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Novel mixed finite element models for nonlinear analysis of
plates

Abstract

In this study, mixed finite element models of plate bend-

ing are developed to include other variables (e.g., the mem-

brane forces and shear forces) in addition to the general-

ized displacements to investigate their effect on nonlinear

response. Various finite element models are developed us-

ing the weighted-residual statements of suitable equations.

The classical plate theory and the first-order shear deforma-

tion plate theory are used in this study and the von Karman

nonlinear strains are accounted for. Each newly developed

model is examined and compared with displacement finite

element models to evaluate their performance. Numerical re-

sults show that the new mixed models developed herein show

better accuracy than existing displacement based models.
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1 INTRODUCTION

The basic idea of mixed finite element model is to treat stresses or stress resultants as dependent

unknowns in addition to the generalized displacements. Certain mixed finite element models

of plates were developed more than two decades ago by Putcha and Reddy [3, 4] to overcome

the drawbacks of the displacement based models. The mixed finite element models [3, 4] were

developed in the past by including bending moments as independent variables to reduce the

differentiability of the transverse displacement. The mixed models can provide the same level of

accuracy for the bending moments as that for the displacements, whereas in the displacement

based model the bending moments are calculated at points other than nodes in the post-

processing. Thus, the displacement finite element models cannot provide the same level of

accuracy for force-like variables as the mixed finite element models.

The objective of this study is to investigate the performance of finite element models based

on weighted-residual formulations of the equations governing classical and first-order shear

deformation plate theories. In particular, the study investigates merits and demerits of the

newly developed mixed finite element models. The von Karman nonlinear equations [6, 9, 10]
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are used to develop alternative finite element models to the conventional displacement-based

finite element models [5, 7, 8].

In the present study, mixed finite element models are developed to include other variables

(i.e., the membrane forces and shear forces) in addition to the bending moments, and to see

the effect of them on the nonlinear analysis. The effect of including other variables will be

compared with different mixed models to show the advantage of the one type of model over

other models. Two different mixed models based on the classical plate theory and two mixed

models based on the first-order shear deformation plate theory are developed. The performance

of the newly developed finite element models is evaluated by comparing the solutions with those

of the existing displacement finite element models [9, 10].

2 REVIEW OF PLATE THEORIES

Here we derive governing equations of the classical plate theory (CPT) and first-order shear

deformation theory (FSDT) of plates with the von Karman strains. The principle of virtual

displacements is used to derive the equilibrium equations in terms of the stress resultants and

then the stress resultants are expressed in terms of the displacements using elastic constitutive

relations. We only summarize the pertinent equations in this section without presenting the

details of the derivation.

The classical plate theory (CPT) is based on the Kirchhoff hypothesis, which consists

of the following three assumptions: (1) straight lines perpendicular to the mid-surface (i.e.

transverse normals) before deformation, remain straight after deformation; (2) the transverse

normals do not experience elongation (i.e. they are in-extensible); (3) the transverse normals

rotate such that they remain perpendicular to the mid-surface after deformation. On the

other hand, the first-order shear deformation plate theory (FSDT) is based on the assumption

the normals before deformation do not remain normal after deformation. Thus, the major

difference between the kinematics of the CPT and FSDT is that the normality condition of

CPT is relaxed in the FSDT, as illustrated in Fig. 1.

The equations of equilibrium expressed in terms of the stress resultants are the same in

both theories, and they are given by

−∂Nxx

∂x
−
∂Nxy

∂y
= 0,

−
∂Nxy

∂x
−
∂Nyy

∂y
= 0,

∂

∂x
(Nxx

∂w0

∂x
+Nxy

∂w0

∂y
+Qx) +

∂

∂y
(Nxy

∂w0

∂x
+Nyy

∂w0

∂y
+Qy) + q (x) = 0,

Qx − (
∂Mxx

∂x
+
∂Mxy

∂y
) = 0,

Qy − (
∂Mxy

∂x
+
∂Myy

∂y
) = 0. (1)
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 Figure 1 Undeformed and deformed edges in the CPT and FSDT theories (from [10]).

where the stress resultants are defined by
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⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ∫

h
2

−h
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σxx
σyy
σxy

⎫⎪⎪⎪⎬⎪⎪⎪⎭
zdz,

{ Qy

Qx
} = ∫

h
2

−h
2

{ yz

xz
}dz. (2)

Here h denotes the total thickness of the plate and the (x,y)-plane is taken to coincide

with the middle plane of the plate and the z -coordinate is taken perpendicular to the plane of

the plate. The difference in the kinematics of each plate theory is responsible for the difference

in the relationships between the stress resultants and the generalized displacements.

