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Abstract 
In this study a total lagrangian 2D finite element formulation is 
used to model plane frames developing large displacements and 
rotations considering sliding connections. This kind of connections 
is usually called prismatic and cylindrical joints.  
In order to be self-containing, the steps of the development of a 
frame finite element of any approximation order that considers the 
influence of shear strain by means of a generalized Reissner kine-
matics is presented. The adopted degrees of freedom are positions 
and rotations. Using positions as degrees of freedom simplifies the 
total lagrangian description and enables a comprehensive presen-
tation of the proposed connections. Revolute connections are con-
sidered by direct degrees of freedom matching. Prismatic connec-
tions are modelled by the Lagrange multiplier technique that 
constrains positions and rotation of a sliding node to the varying 
position and rotation of a path element. Cylindrical joints are 
introduced in similar way by Lagrange multipliers releasing the 
sliding node rotation. 
The principle of stationary potential energy is used to write the 
non-linear equilibrium equation including the Lagrange multiplier 
influence. To solve the non-linear equation a Taylor expansion is 
carried out and the Newton-Raphson procedure is employed. The 
frame element is considered elastic, following the Saint-Venant-
Kirchhoff constitutive model. Selected examples are used to vali-
date the formulation and to show its possibilities of application. 
 
Keywords 
Positional Finite Element Method, Sliding connections, Lagrange 
multipliers. 
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1 INTRODUCTION 

Considering the constant evolution of materials science, the use of materials with improved mechan-
ical properties is a reality in daily engineering applications. Therefore, the design of audacious struc-
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tures each time slenderer and lighter is a constant challenge for engineering. From this point of 
view, the consideration of geometrical non-linearity in structural analysis is becoming an imposition 
nowadays. On the other hand, the analysis of deployable and bi-stable structures is also an im-
portant field of mechanical and aerospace engineering. Some applications as satellite antennas, de-
flectors, solar panels and solar sails are designed using the concept of sliding connections, large dis-
placements and rotations. 

As far as the authors knowledge goes, differently from what is proposed in this study, all exist-
ing finite element method (FEM) formulations related to this kind of connection that considers 
large displacements and rotations are based on the updated lagrangian concept, more specifically co-
rotational formulations. Those formulations are presented in the works of Simo and Vu-Quoc 
(1986), Armero (2006), Jelenic and Crisfield (2001) and Ibrahimbegović and Taylor (2002). Moreo-
ver, the specific developments of mathematical models of such connections are in its majority relat-
ed to multibody dynamics, becoming a hard path to researchers not trained on this subject 
(Bauchau, 1998; Cardona; Géradin; Doan, 1991; Géradin; Cardona, 2001; Sugiyama; Escalona; 
Shabana, 2003). This approach may create a dependence of dynamic analysis when some simple 
static modelling could be of interest to describe low velocity mechanical systems or sliding connec-
tions in statics. We could find one static work, Jelenic and Crisfield (1996), that takes care of static 
3D connections, however the connections are written regarding nodal variables and limits the 
movement to straight directions not associated to the flexibility of structural members.  

One can see, for example, in Bauchau (2000) and Bauchau and Bottasso (2001) the use of La-
grange multipliers to solve sliding joints in dynamic analysis, however, the application of constraints 
are done directly at the equilibrium level and the non-linear solution process is not detailed. Moreo-
ver, the authors decided to use non-dimensional variables as the main unknowns of the problem, 
limiting the sliding equations to one single element and introducing some difficulties on the interpre-
tation of forces and mass values at the joint node. In the works of Bauchau (1998), Cardona, Géra-
din and Doan (1991), Bauchau (2000) and Bauchau and Bottasso (2001) the Hamilton principle is 
used to derive the elastodynamic equations for the geometrical non-linear FEM formulation dedicat-
ed to elastic multibody dynamics. Some comments about difficulties regarding using the Newmark 
method for time integration and the proposition of energy conserving algorithms are also described 
in literature on Bauchau (1998), Cardona, Géradin and Doan (1991), Romero and Armero (2002) 
and Leyendecker, Betsch and Steinmann (2006). Other interesting works related to multibody dy-
namic applications can be mentioned such as Greco and Coda (2006), Yoo et al. (2007), Hong and 
Ren (2011) and Moon et al. (2014). 

In this work we are interested to improve a previously developed total lagrangian frame finite 
element formulation (Coda; Paccola, 2014; Reis; Coda, 2014) to accomplish sliding connections for 
2D elastostatic applications. In order to enable a comprehensive description of the proposed connec-
tions the frame formulation is described. This formulation is based on position degrees of freedom 
and a comprehensive description of the structural kinematics is presented. Revolute connections are 
considered by direct degrees of freedom matching, prismatic connections are modelled by the La-
grange multiplier technique that constrain positions and rotation of a sliding node to the position 
and rotation at general and varying location of a path element. The combination of prismatic and 
revolute joints is done by Lagrange multipliers letting the rotation free and resulting in the cylindri-
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cal joint model. Moreover, the main variable at the connection of elements respects the Euclidean 
space dimension and consistent results are achieved. 

The non-linear equilibrium equation is derived from the stationary total potential energy prin-
ciple and solutions along the equilibrium path are achieved by means of the Newton-Raphson pro-
cedure. Selected examples are presented to validate the formulation and to show its possibilities of 
application. 
 
2 PLANE FRAME KINEMATICS 

The adopted FEM solution procedure is written here from the principle of stationary potential en-
ergy and, therefore, the strain energy stored in the frame element must be calculated. To calculate 
the strain energy, it is necessary to define the way one achieves the strain distribution as a function 
of the body position limited to a finite number of degrees of freedom. In order to do so we write the 
initial and current positions of frame elements as a function of nodal position, angles and non-
dimensional variables. 
 
2.1 Initial Configuration 

To build the total lagrangian procedure we start describing the initial configuration of a frame ele-
ment. Figure 1 shows the reference line of the initial configuration, the non-dimensional space from 
which the reference line mapping is written and the nodes of the finite element. 

