 5.0 0.625 8518

Table 4: Calculation cases.
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é 0.12 —+—Case 1-1
s —=— Case 1-2
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0.00

Train speed (km/h)

Figure 6: Maximum lateral acceleration of bridge midpoint with respect to train speed.
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Figure 7: Maximum vertical acceleration of bridge midpoint with respect to train speed.
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Figure 8: Maximum lateral acceleration of sleeper with respect to train speed.

45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0

5.0

0.0

Vertical acceleration (m/s?)

40

80

120 160

Train speed (km/h)

320

360

—+—Case 1-1
—®—Case 1-2
—4&—Case 1-3
—>— Case 1-4
—*—Case 1-5

—©—Case 1-6

Figure 9: Maximum vertical acceleration of sleeper with respect to train speed.
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Figure 10: Maximum lateral acceleration of rail with respect to train speed.
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Figure 11: Maximum vertical acceleration of rail with respect to train speed.
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Figure 12: Maximum lateral acceleration at centroid of carbody with respect to train
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Figure 13: Maximum vertical acceleration at centroid of carbody with respect to train speed.
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Figure 15: Maximum vertical acceleration at centroid of bogie with respect to train speed.
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Figure 16: Maximum lateral force of fastener with respect to train speed.
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Figure 17: Maximum vertical pressure of fastener with respect to train speed.
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Figure 18: Maximum derailment factor with respect to train speed.
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Figure 19: Maximum offload factor with respect to train speed.
Calculation case Case 1-1 Case 1-2 Case 1-3 Case 1-4 Case 1-5 Case 1-6
Calculation time (s) 303.4 358.7 475.9 711.9 1248.2 902.4
De1 of bridge midpoint lateral acceleration (%) 27.45 8.87 1.22 1.03 0.29 0.00
De1 of bridge midpoint vertical acceleration (%) 43.41 13.90 2.56 1.31 0.09 0.00
Da of sleeper lateral acceleration (%) 52.91 30.15 19.60 5.31 —0.01 0.00
Da of sleeper vertical acceleration (%) 49.55 26.74 15.96 4.29 —0.01 0.00
Da of rail lateral acceleration (%) 68.14 47.92 34.20 20.05 —0.01 0.00
De of rail vertical acceleration (%) 58.88 44.53 23.26 5.47 —0.01 0.00
De1 of carbody lateral acceleration (%) 6.03 4.17 3.25 1.61 0.00 0.00
De1 of carbody vertical acceleration (%) 11.19 5.53 2.49 0.45 0.00 0.00
De1 of bogie lateral acceleration (%) 6.22 4.22 2.30 1.60 —0.01 0.00
De1 of bogie vertical acceleration (%) 28.00 19.63 9.06 2.05 0.01 0.00
Da of lateral force of fastener (%) 55.92 27.96 16.67 3.77 —0.26 0.00
Dea of vertical pressure of fastener (%) 51.72 37.90 22.75 3.15 —0.04 0.00
Dea of derailment factor (%) 27.40 25.00 19.09 4.60 0.00 0.00
Da of offload factor (%) 32.04 26.99 8.92 1.84 0.01 0.00

Table 5: Calculation time and accuracy for different calculation cases at train speed of 350 km /h.