2.1 The Classical Plate Theory

The displacement field of the CPT is given by
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u1 = u (x, y, z) = u0 (x, y) − z (
∂w0 (x, y)

∂x
) ,

u2 = v (x, y, z) = v0 (x, y) − z (
∂w0 (x, y)

∂y
) ,

u3 = w (x, y, z) = w0 (x, y) . (3)

Under the assumption of small strain but moderately large rotation, we can simplify the

components of the nonlinear strain tensor [6, 9, 10]. The components of the Green strain

tensor for this case, with the assumed displacement field in (3), are given by

εxx =
∂u0
∂x
+ 1

2
(∂w0

∂x
)
2

− z ∂
2w0

∂x2
,

εyy =
∂v0
∂y
+ 1

2
(∂w0

∂y
)
2

− z ∂
2w0

∂y2
,

εxy =
1

2
(∂u0
∂y
+ ∂v0
∂x
+ ∂w0

∂x

∂w0

∂y
− 2z ∂

2w0

∂x∂y
) . (4)

We assume that the plate is made of linear elastic material and that the plane stress exists.

Then the plane stress-reduced elastic constitutive equations are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σxx
σyy
σxy

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q66

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

εxx
εyy
2εxy

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (5)

where the components of the elasticity matrix [Q] are given by

Q11 =
E1

1 − ν12ν21
, Q12 =

ν12E2

1 − ν12ν21
= ν21E1

1 − ν12ν21
,

Q22 =
E2

1 − ν12ν21
, Q66 = G12. (6)

Here E1 and E2 denote the elastic moduli along the principal material coordinate directions,

which are assumed to coincide with the plate x and y-directions, ν12 and ν21 are Poisson’s

ratios, and G12 is the shear modulus.

By using the constitutive relations given in Eq. (5) and the definitions of the resultants

given in the (2), we obtain the following plate constitutive relations:
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Nxx = A11 [
∂u0
∂x
+ 1

2
(∂w0

∂x
)
2

] +A12 [
∂v0
∂y
+ 1

2
(∂w0

∂y
)
2

] ,

Nyy = A12 [
∂u0
∂x
+ 1

2
(∂w0

∂x
)
2

] +A22 [
∂v0
∂y
+ 1

2
(∂w0

∂y
)
2

] ,

Nxy = A66 (
∂u0
∂y
+ ∂v0
∂x
+ ∂w0

∂x

∂w0

∂y
) ,

Mxx = −D11 (
∂2w0

∂x2
) −D12 (

∂2w0

∂y2
) ,

Myy = −D12 (
∂2w0

∂x2
) −D22 (

∂2w0

∂y2
) ,

Mxy = −2D66 (
∂2w0

∂x∂y
) , (7)

where the plate extensional and bending stiffnesses are defined as

(Aij ,Dij) = ∫
h/2

−h/2
Qij (1, z)dz. (8)

for i, j= 1, 2, 6 .

2.2 The First Order Shear Deformation Theory

The displacement field of the FSDT is given by

u1 = u (x, y, z) = u0 (x, y) + zϕx(x, y),
u2 = v (x, y, z) = v0 (x, y) + zϕy(x, y),

u3 = w0 (x, y) . (9)

The von Karman nonlinear strains of the FSDT are given by

εxx =
∂u0
∂x
+ 1

2
(∂w0

∂x
)
2

+ z ∂ϕx
∂x

,

εyy =
∂v0
∂y
+ 1

2
(∂w0

∂y
)
2

+ z
∂ϕy

∂y
,

εxy =
1

2
[∂u0
∂y
+ ∂v0
∂x
+ ∂w0

∂x

∂w0

∂y
+ z (∂ϕx

∂y
+
∂ϕy

∂x
)] ,

εxz =
∂w0

∂x
+ ϕx,

εyz =
∂w0

∂y
+ ϕy. (10)
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The plate constitutive equations in the FSDT are given by