The mapping of the reference line is written as: 
 

0 ( ) ( ) ( )m m m
i i if x Xx x f x= =   , (1) 

 

where, i is the direction (1 or 2), m  indicates reference line and   is the index that represents 

nodes and shape functions ( )f x  (Lagrange polynomials of any order). m
iX   represents the nodal 

coordinates at the reference line and repeated indices indicate summation. 
 

 

Figure 1: Reference line parameterization for initial position (cubic approximation). 
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At the initial configuration, the nodal coordinates are known and the cross sections are consid-
ered orthogonal to the reference line. Thus, from figure 1, one calculates the tangent vectors at each 
node k  by: 
 

, ,( ) ( )m m m
ik i k k iT x Xx xx f x= =   , (2)

 

in which comma indicates derivative. 
From equation (2) the normal vectors that generate cross sections at nodes are written as: 

 

1 2 2 1/ and /k k k kN T T N T T= - =
 

, (3)
 

where the index m  has been omitted. To use angles as nodal parameters, one calculates, from fig-
ure 1: 
 

0
2( ) 1( )( / )k k karctg N Nq =  (4)

 

To define a cross section at any position along the frame element it is necessary to know its an-
gles. In order to do so we use the same approximation adopted for coordinates, i.e.: 
 

0 0( ) ( )q x f x q=    (5)
 

From the initial position of reference line and cross sections orientation one defines the initial 
configuration of the frame element as depicted in figure 2. 
 

 

Figure 2: Initial configuration mapping. 
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0( , ) ( ) ( , )m
i i ix x gx h x x h= + , (6) 

 

where the vector 0( , )ig x h  can be written as a function of 0( )q x , h  and the height 0h  of the finite 

element as: 
 

0 0 0 0 0 0
1 2( , ) cos ( ) and ( , ) sen ( )

2 2

h h
g gx h h f x q x h h f x qé ù é ù= =ê ú ê úë û ë û     (7) 

 

Substituting equations (1) and (7) into equation (6) results the initial configuration mapping of 
the frame element, as: 
 

0 0
01 1 1( , ) ( , ) ( ) cos ( )

2
m h

f x Xx h x h f x h f x qé ù= = + ê úë û     (8)

 

0 0
02 2 2( , ) ( , ) ( ) sen ( )

2
m h

f x Xx h x h f x h f x qé ù= = + ê úë û     (9)

 

It is worth noting that, for the sake of simplicity, the reference line is adopted at the centre of 
the cross section and the width and height of the bar are considered constant along all frame ele-
ment. One can adopt the reference line at any position and the internal force offsets would appear 
naturally (Coda; Sampaio; Paccola, 2015; Pascon; Coda, 2013). 
 
2.2 Current Configuration 

The current configuration is understood as a trial position of the solution process and can be seen in 
figure 3.  
 

 

Figure 3: Current configuration mapping. 
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Therefore, the new nodal coordinates m
iY   and angles q  can be used to derive the current 

mapping from the non-dimensional space ( ),x h  to the current configuration as: 
 

0
11 1 1( , ) ( , ) cos[ ( ) ]

2
m h

f y Yx h x h f h f x q= = +     (10)

 

0
12 2 2( , ) ( , ) [ ( ) ]

2
m h

f y Y senx h x h f h f x q= = +     (11)

 

where 1 ( , ) ( , )i if yx h x h=  is the new mapping understood as the current positions of any point inside 

the body at the current configuration mapped from the non-dimensional space. 

As, at current configuration, there is no relation between q  and the reference line inclination, 

see figure 3, the cross section is not orthogonal to the reference line, consequently, Reissner kine-
matics takes place. It is worth noting that the height of the frame element is not free to change and, 
to avoid volumetric locking the constitutive equation should be relaxed in order to exclude trans-
verse expansions. 
 
2.3 Complete Mapping and Green Strain 

After defining the mappings from the non-dimensional space to the initial 0B  and current B  con-

figurations, we introduce the mapping from the initial configuration to the current configuration in 
the same sense presented by Bonet et al. (2000) and Coda (2003). In figure 4 we put together fig-

ures 2 and 3 revealing the mapping f


 as:  
 

1
1 0( )f f f -=

  
 , (12)

 

where ( )0 ,f x h


 and ( )1 ,f x h


 are defined by equations (8) to (11).  

 

 

Figure 4: Change of configuration function or deformation function. 
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To calculate strain and strain energy it is not necessary to explicitly know f


, but its gradient, 

called here A. This is done in a very simple way (Bonet et al., 2000; Coda, 2003) as: 
 

1 0 1. ( )-=A A A , (13)
 

in which  
 

0 0 1 1
1 1 1 1

0 1
0 0 1 1
2 2 2 2

and

f f f f

f f f f
x h x h

x h x h

é ù é ù¶ ¶ ¶ ¶ê ú ê ú
ê ú ê ú¶ ¶ ¶ ¶ê ú ê ú= =ê ú ê ú¶ ¶ ¶ ¶ê ú ê ú
ê ú ê ú¶ ¶ ¶ ¶ë û ë û

A A  (14) 

 

For a trial current nodal position, both A0  and A1  are numerical values at a generic point 
( ), .x h  In the numerical strategy, coordinates ( ),x h  are Gauss integration points resulting in a very 

simple numerical procedure. Moreover, expression (14) indicates that there is no difference model-
ling straight or curved elements by the proposed formulation. 

Substituting equations (8), (9), (10) and (11) into equation (14) results: 
 

0 0 0 0 0
, 1 k,0

0 0 0 0 0
, 2 k,

( ) ( ) ( ) cos ( )
2 2

( ) cos ( ) ( ) ( )
2 2

m
k

m
k

h h
X sen

h h
X sen

x x

x x

f x h f x q f x q f x q

f x h f x q f x q f x q

é ùé ù é ùê ú- ê ú ê úê úë û ë û= ê ú
ê úé ù é ù+ê úê ú ê úë û ë ûê úë û
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0 0 0 0 0
, 1 k,0

0 0 0 0 0
, 2 k,
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2 2
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2 2
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m
k

h h
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h h
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x x

x x
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é ùé ù é ùê ú- ê ú ê úê úë û ë û= ê ú
ê úé ù é ù+ê úê ú ê úë û ë ûê úë û

A
     

     

 (16)

 

The Green-Lagrange strain E  is adopted to develop the formulation, as it is an objective meas-
ure (Ogden, 1984), and is given by: 
 

1 1 1
( ) ( ) or ( )
2 2 2

t
ij ki kj ijE A A d= - = ⋅ - = -E C I A A I  (17)

 

In which I  is the identity tensor of second order and C  is the right Cauchy-Green stretch. 
 