5.3 Example 2: Influence of Two Types of Track Models on Dynamic Responses of TTBI System

In this example, two types of track models are considered, with the same train, bridge, and track
irregularity as presented in Section 5.1. One is a double-layer track model which has the same
sleepers that were considered in Section 5.1, while the other is a single-layer track model in which
the sleepers are ignored. The parameters LBE = 5.0 m and LRE = 0.625 m are adopted in both
models. The lateral and vertical stiffnesses, kry and k2, of the discrete springs between the rail and
bridge in the single-layer track model can be obtained by considering krsy and ksby, krsz and ksbz, re-
spectively, in series in the double-layer track model with sleepers ignored, i.e., kiby = krsy ksby/ (Kkrsy +
ksby) and krb: = krszksbz/(krs: + ksbz). Similarly, the lateral and vertical damping coefficients, c¢rby and
crbz, of the discrete dampers between the rail and bridge in the single-layer track model can be ob-
tained as crby = crsy Csby/(Crsy + csby) and crbz = Crsz Csbz/ (Crsz + ¢sbz). To investigate the influence of
the mass, ms, of the sleeper on the spatial dynamic responses of the TTBI system, five masses of
170 kg, 255 kg, 340 kg, 425 kg, and 510 kg are applied, which are equal to 0.50, 0.75, 1.00, 1.25, and
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1.50 times the normal value, respectively. The other parameters are the same as those in Table 1. It
is of note that the mass of the sleeper is added to the dead load of the bridge in the single-layer
track model, but that a detailed derivation of the stiffness and damping matrices of the rail-bridge
interaction is not given here. However, it can be obtained by following a procedure similar to that
given in Sections 2.2 and 2.3. To investigate the influence of the track model on the spatial dynamic
responses of the TTBI system, the difference, De2, between the dynamic responses based on the
single-layer track model and those based on the double-layer track model can be defined as De2 =
(Dyn21-Dyn22) | Dyn21 % 100%, where Dyn21 and Dyn22 denote the dynamic responses obtained by the
single-layer track model and by the double-layer track model, respectively. The differences, De2, of
the dynamic responses of the TTBI system at various train speeds based on the single-layer track
model and the double-layer track model with ms = 170 kg, ms = 225 kg, ms = 340 kg, ms = 425 kg,
and ms = 510 kg, are plotted in Figures 20 to 27. Figures 20 and 21 show the differences in the
maximum lateral and vertical accelerations of the bridge midpoint, respectively; Figures 22 and 23
show the differences in the maximum lateral and vertical accelerations of the rail, respectively; Fig-
ures 24 and 25 show the differences in the maximum lateral and vertical accelerations of the car-
body, respectively; and Figures 26 and 27 plot the differences in the maximum derailment factor
and offload factor, respectively. Differences in the dynamic responses based on the single-layer and
double-layer track models can be seen in Figures 20 to 27, and it is evident that the differences in
both the maximum lateral and vertical dynamic responses generally increase with an increase in the
mass of sleeper and train speed. Although the differences in the maximum lateral and vertical accel-
eration of the carbody (Figures 24 and 25) are negligibly small (< 2%), due to the energy dissipating
effect of the vehicle’s suspension systems and wheel-rail creepage, the differences in other dynamic
responses are quite visible, particularly at higher train speeds. For instance, the differences in lateral
acceleration of the bridge (Figure 20), lateral acceleration of the rail (Figure 22), and the derailment
factor (Figure 26) are larger than 100%, 10%, and 4%, respectively, in the present calculation cases.
Figures 28 to 31 plot the maximum lateral and vertical accelerations of the bridge midpoint and rail
with the single-layer track model and double-layer track model with ms = 170 kg, ms = 255 kg, ms
= 340 kg, ms = 425 kg, and ms = 510 kg, respectively. As can be seen from Figures 28 to 31, the
lateral and vertical accelerations of the bridge midpoint tend to increase steadily with an increase in
the mass of the sleeper, while the lateral and vertical accelerations of the rail show a trend of slight
decrease at higher train speeds. This can be explained by the fact that the sleepers serve as a medi-
um for transmitting the kinetic energy brought by the moving train from the rail to the bridge. The
increase in the mass of the sleeper thus increases the train-induced impact effect on the bridge,
while reducing the vibration amplitude of the rail. In addition, the two-layer track model allows us
to compute not only the bridge responses, rail responses, vehicle responses, and wheel-rail interac-
tion, but also the sleeper responses and the fastener force. However, it is worth noting that the sin-
gle-layer track model saves calculation time because of the reduction of DOFs. For example, the
DOFs of the single-layer and double-layer track models are 6691 and 8518 respectively, while the
corresponding calculation times are 720.1 s and 902.4 s on a 2.8 GHz personal computer, respective-
ly. It is thus concluded that the double-layer model, although more time consuming, is shown to be
more accurate.
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Figure 20: Differences, Deg, in maximum lateral acceleration of the bridge midpoint with respect to train speed.
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Figure 21: Differences, Deg, in maximum vertical acceleration of bridge midpoint with respect to train speed.
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Figure 22: Differences, Dez, in maximum lateral acceleration of rail with respect to train speed.
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Figure 23: Differences, Deg, in maximum vertical acceleration of rail with respect to train speed.
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Figure 24: Differences, De2, in maximum lateral acceleration at centroid of carbody with respect to train speed.
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Figure 25: Differences, De2, in maximum vertical acceleration at centroid of carbody with respect to train speed.