Nxx=A11 [
∂u0
∂x
+1
2
(∂w0

∂x
)
2

]+A12 [
∂v0
∂y
+1
2
(∂w0

∂y
)
2

] ,

Nyy=A12 [
∂u0
∂x
+1
2
(∂w0

∂x
)
2

]+A22 [
∂v0
∂y
+1
2
(∂w0

∂y
)
2

] ,

Nxy = A66 (
∂u0
∂y
+ ∂v0
∂x
+ ∂w0

∂x

∂w0

∂y
) ,

Qx =KsA55 (
∂w0

∂x
+ ϕx)

Qy =KsA44 (
∂w0

∂y
+ ϕy)

Mxx =D11 (
∂ϕx
∂x
) +D12 (

∂ϕy

∂y
) ,

Myy =D12 (
∂ϕx
∂x
) +D22 (

∂ϕy

∂y
) ,

Mxy =D66 (
∂ϕx
∂y
+
∂ϕy

∂x
) , (11)

where, Ks (= 5/6) is the shear correction factor. We introduce the effective shear forces as

Vx = Qx + (Nxx
∂w0

∂x
+Nxy

∂w0

∂y
) ,

Vy = Qy + (Nxy
∂w0

∂x
+Nyy

∂w0

∂y
) . (12)

3 FINITE ELEMENT MODELS

3.1 Summary of equations

In this section, we develop various types of the nonlinear mixed finite element models of plates.

In current models, various stress resultants are included as independent nodal variables with

the weighted-residual statements of suitable equations. Two new CPT models and two new

FSDT models are developed. Keeping the forthcoming developments in mind the governing

equations of the two theories are summarized first.
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Governing equations of the CPT

−∂Nxx

∂x
−
∂Nxy

∂y
= 0,

−
∂Nxy

∂x
−
∂Nyy

∂y
= 0,

−∂Vx
∂x
−
∂Vy

∂y
− q (x) = 0,

Vx − (
∂Mxx

∂x
+
∂Mxy

∂y
+Nxx

∂w0

∂x
+Nxy

∂w0

∂y
) = 0,

Vy − (
∂Mxy

∂x
+
∂Myy

∂y
+Nxy

∂w0

∂x
+Nyy

∂w0

∂y
) = 0, (13)

and

A∗11Nxx +A∗12Nyy = [
∂u0
∂x
+ 1

2
(∂w0

∂x
)
2

]

A∗12Nxx +A∗22Nyy = [
∂v0
∂y
+ 1

2
(∂w0

∂y
)
2

] ,

A∗66Nxy = (
∂u0
∂y
+ ∂v0
∂x
+ ∂w0

∂x

∂w0

∂y
) ,

D∗11Mxx +D∗12Myy = −(
∂2w0

∂x2
) ,

D∗12Mxx +D∗22Myy = −(
∂2w0

∂y2
) ,

D∗66Mxy = −2(
∂2w0

∂x∂y
) . (14)

Governing equations of the FSDT

−∂Nxx

∂x
−
∂Nxy

∂y
= 0,

−
∂Nxy

∂x
−
∂Nyy

∂y
= 0,

∂

∂x
(Nxx

∂w0

∂x
+Nxy

∂w0

∂y
+Qx) +

∂

∂y
(Nxy

∂w0

∂x
+Nyy

∂w0

∂y
+Qy) + q (x) = 0,

Qx − (
∂Mxx

∂x
+
∂Mxy

∂y
) = 0,

Qy − (
∂Mxy

∂x
+
∂Myy

∂y
) = 0, (15)
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and

A∗11Nxx +A∗12Nyy = [
∂u0
∂x
+ 1

2
(∂w0

∂x
)
2

] ,

A∗12Nxx +A∗22Nyy = [
∂v0
∂y
+ 1

2
(∂w0

∂y
)
2

] ,

A∗66Nxy = (
∂u0
∂y
+ ∂v0
∂x
+ ∂w0

∂x

∂w0

∂y
) ,

0 = − Qx

KsA55
+ (∂w0

∂x
+ ϕx) ,

0 = −
Qy

KsA44
+ (∂w0

∂y
+ ϕy) ,

D∗11Mxx +D∗12Myy = (
∂ϕx
∂x
) ,

D∗12Mxx +D∗22Myy = (
∂ϕy

∂y
) ,

D∗66Mxy = (
∂ϕx
∂y
+
∂ϕy

∂x
) . (16)

where A∗ij and D∗ij are inverses of the stiffness matrices: A∗ =A−1 and D∗ =D−1.