3 EQUILIBRIUM EQUATION 

As mentioned in the introduction, the equilibrium equation is achieved here from the principle of 
stationary energy. For the considered isothermal, static and elastic situation the total energy is 
written as: 
 

eU PP = + , (18)
 

where P is the total energy of the system, eU  is the stored elastic energy and P  is the potential of 

conservative external forces. Therefore, the variational principle is stated by: 
 



2066     T.M. Siqueira and H.B. Coda / Development of Sliding Connections for Structural Analysis by a Total Lagrangian FEM Formulation 

Latin American Journal of Solids and Structures 13 (2016) 2059-2087 

0eU Pd d dP = + = , (19)
 

in which the symbol d  means variation. 
 
3.1 Strain Energy Adopted to the Proposed Frame Element 

In order to calculate the strain energy of the analysed body (frame element) it is necessary to inte-
grate over the initial volume (lagrangian formulation) the specific strain energy written here as a 
function of the Green-Lagrange strain (E ) as: 
 

( ) ( )  C2 2 2 2
11 22 12 21

1
or : :

2 2e eu E E E E u= + + + = E E , (20)

 

where   is the longitudinal elastic parameter of the Saint-Venant-Kirchhoff constitutive model 
that approaches the Young modulus for small strain. The shear elastic modulus is   [2(1 )]n= +  

being n  a constant that reproduces the Poisson ratio for small strain. As one can see, in the present 
formulation the Poisson ratio interferes only on the shear stiffness and does not introduces trans-
verse expansion. The energy conjugacy property allows one to define the second Piola-Kirchhoff 
stress as: 
 

S ore e
ij

ij

u u
S

E

¶ ¶
= =

¶ ¶E
, (21)

 

moreover, the constitutive elastic tensor C  can be achieved as: 
 

E E
C = C

2 2

ore e
ijk

ij k

u u

E E

¶ ¶
=

¶ ¶ ¶ ¶

 (22)

 

It is worth noting that the adopted constitutive model avoids volumetric locking and that the 
high order of finite elements avoids shear locking (Bischoff; Ramm, 2000). 

As the Green strain has been written as a function of nodal positions, see equations (15), (16) 
and (17) the strain energy accumulated in the structure is also a function of positions, and is writ-
ten as: 
 

0
0( ) ( )e eV

U Y u Y dV= ò
 

, (23)

 

in which 0V  is the initial volume of the frame. 

 
3.2 Total Potential Energy and Equilibrium 

The total potential energy of the mechanical system in an elastic, static and isothermal condition 

( )YP


 is given by the sum of the strain energy and the potential energy of external forces, as: 
 

0 0
0 0( ) ( ) m

eV S
Y u Y dV F Y q y dSP = - ⋅ - ⋅ò ò
       (24)
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In this expression F

 is the conservative applied forces (including moments), q


 is the vector of ex-

ternal distributed forces written as a function of nodal values as ( )i iq Qf x=   , my


 is the current 

position of the reference line (Equations (10) and (11)) and 0dS  is the initial infinitesimal reference 

line length of a curved frame element. 
To achieve the equilibrium equation one applies the principle of stationary potential energy on 

expression (24) using nodal positions as parameters, 
 

0 0
0 0

( ) ( )
( ) 0

m
e

V S

u F Y q y
Y YdV Y YdS

Y Y Y
d d d d

¶ ¶ ⋅ ¶ ⋅
P = ⋅ - ⋅ - ⋅ =

¶ ¶ ¶ò ò
       

    (25)

 

Knowing that the strain energy is a function of Green strain which is a function of positions, 
and that the applied forces are conservative, equation (25) is rewritten as: 
 

0 0
0 0( ) : 0

m
e

V S

u y
Y YdV F Y q YdS

Y Y
d d d d

¶ ¶ ¶
P = ⋅ - ⋅ - ⋅ ⋅ =

¶ ¶ ¶ò ò
E

E

     
   (26)

 

Knowing the current reference line expression ( my Yf= ⋅
 

), the adopted surface force approx-

imation (q Qf= ⋅
  ) and equation (21), one writes equation (26) as: 

 

0 0
0 0( ) : 0

V S
Y YdV F Y Q YdS

Y
d d d f f d

¶
P = ⋅ - ⋅ - ⋅ Ä ⋅ =

¶ò ò
E

S
        

 , (27)

 

in which the symbol Ä  represents the tensor product. 
It is usual to write equation (27) as (Coda; Paccola, 2014): 

 

int( ) 0Y F Y F Y Q Yd d d dP = ⋅ - ⋅ - ⋅ ⋅ =L
       

, (28)
 

in which intF


 represents nodal forces and L  is the matrix that transforms distributed forces into 
nodal equivalent ones (Coda; Paccola, 2014). As the variation Yd


 is arbitrary, equation (28) results 

in the geometrical non-linear equilibrium equations for discrete frame analysis, as: 
 

int 0F F Q- - ⋅ =L
   

 (29)
 
3.3 Piola-Kirchhoff Stress and Green Strain Derivatives 

In order to be possible the reproduction of the proposed formulation it is important to show how 
the kernels of equation (27) are calculated. The second Piola-Kirchhoff stress S  is obtained from 
equations (20) and (21) as: 
 

 
 
11 12

12 22

2

2
e

E Eu

E E

é ù¶ ê ú= = ê ú¶ ê úë û
S

E
 (30)

 

The first derivative of the Green strain regarding positions is achieved from equations (15), (16) 
and (17) as: 
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0 1 1 0 1