4.50

4.00

3.50

3.00 ——m;=170kg
& 250 = mg=255kg
= 2.00 = m,=340kg
S is0 —%—m, =425 kg

1.00 ——m,=510kg

0.50

0.00 L = T ¥

0.50 40 80 120 160 200 240 280 320 360

Train speed (km/h)

Figure 26: Differences, Deg, in maximum derailment factor with respect to train speed.
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Figure 27: Differences, De2, in maximum offload factor with respect to train speed.
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Figure 28: Maximum lateral acceleration of bridge midpoint with respect to train speed.
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Figure 29: Maximum vertical acceleration of bridge midpoint with respect to train speed.
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Figure 30: Maximum lateral acceleration of rail with respect to train speed.
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Figure 31: Maximum vertical acceleration of rail with respect to train speed.
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5.4 Example 3: Influence of Two Types of Wheel-Rail Interaction Models on Dynamic Responses of TTBI System

In this example, two types of wheel-rail interaction models are considered, i.e., the no-jump model
and the jump model. The same train, track, bridge, and track irregularity as that presented in Sec-
tion 5.1 is used, with LBE = 5.0 m and LRE = 0.625 m. The wheels of each vehicle are considered
to be in full contact with the rails at all times for the no-jump model (Yang et al., 2004, Lou and
Zeng, 2005), while the wheels are free to jump from the rails for the jump model (Zhai and Sun,
1994).

The running safety of trains has been of great concern in railway engineering for a long time,
particularly in relation to the development of high-speed railways and the need to upgrade existing
railways. Several mechanisms that can result in the derailment of a running train have been identi-
fied through analytical and experimental investigations, and a number of indices have been pro-
posed based on these to evaluate the possibility, or risk, of train derailment. One of these indices is
the offload factor, PD, (Yang et al., 2004). Large PD values indicate that dynamic vertical wheel-
rail force acting on the wheel is substantially reduced. This is detrimental to the lateral stability of
the wheelset, and thus a limit needs to be placed on the value of the PD index to prevent the
wheelset from derailing. An upper limit of 0.60 on the PD value was used in Chinese specifications
for the design of railways (Xia et al., 2006), which implies that jumps between the vehicle’s wheels
and the rails are not usually permitted in practice. Therefore, the wheels of a vehicle are generally
assumed to be in constant contact with the rails (i.e., the no-jump model) when most train—track—
bridge interaction problems occur. Based on this assumption, the dynamic contact forces between
the wheels and rails are considered as internal forces, and it is thus not necessary to calculate the
internal forces when setting up the equations of motion of a TTBI system (Lou and Zeng, 2005). As
such, the vehicle response, wheel-rail contact force, track response, and bridge response can be
computed with no iterations required. However, in some extreme cases, such as with poor track
quality or during an earthquake, the wheels may jump upward and separate from the rails (i.e., the
jump model) and the train then has a high risk of derailment. When studying the dynamic respons-
es of a TTBI system using the jump model, two sets of equations of motion can be written, one for
the moving train subsystem and the other for the track—bridge subsystem. These equations are cou-
pled with the wheel-rail contact forces existing at the contact points of the two subsystems, and are
usually solved using procedures of an iterative nature (Zhai and Sun, 1994). For instance, when first
assuming a trial solution for the wheel-rail contact forces, the dynamic responses of the train and
track—bridge subsystems can be solved from the two sets of equations of motion, respectively. An
improved solution for the wheel-rail contact forces can then be obtained according to the displace-
ments of the wheels and rails at the contact points. By substituting these forces into the equations
of motion within a train and track—bridge subsystems, an improved solution for the dynamic re-
sponses of the two subsystems can be solved. However, to avoid divergence and improve the con-
vergence rate of iteration, sufficiently small time steps are required in the process of calculation,
which may thus result in more computer time.

Seven cases with train speeds of 50 km/h, 100 km/h, 150 km/h, 200 km/h, 250 km/h, 300
km/h, and 350 km/h are considered. The dynamic responses of the TTBI system obtained using the
no-jump and jump wheel-rail interaction models at various train speeds are shown in Table 6. As is
evident from the table, the solutions obtained using the no-jump model for the seven cases given
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agree very well with those of the jump model, although the impact response induced by the jump
model appears to increase slightly. The differences in bridge acceleration are no larger than 2.00%,
due to the relatively larger stiffness and mass of the bridge. However, although the differences in
the dynamic responses of the sleeper, rail, and vehicle are slightly larger, all of them are smaller
than 5.00%. It should be noted that the total CPU times for the no-jump model and the jump
model at a train speed of 350 km/h are 902.4 s and 7183.1 s on a 2.8 GHz personal computer, re-
spectively, and the ratio of the former to the latter is 0.126. Therefore, it is concluded that the no-
jump wheel-rail interaction model can be reliably and efficiently used to predict the spatial dynamic
responses of a TTBI system.