3.2 Finite Element Model I (CPT)

In this mixed finite model of the CPT, eleven variables, u0, v0, w0, Nxx, Nyy, Nxy, Vx, Vy,

Mxx, Myy and Mxy, are treated as independent variables. The following weighed-residual

statements are used:

∫
Ωe

(∂W 1

∂x
Na

xx +
∂W 1

∂y
Na

xy)dxdy − ∮
Γe

W 1 {nxNxx + nyNxy}ds = 0,

∫
Ωe

(∂W 2

∂x
Na

xy +
∂W 2

∂y
Na

yy)dxdy − ∮
Γe

W 2 {nxNxy + nyNyy}ds = 0,

∫
Ωe

(∂W 3

∂x
V a
x +

∂W 3

∂y
V a
y −W 3q (x))dxdy − ∮

Γe

W 3 {nxVx + nyVy}ds = 0,

∫
Ωe

W 4 {−A∗11Na
xx −A∗12Na

yy + [
∂ua0
∂x
+ 1

2
(∂w

a
0

∂x
)
2

]}dxdy = 0,

∫
Ωe

W 5 {−A∗12Na
xx −A∗22Na

yy + [
∂va0
∂y
+ 1

2
(∂w

a
0

∂y
)
2

]}dxdy = 0,

∫
Ωe

W 6 [−A∗66Na
xy + (

∂ua0
∂y
+ ∂v

a
0

∂x
+ 1

2

∂wa
0

∂x

∂wa
0

∂y
+ 1

2

∂wa
0

∂x

∂wa
0

∂y
)]dxdy = 0,
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∫
Ωe

W 7 (−V a
x +

∂Ma
xx

∂x
+
∂Ma

xy

∂y
+Na

xx

∂wa
0

∂x
+Nxy

∂wa
0

∂y
)dxdy = 0,

∫
Ωe

W 8 (−V a
y +

∂Ma
xy

∂x
+
∂Ma

yy

∂y
+Na

xy

∂wa
0

∂x
+Na

yy

∂wa
0

∂y
)dxdy = 0,

∫
Ωe

(−D∗11W 9M
a
xx −D∗12W 9M

a
yy +

∂W 9

∂x

∂wa
0

∂x
)dxdy − ∮

Γe

W 9 (nx
∂w0

∂x
)ds = 0,

∫
Ωe

(−D∗12W 10M
a
xx −D∗22W 10M

a
yy +

∂W 10

∂y

∂wa
0

∂y
)dxdy − ∮

Γe

W 10 (ny
∂w0

∂y
)ds = 0,

∫
Ωe

(−D∗66W 11M
a
xy +

∂W 11

∂x

∂wa
0

∂y
+ ∂W 11

∂y

∂wa
0

∂x
)dxdy

−∮
Γe

W 11 (nx
∂w0

∂y
+ ny

∂w0

∂x
)ds = 0. (17)

where, Γe is the boundary of a typical element region Ωe, variables with a superscript ‘a’ denote

the approximated variables, and nx and ny denote the x and y components (i.e. direction

cosines) of the unit normal vector on the boundary. The primary variables and the secondary

variable of the formulation are as follows.

Primary variables Secondary variables

u0 nxNxx + nyNxy

v0 nxNxy + nyNyy

w0 nxVx + nyVy
Mxx nx

∂w0

∂x

Myy ny
∂w0

∂y

Mxy nx
∂w0

∂y
+ ny

∂w0

∂x

With the weighted residual statements in (17), we can develop the finite element model,

denoted as Model I, of the CPT by approximating the 11 variables with known interpolation

functions and unknown nodal values. The Lagrange interpolation functions are admissible for