1 1
0 1 0 1 0 1 0 1

1 1 1
( ) [( ) ( ) ( ) ]

2 2 2
( )1

( ) ( ) ( ) ( ) ( )
2

t t t

t
t t t

Y Y Y Y

Y Y

- -

- - - -

¶ ¶ ¶ ¶
= = ⋅ = ⋅ ⋅ ⋅

¶ ¶ ¶ ¶
é ù¶ ¶ê ú= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ê ú¶ ¶ê úë û

E C
A A A A A A

A A
A A A A A A

   

 
 (31)

 

As 1 1( ) / ( / )t tY Y¶ ¶ = ¶ ¶A A
 

 one can simplify equation (31). From equation (15) it is possible 

to derive 1A  regarding nodal positions Y b
a , for which a  is the direction (1, 2 or 3, for the angle) 

and b  is the element node, as follows: 
 

1 1

1 2

0 0 0
,

0 0 0Y Y

b
b b

b

f
f

é ù é ù¢¶ ¶ê ú ê ú= =ê ú ê ú¢¶ ¶ê ú ê úë û ë û

A A
 (32)

 

0 0 0
1 1

0 0 03

cos( ) ( ) ( ) ( )
2 2 2

cos( ) ( ) ( ) cos( )
2 2 2

k k

k k

h h h
sen sen

h h hY sen

b b b

b
b

b b b

h f q f f q h f q f f q f

q h f q f f q h f q f f q f

é ù
ê ú¢ ¢- - -¶ ¶ ê ú= = ê ú

¶ ê ú¶ ¢ ¢- +ê úê úë û

A A      

     

, (33)

 

with summation over nodes   and k . 
From expressions (30) through (33) the internal force is calculated using Gaussian quadrature 

over the initial volume, as: 
 

( )int 0
0 ( , ) : ( , ) ( , )ig jg ig jg ig jg ig jgF b w w Det

Y
x h x h x h

¶
=

¶

E
S A


 , (34)

 

in which igw  and jgw  are Gauss weights and igx  and jgh  are integration points. 

 
4 SOLUTION OF THE NON-LINEAR EQUILIBRIUM EQUATIONS 

In order to organize the solution procedure, based on the Newton-Raphson method, one rewrites 
equation (29) coupling external forces in one unique vector F


, as: 

 

int 0g F F= - =
    (35)

 

In this expression g


 is called the unbalanced mechanical force vector, as it is null only when 

the position Y


 is the solution of the problem.  
Equation (35) can be understood simply by finding Y


 such that ( ) 0g Y =

  . This statement is 

clearly non-linear regarding Y

. Therefore, to find a solution of the problem one expand the equality 

in a Taylor series truncated at the first order,  
 

0 0( ) ( ) ( ) 0g Y g Y g Y Y@ +  ⋅ D =
       , (36)

 

in which 0Y


 is a trial solution. 
Solving the linear system of equation (36) one finds a correction YD


 to the trial solution as: 

 

1 0( )Y g Y-D = - ⋅H
  , (37)
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where the gradient of g

 is the Hessian of the total potential energy. As the external forces are con-

servative, the Hessian matrix is given by: 
 

22
eUg

Y Y Y Y

¶¶ P
= =  =

¶ ¶ ¶ ¶
H


     (38)

 

Using YD

, a new trial position is achieved, as: 

 

0 0Y Y Y= + D
  

(39)
 

This new trial solution is used again in equation (37) until: 
 

( )
or

g Y Y
TOL TOL

F X

D
£ £

 
  , (40)

 
when 0Y Y=

 
 is assumed to be the acceptable solution of (35). In equation (40) X


 is the Euclidi-

an norm of the initial position vector. 
 
4.1 Hessian of the Proposed Frame Element 

To complete the description, the frame element Hessian matrix H  is presented as: 
 

0 0 0

2 2 int 2

0 0 0: :e e

V V V

U u F
dV dV dV

Y Y Y Y Y Y Y Y Y

æ ö¶ ¶ ¶ ¶ ¶ ¶ ÷ç ÷= = = ç + ÷ç ÷÷ç¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è øò ò ò
S E E

S


          (41) 

 

In the last integral, the derivative of the Piola-Kirchhoff stress Y¶ ¶S

 is given by: 

 

  
   

11 12

11 12

21 22 21 22

22

2
2

E E
E E Y Y
E E E EY Y

Y Y

é ù¶ ¶ê úé ù ê ú¶ ¶ ¶ ¶ê ú= = ê úê ú ¶ ¶ê ú¶ ¶ ê úë û ê ú
ê úë ¶ ¶ û

S  
 

 
, (42) 

 

for which the derivatives of the Green strain regarding positions is already given in equations (31) 
and (32). 

Thus, the last term to be achieved is the second derivative of the Green strain regarding posi-
tions, i.e.: 
 

12 1
0 0 1( )1

2( ) ( )
2

t
t t

Y Y Y Y
- -

é ù¶¶ ¶ê ú= ⋅ ⋅ ⋅ + +ê ú¶ ¶ ¶ ¶ê úë û

AE A
A A O O    , (43) 

 

with, 
 

2 1
0 1 0 1( ) ( ) ( )t t

Y Y
- -¶

= ⋅ ⋅ ⋅
¶ ¶

A
O A A A   (44)
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The non-null values of 2 1 / Y Y¶ ¶ ¶A
 

 are restricted to the third direction (angles) and are given 

by: 
 

{ }

{ }

2 1 2 1

3 3

0 0

0 0

( ) ( ) cos( ) cos( )
2 2

cos( ) ( ) ( ) ( )
2 2

k k

k k

Y Y

h h
sen

h h
sen sen

zb
b z

b z b z b z b z

b z b z b z b z

q q

h f q f f f q f q f f f f f q f f

h f q f f f q f q f f f f f q f f

¶ ¶
= =

¶ ¶¶ ¶
é ù

é ùê ú¢ ¢ ¢- + -ê úë ûê ú= ê ú
ê úé ù¢ ¢ ¢- + + -ê úê úë ûê úë û

A A

     

     

, (45)

 
where b  and z  are element nodes and summation over   and k  are present. 