Train speed (km/h) 50 100 150 200 250 300 350
Bridge midpoint lateral no-jump model ~ 0.005  0.015 0.023 0.052 0.068 0.106 0.152
acceleration (m/s’) jump model 0.005 0.015 0.023 0.053 0.069 0.107 0.153
Bridge midpoint vertical no-jump model  0.008  0.036 0.100 0.151 0.253  0.403  0.610
acceleration (m/s’) jump model 0.008 0.036 0.101 0.154 0.257 0411  0.618
Sleeper lateral acceleration no-jump model  0.096  0.743  2.378  6.209 10.047 14.180 18.651
(m/s”) jump model 0.099  0.758 2432  6.347 10.165 14.459 18.757
Sleeper vertical acceleration ~ no-jump model  0.194  0.909  3.005  6.865 10.822 20.809 39.986
(m/s”) jump model 0.200 0.910 3.038 6.878 10.864 21.494 41.097
Rail lateral acceleration no-jump model 0.557 2.436 5.917 12.511 21.175 36.174  49.852
(m/s”) jump model 0.564 2528  5.925 12.730 21.498 37.281 51.437
Rl vl pesclomiben no-jump model ~ 1.151  7.542 18.837 44.083 83.549 148.46 238.90
(m/s”) jump model 1.162  7.726 19.256 45.507 86.512 154.062 242.197
Carbody lateral acceleration ~ no-jump model — 0.059  0.133  0.172 0179 0188  0.237  0.296
(m/s”) jump model 0.060 0.134 0.173 0.179 0.190 0.241  0.298
Carbody vertical acceleration no-jump model 0.103 0.150 0.237 0.320 0.368 0.462  0.531
(m/s”) jump model 0.105  0.151  0.242  0.322 0.373 0471  0.545
Bogle lateral acceleration no-jump model 0.663 2.136 4.341 6.170 6.339 7.210 7.946
(m/s”) jump model 0.678  2.165 4.356 6.193 6.379  7.361  7.996
Bogle vertical acceleration no-jump model 0.558 1.599 3.434 5.444 8.510 13.558 18.209
(m/s”) jump model 0.576  1.614 3.561 5.520 8.576 13.694 18.657
Lt e of eemes no-jump model  0.634  1.638  3.059  4.026 4.932 5242 5.733
(kN) jump model 0.643 1.655 3.135 4.096 5.013 5.386  5.782
Vertical pressure of fastener ~ no-jump model  28.543  29.600 31.462 33.908 37.420 41.791 47.013
(kN) jump model 20.407 30.492 31.940 34.678 37.533 41.881 48.01
no-jump model  0.047  0.092 0.138  0.166 0.227  0.304 0.471
Derailment factor
jump model 0.048  0.092 0.140 0.168 0.227 0.306  0.473
no-jump model  0.038  0.073  0.128 0.222  0.337 0.454  0.591
Offload factor
jump model 0.039  0.074 0.129 0.228 0.341 0.467  0.603

Table 6: Calculation results for two wheel-rail interaction models at various train speeds.
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6 SUMMARY AND OUTLOOK

Based on obvious differences in the flexural rigidity between the rail and bridge, a 3D rail-bridge
coupling element of unequal lengths is presented. The spatial dynamic responses of a TTBI system
with a seven-span continuous beam bridge are studied using a 3D rail-bridge coupling element of
unequal lengths and equal lengths. Furthermore, the effects of two types of track models on the
spatial dynamic responses of the TTBI system are investigated, and the following conclusions can
be drawn from the numerical results.

(1) The proposed 3D rail-bridge coupling element with shorter rail elements and longer bridge
elements not only helps save calculation time, but it also delivers satisfactory results when investi-
gating the spatial dynamic responses of a TTBI system.

(2) In analyzing the spatial dynamic responses of a TTBI system using a 3D rail-bridge cou-
pling element that has the same length as the bridge element, the influence of the length of the rail
element is significant, not only on the rail dynamic responses but also on the bridge dynamic re-
sponses, when the track irregularities are considered. This differs from the case with an ideal
smooth track.

(3) There are differences in the dynamic responses based on the single-layer and double-layer
track models, and the differences in both the maximum lateral and vertical dynamic responses gen-
erally increase with an increase in the mass of the sleeper and the train speed, particularly with
respect to accelerations of the bridge and rail. In addition, the two-layer track model is more accu-
rate.

(4) The no-jump assumption between the vehicle’s wheels and the rails can be reliably and effi-
ciently used for most train—track—bridge interaction problems.

(5) Further studies on the efficiency and accuracy of the proposed 3D rail-bridge coupling ele-
ment are needed to investigate the spatial dynamic responses of a TTBI system during an earth-
quake, due to the fact that vibrations of the system may be more violent during such an occurrence.
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