all variables (i.e., C0 continuity of all variables is required). We take

u0 ≅ ua0 =
m

∑
j=1

ψu0

j (x, y)uj , W 1 = ψu0

i (x, y) ,

v0 ≅ va0 =
m

∑
j=1

ψv0

j (x, y)vj , W 2 = ψv0
i (x, y) ,

w0 ≅ wa
0 =

n

∑
j=1

ψw0

j (x, y)wj , W 3 = ψw0

i (x, y) ,

Nxx ≅ Na
xx =

p

∑
j=1

ψNxx

j (x, y)N1
j , W 4 = ψNxx

i (x, y) ,
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Nyy ≅ Na
yy =

p

∑
j=1

ψ
Nyy

j (x, y)N2
j , W 5 = ψ

Nyy

i (x, y) ,

Nxy ≅ Na
xy =

p

∑
j=1

ψ
Nxy

j (x, y)N3
j , W 6 = ψ

Nxy

i (x, y) ,

Vx ≅ V a
x =

q

∑
j=1

ψVx

j (x, y)V
1
j , W 7 = ψVx

i (x, y) ,

Vy ≅ V a
y =

q

∑
j=1

ψ
Vy

j (x, y)V
2
j , W 8 = ψ

Vy

i (x, y) ,

Mxx ≅Ma
xx =

r

∑
j=1

ψMxx

j (x, y)M1
j , W 9 = ψMxx

i (x, y) ,

Myy ≅Ma
yy =

r

∑
j=1

ψ
Myy

j (x, y)M2
j , W 10 = ψ

Myy

i (x, y) ,

Mxy ≅Ma
xy =

r

∑
j=1

ψ
Mxy

j (x, y)M3
j , W 11 = ψ

Mxy

i (x, y) . (18)

By substituting the expressions from (18) into the weighted-residual statements of (17),

we obtain the finite element equations

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K( 1)( 1)] ⋯ [K( 1)( 6)]
⋮ ⋱ ⋮

[K( 6)( 1)] ⋯ [K( 6)( 6)]

⋯ [K( 1)( 11)]
⋰ ⋮
⋯ [K( 6)( 11)]

⋮ ⋰ ⋮
[K(11)(1)] ⋯ [K(11)(6)]

⋱ ⋮
⋯ [K(11)(11)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{uj}
⋮
{N3

j}
⋮

{M3
j}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{F ( 1)}
⋮

{F ( 6)}
⋮

{F (11)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (19)