The integration over elements is given by Gaussian quadrature, as: 
 

2 2
0

0 ( , ) : ( , ) ( , ) : ( , ) ( , )e
ig jg ig jg ig jg ig jg ig jg ig jg

U
b w w Det

Y Y Y Y Y Y
x h x h x h x h x h

é ù¶ ¶ ¶ ¶ê ú= +ê ú¶ ¶ ¶ ¶ ¶ ¶ê úë û

S E E
S A      , (46)

 

for which igw  and jgw  are weights and ig
x

 and jgh  are integration points. 
 
5 SLIDING CONNECTIONS 

As mentioned in the introduction section, revolute connections are not sliding ones and are consid-
ered by the direct matching of degrees of freedom, readers are invited to see the references Greco 
and Coda (2006), Reis and Coda (2014) and Coda and Paccola (2014) for details. 

A prismatic joint, schematically depicted in figure 5a, constrains the extremity position of the 
sliding element to slide over a path element without allowing relative rotation. A cylindrical joint 
constrains the extremity of the sliding element to slide over a path element but releases the relative 
rotation between elements, see figure 5b.  

We describe in details the prismatic connection, for which Lagrange multipliers are used to con-
strain positions and relative angles. The cylindrical connection is briefly described indicating which 
terms of the prismatic joint are disregarded. One important advantage of using Lagrange multipli-
ers is the simplicity of the technique when considering the principle of stationary total potential 
energy and the total lagrangian description. 

It is important to mention that, differently from what we are proposing, the consulted works 
are based on multibody dynamic updated lagrangian formulations and, when considering flexible 
elements, two options of sliding connections are present. The first considers the direction of sliding 
defined by a fixed director and, therefore, does not attach elements. The second considers the free 
variable as the non-dimensional coordinate of the master element and not the real position. This 
last brings some difficulties on interpreting the real mass and forces to be considered at the connec-
tion nodes. See, for instance, the works of Cardona, Géradin and Doan (1991), Bauchau (1998), 
Bauchau (2000), Géradin and Cardona (2001), Bauchau and Bottasso (2001), Garcia-Vallejo et al. 
(2003), Sugiyama, Escalona and Shabana (2003) and Lee et al. (2008). 
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5.1 Kinematical Constraints by Lagrange Multiplier 

A set of path elements defines the sliding path of the connected node of a sliding element, this con-
nected node is now on called sliding node. In what follows ( )·  is used for path elements and ˆ( )·  

for sliding elements, including the sliding node. 
 

 

Figure 5: (a) Prismatic joint, (b) cylindrical joint. 

 

The variable ( )p ps s x= , depicted in figure 5, defines the curvilinear position and the cross sec-

tion orientation of the path point P  (with coordinates P
iY ) over the sliding path. For cylindrical 

connections the cartesian coordinates ( ˆPîY ) of the sliding node P̂  should be equal to the cartesian 

coordinates of point P  belonging to the sliding path. For prismatic connections, in addition to posi-

tions, the difference of cross sections orientations 0
pqD , calculated at the initial configuration (figure 

6), should be constant during the sliding process. These constraints are described by: 
 

( )( ) ( )( ) ( ) ( )ˆ for 1,2P m m m
i i p i p i p P iY y s y s y Y ix x x f x= = = = =

 , (47) 
 

and, 
 

0 0ˆ ˆ( ) ( ) for 3P
P P P i P i Por Y Y iq q f x q f x qD = - = + D =

   , (48) 
 

or, in a general, form: 
 

( )( ) ( ) 0
3

ˆ ,P
i P i P i P iY s Y Yx f x q d= + D 

 , (49)
 

where 3id  is the Kronecker delta. 

During sliding, the curvilinear position ( )p ps s x=  or, inversely, the non-dimensional coordinate 

( )p psx x=  will vary.  

To impose the kinematical constraint of a prismatic joint via Lagrange multiplier one adds to 
the total potential energy the following potential: 
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( )( ) 0
3

ˆ( , , ) P
L p i i p i P iY s Y s Yl l f x q dé ù= - - Dê úë û




 
, (50)

 

in which the term inside brackets is exactly the kinematical constraint given by equation (49), il  

are the so called Lagrange multipliers, one for each direction i  (summation implied), and LY


 repre-

sents the connected positions. In mechanics an interesting physical interpretation can be given for 
the Lagrange multiplier, that is, its converged value is the auto equilibrated force (action and reac-
tion) necessary to keep both bars together. 
 

 

Figure 6: Difference of angles for a single node at different elements. 

 
The new potential energy is written as: 

 


0 0

0 0( , ) ( ) ( , )m
L e LV S
Y L u Y dV F Y q y dS Y LP = - ⋅ - ⋅ +ò ò
       

, (51)

 

in which Y

 include all degrees of freedom, less the new ones ( ),pL s l=

 
 as LY


 is already included 

in Y

. The principle of stationary potential energy is applied on expression (51) to find equilibrium 

equations, as: 
 

 0Ld d dP = P+ = , (52)
 

in which dP  has already been detailed in previous sections and include variations of the strain en-
ergy and applied external forces regarding current nodal positions Y


.  

To complete the variation of ( , )L Y LP
 

 it is necessary to solve d . This is done regarding

( ),pL s l=
 

 and ( )ˆ, P
L i iY Y Ya=


:  
 

( )
( ) ( )

ˆ
ˆ

P
L i i i PP

i PL i i

Y L Y Y s
sY L Y Y

a
a

d d d d d dl d
l

¶ ¶ ¶ ¶ ¶ ¶
= + = + + +

¶ ¶¶ ¶ ¶ ¶

 
 
      , (53)

 

being a  the nodes of the active path element. One should note that variable LY


 belongs to Y

 and 

will result in terms to be added in internal force and Hessian matrix at the solution process. At this, 

path element

1x

T̂


T


N̂


N


0
P

P

0
P
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it is important to mention that the consulted works that deal with flexible connections use px  in-

stead of ps  as the main variable. 

For prismatic connections, developing the derivatives, one writes in an open form: 
 

{ }

( )

( )
( )


0
3

,

ˆ ˆ 0 1,2, 3
ˆ

/

i P

i

P k
ki i i i p

P
i P i P i

i P i P

L Y Y Y s i

Y Y

Y J

a

a

x

l f x
l

d d d d d dl d
f x q d

l f x

ì ü-ï ïï ïï ïï ïï ïï ïï ïï ï= L ⋅ = =í ýï ïï ï- - Dï ïï ïï ïï ï-ï ïï ïî þ







 
, (54)

 

in which the nodes belonging to the sliding element, different from the sliding node, represented by 
index k  are present in equation (54) in order to simplify the 'Lagrange Force' vector L


 assem-

blage. 
In equation (54) the following property is used, 

 

( ) ( )or p
p p p

ds
ds J d J

d
x x x

x
= = , (55)

 

in which, 
 

( ) ( ) ( )2 2
, 1 , 2[ ] [ ]p P P PJ J Y Yx xx f x f x= = + 
   (56) 

 

The new equilibrium equation is now assembled respecting the degrees of freedom correspond-
ence adding L


 to intF


, i.e.: 

 

( )int 0F F+ L - =
  

, (57)
 

in which F


 includes all external loads. 
For cylindrical connections, the same procedure is used, remembering that the relative angle is 

free, resulting: 
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a

a
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l
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l f x
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





 
 (58)

 
5.2 Non-Linear Solution 

The non-linear set of equilibrium equations (57) is also solved by the Newton-Raphson procedure. 

The unbalance mechanical vector Lg


 is written as: 

 

( ) ( )int, 0Lg Y L F F= + L - =
      (59)
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For a trial solution ( )0 0,Y L
 

 equality (59) does not hold, therefore a Taylor expansion of first 

order is performed and the nullity is imposed: 
 

{ } ( )0 0, ,
t

LY L g Y L⋅ D D = -LH
   

 (60)
 

From this equation, the trial vector { }0 0,
t

Y L
 

 is corrected by: 
 

0 0

0 0

Y Y Y

LL L

ì ü ì ü ì üï ï ï ï ï ïDï ï ï ï ï ïï ï ï ï ï ï= +í ý í ý í ýï ï ï ï ï ïDï ï ï ï ï ïï ïï ï ï ï î þî þ î þ

  
  , (61)

 

until a prescribed tolerance is respected, see section 4. This time, both the trial position and the 
Hessian matrix contain the usual contribution of connected and unconnected nodes and the new 

contribution of ps  and il . The achievement of ps  is not sufficient to update L


 and the Hessian 

matrix, as the function ( )p psx x=  is not explicitly written. The solution of this stage is described 

in next item. 

The new Hessian matrix Lg=  = + con
L LH H H


, is achieved by the second derivative of 

( , )L Y LP
 

 regarding positions and the new variables ps  and il . The part of the Hessian matrix that 

corresponds to the element connection degrees of freedom is achieved as: 
 

( )
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 
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2 2

2 2,
L L L

t
L

L

Y Y Y L

L Y
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    
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, (62)

 

or, written in a way that the corresponding variables are identified: 
 

0L L
t

Y Y

L L
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H
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 
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in which ( ) { }ˆ ˆt P k
L i i iY Y Y YaD = D D D


 and ( ) { }t

i PL slD = D D


. The terms of con
LH  are giv-

en as follows: 
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with, 
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J Jx x xx xxl f x f x f x l f x
æ ö æ ö÷ ÷ç ç÷ ÷= -ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 
  , (65)

 



T.M. Siqueira and H.B. Coda / Development of Sliding Connections for Structural Analysis by a Total Lagrangian FEM Formulation     2075 

Latin American Journal of Solids and Structures 13 (2016) 2059-2087 

in which index notation is applied. Index i corresponds to directions (1, 2 or 3, for prismatic con-
nection), k  also represents directions (1 and 2), and,  , m  and n  refer to the nodes of the active 

path element. For cylindrical connection i  assumes 1 or 2 only. The null terms in matrix con
LH  have 

already been calculated in matrix H  and corresponds to the second derivative regarding nodal posi-
tions of the strain energy related to the connected (path and sliding) elements. 
 
5.3 Curvilinear and Non-Dimensional Variables 

The definition of ( )p ps s x=  that is directly determined by the update of variables, equation (60), 

at the Newton-Raphson solution procedure is of valuable importance for the consideration of fric-
tion. It is important to stress that this study does not consider friction, only prepares the solution 
to be in the real Euclidean space for future applications. 

However, the calculation of the internal force L


, equation (58), and the Hessian matrix, equa-
tion (63), associated to the Lagrange multiplier technique are dependent of ( )p psx x=  that is not 

explicitly defined. Therefore, it is necessary to calculate, for a given trial equilibrium position, the 
value of px . This is done solving the following non-linear system of equations: 

 

( ) ( )ˆ 0 1,2P
i P i P i ir Y Y ix f x= - = =

 , (66)

 

that is the mechanical constraint present in equation (50), obviously with known values of ˆPiY  and 

iY
 , and represents, for both directions, the residue ( )i Pr x when in the iteration process. 

As the system is overdetermined we apply the least square technique to find the unknown 
(Nocedal; Wright, 1999). Therefore, the following objective function is defined: 
 

( ) ( ) ( )1
0

2P i P i Pp r rx x xé ù= =ë û  (67)

 
This is expanded in a Taylor series of first order as: 

 

( ) ( ) ( )0 0 0P P P Pp p px x x x@ +  D = , (68)
 

being 0
Px  a previously known trial value. When trying to solve equation (68) one realizes that, as 

( ) 0Pp x ³  one achieves ( ) 0Pp x =  at solution, i.e, the objectivity of equation (68) is lost at the 

solution. Due to this, the least square method uses the assumption ( ) 0Pp x =  to solve this equa-

tion. Therefore, from expression (68) one writes: 
 

( ) ( ) ( )0 2 0 0P P P Pp p px x x x =  +  D =  (69)
 

Results from the last expression the Newton method applied to an minimization problem when 

determining PxD  by: 
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( )

0

2 0

P
P

P

p

p

x
x

x


D = -


 (70)

 

The non-dimensional variable is updated by 0
P P Px x x= + D  until 0| / |P Px xD  respects a given 

tolerance. The terms in equation (70) are calculated by: 
 

( ) ,
ˆ( ) ( ) m P

P P i m P i ip Y Y Yxx f x f xé ù = -ê úë û


  (71)

 
and 
 

( ) 22
, ,

ˆ( ) ( ) ( )m P
P P i m P i i P ip Y Y Y Yxx xx f x f x f xé ù é ù = - +ê ú ê úë û ë û

 
   (72)

 
in which the indexes   and m  imply summation over the nodes from the active path element on 
both directions i . 