where

[K14] = ∫
Ωe

{
∂ψu0

i

∂x
ψNxx

j }dxdy, [K16] = ∫
Ωe

{
∂ψu0

i

∂y
ψ
Nxy

j }dxdy,

[K25] = ∫
Ωe

{
∂ψv0

i

∂y
ψ
Nyy

j }dxdy, [K26] = ∫
Ωe

{
∂ψv0

i

∂x
ψ
Nxy

j }dxdy,

[K37] = ∫
Ωe

{
∂ψw0

i

∂x
ψVx

j }dxdy, [K38] = ∫
Ωe

{
∂ψw0

i

∂y
ψ
Vy

j }dxdy,

[K41] = ∫
Ωe

{ψNxx

i

∂ψu0

j

∂x
}dxdy, [K43] = ∫

Ωe

{1
2
(∂w

a
0

∂x
)ψNxx

i

∂ψw0

j

∂x
}dxdy

[K44] = ∫
Ωe

{−A∗11ψ
Nxx

i ψNxx

j }dxdy, [K45] = ∫
Ωe

{−A∗12ψ
Nxx

i ψ
Nyy

j }dxdy,

[K52] = ∫
Ωe

{ψNyy

i

∂ψv0
j

∂y
}dxdy, [K53] = ∫

Ωe

{1
2
(∂w

a
0

∂y
)ψNyy

i

∂ψw0

j

∂y
}dxdy,
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[K54] = ∫
Ωe

{−A∗12ψ
Nyy

i ψNxx

j }dxdy, [K55] = ∫
Ωe

{−A∗22ψ
Nyy

i ψ
Nyy

j }dxdy,

[K61] = ∫
Ωe

{ψNxy

i

∂ψu0

j

∂y
}dxdy, [K62] = ∫

Ωe

{ψNxy

i

∂ψv0

j

∂x
}dxdy,

[K66] = ∫
Ωe

{−A∗66ψ
Nxy

i ψ
Nxy

j }dxdy,

[K63] = ∫
Ωe

{1
2
[(∂w

a
0

∂x
)ψNxy

i

∂ψw
j

∂y
+ (∂w

a
0

∂y
)ψNxy

i

∂ψw
j

∂x
]}dxdy,

[K74] = ∫
Ωe

{(∂w
a
0

∂x
)ψVx

i ψNxx

j }dxdy, [K76] = ∫
Ωe

{(∂w
a
0

∂y
)ψVx

i ψ
Nxy

j }dxdy,

[K77] = ∫
Ωe

{−ψVx

i ψVx

j }dxdy, [K79] = ∫
Ωe

⎧⎪⎪⎨⎪⎪⎩
ψVx

i

∂ψMxx

j

∂x

⎫⎪⎪⎬⎪⎪⎭
dxdy,

[K7(11)] = ∫
Ωe

⎧⎪⎪⎨⎪⎪⎩
ψVx

i

∂ψ
Mxy

j

∂y

⎫⎪⎪⎬⎪⎪⎭
dxdy,

[K85] = ∫
Ωe

{(∂w
a
0

∂y
)ψVy

i ψ
Nyy

j }dxdy, [K86] = ∫
Ωe

{(∂w
a
0

∂x
)ψVy

i ψ
Nxy

j }dxdy,

[K88] = ∫
Ωe

{−ψVy

i ψ
Vy

j }dxdy, [K8(10)] = ∫
Ωe

⎧⎪⎪⎨⎪⎪⎩
ψ
Vy

i

∂ψ
Myy

j

∂y

⎫⎪⎪⎬⎪⎪⎭
dxdy,

[K8(11)] = ∫
Ωe

⎧⎪⎪⎨⎪⎪⎩
ψ
Vy

i

∂ψ
Mxy

j

∂x

⎫⎪⎪⎬⎪⎪⎭
dxdy,

[K93] = ∫
Ωe

{
∂ψMxx

i

∂x

∂ψw0

j

∂x
}dxdy, [K99] = ∫

Ωe

{−D∗11ψ
Mxx

i ψMxx

j }dxdy,

[K9(10)] = ∫
Ωe

{−D∗12ψ
Mxx

i ψ
Myy

j }dxdy

[K(10)3] = ∫
Ωe

{
∂ψMxx

i

∂y

∂ψw0

j

∂y
}dxdy, [K(10)9] = ∫

Ωe

{−D∗12ψ
Myy

i ψMxx

j }dxdy,

[K(10)(10)] = ∫
Ωe

{−D∗22ψ
Myy

i ψ
Myy

j }dxdy,

[K(11)3] = ∫
Ωe

⎧⎪⎪⎨⎪⎪⎩

∂ψ
Mxy

i

∂x

∂ψw0

j

∂y
+
∂ψ

Mxy

i

∂y

∂ψw0

j

∂x

⎫⎪⎪⎬⎪⎪⎭
dxdy,

[K(11)(11)] = ∫
Ωe

{−D∗66ψ
Mxy

i ψ
Mxy

j }dxdy.

{F 1} = ∮
Γe

ψu
i {nxNxx + nyNxy}ds , {F 2} = ∮

Γe

ψv
i {nxNxy + nyNyy}ds ,

{F 3} = ∫
Ωe

{ψw
i q (x)}dxdy + ∮

Γe

ψw
i Qnds {F 9} = ∮

Γe

ψMxx

i (∂w0

∂x
nx)ds ,

Latin American Journal of Solids and Structures 7(2010) 201 – 226



212 W. Kim et al / Novel mixed finite element models for nonlinear analysis of plates

{F (10)} = ∮
Γe

ψ
Myy

i (∂w0

∂y
ny)ds,

{F (11)} = ∮
Γe

{ψMxy

i (∂w0

∂y
nx +

∂w0

∂x
ny)}ds. (20)

The rest of the coefficients matrices and force vectors are zero.

3.3 Finite Element Model II (CPT)

The shear forces Vx and Vy can be eliminated by substituting the forth and the fifth equilibrium

equations into the third equilibrium equation of the CPT. The following 9 weighted-residual

statements are used:

∫
Ωe

(∂W 1

∂x
Na

xx +
∂W 1

∂y
Na

xy)dxdy − ∮
Γe

W 1 {nxNxx + nyNxy}ds = 0,

∫
Ωe

(∂W 2

∂x
Na

xy +
∂W 2

∂y
Na

yy)dxdy − ∮
Γe

W 2 {nxNxy + nyNyy}ds = 0,

∫
Ωe

{∂W 3

∂x
(∂M

a
xx

∂x
+
∂Ma

xy

∂y
+Na

xx

∂wa
0

∂x
+Nxy

∂wa
0

∂y
)