With Px  known for a trial ps , implicit in the values of ˆPiY  and iY
 , the global solution process 

described by equations (60) and (61) continues as previously stated. Also, comparing the numerical 
value of the achieved non-dimensional variable to the dimensionless space interval, one decides the 
necessity, or not, of path elements transition. 
 
6 INTERNAL EFFORTS 

Internal efforts are calculated directly from the integral of Cauchy stress σ  over the cross section. 
As the natural stress measure calculated from the Green strain and Saint-Venant-Kirchhoff relation 
is the second Piola-Kirchhoff stress S , it is necessary to apply the well-known relation (Ogden, 
1984): 
 

σ
1

det
= ⋅ ⋅ tA S A

A
, (73)

 
in which A  is the deformation gradient given by equation (13). Equation (73) gives the Cauchy 
stress written according to the initial reference system; then, it is necessary to rotate its components 
to the orientation of the analysed cross section. 

As the cross section area 0A  does not change its geometry, the internal efforts results: 

 

0 0 0 0
11 0 12 0 21 0 11 2 0, and

A A A A
N dA V dA dA M y dAs s s s= = = =ò ò ò ò     , (74)

 

in which σ  is the rotated Cauchy stress for axis 1y  and 2y  along the cross section defined by the 

angle q . 
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7 EXAMPLES 

In this section four examples are presented to demonstrate the precision and possibilities of the 
formulation. For all examples the stop criterion of the solution process was adopted as relative posi-
tion with a tolerance established as 81.0 10-⋅ . 
 
7.1 Driven Mechanism 

An interesting use for sliding joints is the modelling of mechanisms capable of describing some type 
of envisioned geometry, as cutting rocks or metallic sheets for civil or mechanical industries. Such 
mechanisms are commonly described in classical textbooks such as Shigley and Uicker (1981) and 
Norton (2011), among others, where analytical solutions for position analysis are presented. Usually, 
the numerical modelling of this kind of mechanism is done in a dynamic version. However, if the 
intention is to adjust the geometry to be described, a static position analysis should be better suit-
ed, which is done in this example since no inertial forces are considered. Figure 7 depicts the initial 
configuration of a structure with a prismatic joint that connects a 6.0 m arm to a 1.0 m supporting 
bar. A prescribed rotation   is imposed on a crank that is connected to the main arm by a revo-

lute joint. The rotation of the crank imposes a motion on the mechanism as depicted in figure 8. 
 

 

Figure 7: Initial configuration and geometry. 

 

 

Figure 8: Selected configurations and arm free end trajectory. 

 
Considering the restricted degrees of freedom and the boundary condition, this is an isostatic 

non-compliant linkage. Hence, only rigid boy motion takes place since nor strains or stresses are 

1 m 3 m 3 m

1 m

1x

2x
P A
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expected during the imposed quasi-static motion. Therefore, the dimensions and material properties 
of the involved bars may have any value. Although, in order to obtain a numerical solution, it is 
adopted for all elements square cross section with side 0.1 m, elastic modulus 2.0GPa=  and 

shear modulus 1.0GPa= . Seventeen finite elements with cubic approximation are employed for 

discretization. 
Figure 9 shows the arm free end trajectory (cutting geometry), point A, for a complete turn of 

the crank for the simulation and the analytical rigid body motion solution given by the referred 
textbooks. Also, the prismatic joint position, point P, evolution according to the prescribed rotation 
is compared with the analytical solution as shown in figure 10a and 10b for horizontal and vertical 
position, respectively. 
 

 

Figure 9: Arm free end trajectory (point A). 

 

a)  b)  

Figure 10: Prismatic joint position analysis (point P): a) horizontal and b) vertical position. 

 
The motion was divided into 100 steps and less than six iterations are required for convergence 

in each step, see figure 11. Therefore, given the obtained results, one concludes that the presented 
formulation works very well and can be used for general analysis. 
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Figure 11: Evolution of the number of iterations for solution. 

 
7.2 Doubly Bent Beams with Bifurcation 

Since in the last example finite deformations are present only due to rigid body motion, here we 
present an interesting example of bifurcation of equilibrium under traction that shows large dis-
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Figure 12 presents two flexible bars with length 0.25mL =  that are initially aligned and to 

which is imposed a horizontal displacement u . The reactive traction force F  in the right support is 
also measured. Those bars are connected by prismatic joints to a rigid bar long enough to allow 
large deformations on the structure. Here the rigid bar length is adopted as 10.0 m. 
 

 

Figure 12: Initial and deformed configurations of the structure. 
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Figure 13, and right support horizontal displacement, Figure 14, against a non-dimensional traction 
force 2 24 /FL Ip , where I  is the second area inertia moment, shows the efficiency of the formula-

tion when handling geometrical nonlinear problems. 
 

 

Figure 13: Rigid bar rotation angle. 

 

 

Figure 14: Right support horizontal displacement. 

 

 

Figure 15: Evolution of the number of iterations for solution. 
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The horizontal displacement was imposed in 200 steps and the mean number of iterations re-
quired for solution was 13 for each step. Figure 15 presents the evolution of the number of iterations 
for the extreme cases of the initial inclination angle since the other results have a similar pattern. 
Only in the first step of the smallest initial angle several iterations were needed. This is expected 
since the strong deformation of the structure that occurs in this particular step is due to the bifur-
cation of equilibrium. 
 