+∂W 3

∂y
(
∂Ma

xy

∂x
+
∂Ma

yy

∂y
+Na

xy

∂wa
0

∂x
+Na

yy

∂wa
0

∂y
) −W 3q (x)}dxdy

− ∮
Γe

W 3 {nxVx + nyVy}ds = 0,

∫
Ωe

W 4 {−A∗11Na
xx −A∗12Na

yy + [
∂ua0
∂x
+ 1

2
(∂w

a
0

∂x
)
2

]}dxdy = 0

∫
Ωe

W 5 {−A∗12Na
xx −A∗22Na

yy + [
∂va0
∂y
+ 1

2
(∂w

a
0

∂y
)
2

]}dxdy = 0,

∫
Ωe

W 6 [−A∗66Na
xy + (

∂ua0
∂y
+ ∂v

a
0

∂x
+ 1

2

∂wa
0

∂x

∂wa
0

∂y
+ 1

2

∂wa
0

∂x

∂wa
0

∂y
)]dxdy = 0,

∫
Ωe

(−D∗11W 7M
a
xx −D∗12W 7M

a
yy +

∂W 7

∂x

∂wa
0

∂x
)dxdy − ∮

Γe

W 7 (nx
∂w0

∂x
)ds = 0,

∫
Ωe

(−D∗12W 8M
a
xx −D∗22W 8M

a
yy +

∂W 8

∂y

∂wa
0

∂y
)dxdy − ∮

Γe

W 8 (ny
∂w0

∂y
)ds = 0,

∫
Ωe

(−D∗66W 9M
a
xy +

∂W 9

∂x

∂wa
0

∂y
+ ∂W 9

∂y

∂wa
0

∂x
)dxdy − ∮

Γe

W 9 (nx
∂w0

∂y
+ ny

∂w0

∂x
)ds = 0, (21)

All 9 variables are approximated with the Lagrange type interpolation functions, and the

finite element model is of the form
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K( 11)] ⋯ [K( 14)]
⋮ ⋱ ⋮

[K( 41)] ⋯ [K(44)]

⋯ [K( 19)]
⋰ ⋮
⋯ [K( 69)]

⋮ ⋰ ⋮
[K(91)] ⋯ [K(96)]

⋱ ⋮
⋯ [K(99)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{uj}
⋮
{N1

j }
⋮

{M3
j }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{F( 1)}
⋮

{F( 4)}
⋮

{F(9)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (22)

where the coefficients can be easily identified from the weighted-residual statements in (20).

3.4 Finite Element Model III (FSDT)

Model III is based on the following 13 weighed-residual statements of the FSDT:

∫
Ωe

(∂W 1

∂x
Na

xx +
∂W 1

∂y
Na

xy)dxdy − ∮
Γe

W 1 (nxNxx + nyNxy)ds = 0,

∫
Ωe

(∂W 2

∂x
Na

xy +
∂W 2

∂y
Na

yy)dxdy − ∮
Γe

W 2 (nxNxy + nyNyy)ds = 0,

∫
Ωe

[∂W 3

∂x
Qa

x +
∂W 3

∂y
Qa

y +
∂W 3

∂x
(Na

xx

∂wa
0

∂x
+Na

xy

∂wa
0

∂y
) + ∂W 3

∂y
(Na

xy

∂wa
0

∂x
+Na

yy

∂wa
0

∂y
)