7.3 Influence Lines of a Bridge - Moving Load 

This example is presented in order to demonstrate the capabilities of the proposed sliding joint for-
mulation to determine influence lines at any cross section for general structures. One important 
information about influence lines and internal efforts envelope for non-linear applications is that the 
superposition principle is not valid and exhaustive calculations are performed. However, when small 
displacements take place the superposition of results is recovered.  

Particularly in this example, the influence lines of internal efforts at the central cross section 
(point P ) of a bridge subjected to a load train is calculated, see figure 16. The vehicle is modelled 
by a frame with 4.0 m length and 1.0 m high. The contact between the vehicle and the bridge is 
modelled by two cylindrical joints allowing their relative movement. A vertical 15 kN load is ap-
plied on the mid-span of the moving frame and a displacement 26.0mu =  (divided into 500 steps) 

is imposed at its left corner. Figure 16 depicts the geometry of the bridge and the vehicle for the 
initial configuration. 

A rectangular cross section with width 0 1.0mb =  and height 0 2.0mh =  is adopted for the 

bridge, and a square cross section with side 0.1ma =  is adopted for the vehicle. The bridge elastic 

and shear modulus adopted are 20.0GPa=  and 10.0GPa= , respectively. For the vehicle, the 

material properties are 10 times greater. Six finite elements with cubic approximation were used to 
model the frame representing the vehicle and 34 elements for the bridge. Since the objective is to 
evaluate internal efforts, two finite elements with 1.0 mm each are placed on both sides of point P  
to avoid the passage of any concentrated load on its domain. This is necessary due to the disconti-
nuity of internal efforts and the continuity of shape functions, inherent to finite elements.  
 

 

Figure 16: Vehicle initial configuration and geometry. 

 
Figure 17 presents the vertical displacement influence line at the bridge mid-span (point P ). 

As expected, the greatest displacement of -0.55 mm occurs when the load train is centralized with 
the bridge beam. Influence lines for the bending moment and shear force are shown in figures 18 
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and 19, respectively. As expected, the maximum efforts occur when one of the cylindrical joints 
(wheel) are placed over point P . 

In the solution process every step needed exactly 10 iterations for convergence. As one can see, 
results are quite accurate and no limits for the bridge vertical geometry or number of wheels are 
present for the proposed formulation, revealing the versatility of the technique for practical applica-
tions. 
 

 

Figure 17: Bridge mid-span displacement influence line. 

 

 

Figure 18: Bridge mid-span bending moment influence line. 

 

 

Figure 19: Bridge mid-span shear force influence line. 
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7.4 Equilibrium Path of a Shallow Arch with Crank 

A shallow arch with its motion enforced by a crank is present in this example. The arch is fixed by 
simple supports that allow rotation but not translations. The arc has a span of 10.0mL =  and 

height of 1.0mh = . The crank is subjected to a rotation of  1.8 rad=  divided into 500 equal 

steps. The connection between the crank and the arch is made by means of a cylindrical joint, as 
depicted in figure 20. In the initial configuration the dimensions indicated in figure 20 are: 

2.4606mH = , 1 1.6178md =  and 2 0.5523md = . 

All structural components are flexible and have square cross section with side 10.0cma = . 

Twelve finite elements with cubic approximation were used to model the arch, which has an elastic 
modulus of 200.0GPa= . The crank is modelled by five finite elements and has elastic modulus 

ten times greater than the arch. The shear modulus for all components is adopted as half of the 
elastic modulus. 
 

 

Figure 20: Structure initial configuration. 

 
The evolution of the reaction moment required to move the fixed end of the crank is presented 

in figure 21a along with some deformed configurations of the system. The evolution of the normal 
force at the crank is presented in figure 21b. The arch mid-span vertical position is depicted in fig-
ure 21c. One can observe from those curves the occurrence of instabilities by limit points, indicated 
by the change of sign for the crank normal force and bending moment. At these positions the arch 
assumes an indifferent equilibrium configuration. 

Furthermore, from the discontinuity of the curves achieved at a rotation of  1.656rad=  it is 

clear the existence of the snap-back phenomenon. However, as it is known, it is not possible to de-
scribe the equilibrium path at snap-back situations using the Newton-Raphson method. The snap-
back is present because the driven unstable shape is not a controlled one. 

In order to describe this portion of the curve it would be necessary the use of an arc-length type 
method for the solution of the system that is beyond the objectives of this study.  

Each step required at most 5 iterations to converge as shown in figure 22. Only in the step that 
the snap-back occurred several iterations were needed. However, it is expected due to the large 
change of configuration of the arch at this point of the analysis. 
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Therefore, from results, the potentialities of the proposed formulation and its consistency on 
evaluating structural behaviour are evident. 
 

 

Figure 21: Equilibrium path: a) reactive bending moment and structure configurations,  

b) crank mid-point normal force, c) arch mid-span vertical position. 

 

 

Figure 22: Evolution of the number of iterations for solution. 
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8 CONCLUSIONS 

The prismatic and cylindrical sliding connections were successfully developed and implemented on a 
total lagrangian position based finite element method. Finite elements are curved of any order and 
connections slides according to space dimensional coordinates, not non-dimensional as presented in 
other works. The formulation is applied to solve four different examples demonstrating its accuracy, 
stability and possibilities of application. Large displacements and rotations are perfectly modelled 
by both the proposed finite element and connections when static applications are carried out. None 
problems are identified when solving the proposed applications revealing the robustness of the tech-
nique. Future developments include the extension of the proposed formulation to dynamic and 3D 
applications. In order to provide an insight for 3D extension of the proposed sliding formulation, the 
reader is referred to the work of Coda and Paccola (2010) that describes the frame unconstrained 
vector positional formulation. Thus, for a 'sliding spherical' joint a totally similar Lagrangian mul-
tiplier procedure as the described here for 2D cylindrical joint can be applied. For 3D cylindrical or 
prismatic joints, the Lagrangian multiplier technique should be associated with a penalty restraint 
among selected unconstrained vectors. 
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