− W 3q (x)]dxdy

+ ∮
Γe

W 3 [(Qx +Nxx
∂w0

∂x
+Nxy

∂w0

∂y
)nx + (Qy +Nxy

∂w0

∂x
+Nyy

∂w0

∂y
)ny]ds = 0,

∫
Ωe

(∂W 4

∂x
Ma

xx +
∂W 4

∂y
Ma

xy +W 4Q
a
x)dxdy + ∮

Γe

W 4 (Mxxnx +Mxyny)ds = 0,

∫
Ωe

(∂W 5

∂x
Ma

xy +
∂W 5

∂y
Ma

yy +W 5Q
a
y)dxdy + ∮

Γe

W 5 (Mxynx +Myyny)ds = 0,

∫
Ωe

W 6 {−A∗11Na
xx −A∗12Na

yy + [
∂ua0
∂x
+ 1

2
(∂w

a
0

∂x
)
2

]}dxdy = 0,

∫
Ωe

W 7 {−A∗12Na
xx −A∗22Na

yy + [
∂va0
∂y
+ 1

2
(∂w

a
0

∂y
)
2

]}dxdy = 0,

∫
Ωe

W 8 [−A∗66Na
xy + (

∂ua0
∂y
+ ∂v

a
0

∂x
+ 1

2

∂wa
0

∂x

∂wa
0

∂y
+ 1

2

∂wa
0

∂x

∂wa
0

∂y
)]dxdy = 0,

∫
Ωe

W 9 (−
Qa

x

KsA55
+ ∂w

a
0

∂x
+ ϕax)dxdy = 0,
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∫
Ωe

W 10 (−
Qa

y

KsA44
+ ∂w

a
0

∂y
+ ϕay)dxdy = 0,

∫
Ωe

W 11 (−D∗11Ma
xx −D∗12Ma

yy +
partialϕax

∂x
)dxdy = 0,

∫
Ωe

W 12 (−D∗12Ma
xx −D∗22Ma

yy +
partialϕay

∂y
)dxdy = 0,

∫
Ωe

W 13 (−D∗66Ma
xy +

∂ϕax
∂y
+
∂ϕay

∂x
)dxdy = 0. (23)

where Ωe and Γe denote the element region and its boundary, respectively. The primary

variables and the secondary variable of the Model III can be specified as follows:

Primary variable Secondary variable

u0 nxNxx + nyNxy

v0 nxNxy + nyNyy

w0 Vxnx + Vyny

ϕx Mxxnx +Mxyny

ϕy Mxynx +Myyny

The finite element model is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K( 1)( 1)] ⋯ [K( 1)( 7)]
⋮ ⋱ ⋮

[K( 7)( 1)] ⋯

⋯ [K( 1)( 13)]
⋰ ⋮
⋯ [K( 7)( 13)]

⋮ ⋰ ⋮
[K(13)(1)] ⋯ [K(13)(6)]

⋱ ⋮
⋯ [K(13)(13)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{uj}
⋮
{N2

j }
⋮

{M3
j }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{F( 1)}
⋮

{F( 7)}
⋮

{F(13)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (24)

The coefficients can be identified with the help of the weighted-residual statements in (23).

3.5 Finite Element Model IV (FSDT)

The in-plane forces (Nxx, Nxyand Nyy) can be eliminated by substituting from the first two

equilibrium equations into the remaining equations of equilibrium. The weighted-residual

statements of the resulting 10 equations are summarized below:

∫
Ωe

{∂W 1

∂x
[A11 (

∂ua0
∂x
+ 1

2
(∂w

a
0

∂x
)
2

) +A12 (
∂va0
∂y
+ 1

2
(∂w

a
0

∂y
)
2

)]

+∂W 1

∂y
[A66 (

∂ua0
∂y
+ ∂v

a
0

∂x
+ ∂w

a
0

∂x

∂wa
0

∂y
)]}dxdy − ∮

Γe

W 1 (nxNxx + nyNxy)ds = 0,

∫
Ωe

{∂W 2

∂y
[A12 (

∂ua0
∂x
+ 1

2
(∂w

a
0

∂x
)
2

) +A22 (
∂va0
∂y
+ 1

2
(∂w

a
0

∂y
)
2

)]

+∂W 2

∂x
[A66 (

∂ua0
∂y
+ ∂v

a
0

∂x
+ ∂w

a
0

∂x

∂wa
0

∂y
)]}dxdy − ∮

Γe

W 2 (nxNxy + nyNyy)ds = 0,
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∫
Ωe

[∂W 3

∂x
Qa

x +
∂W 3

∂y
Qa

y +
∂W 3

∂x

∂wa
0

∂x
[A11 (

∂ua0
∂x
+ 1

2
(∂w

a
0

∂x
)
2

) +A12 (
∂va0
∂y
+ 1

2
(∂w

a
0

∂y
)
2

)]

+ ∂W 3

∂x

∂wa
0

∂y
[A66 (

∂ua0
∂y
+ ∂v

a
0

∂x
+ ∂w

a
0

∂x

∂wa
0

∂y
)]

+ ∂W 3

∂y

∂wa
0

∂x
[A66 (

∂ua0
∂y
+ ∂v

a
0

∂x
+ ∂w

a
0

∂x

∂wa
0

∂y
)]

+ ∂W 3

∂y

∂wa
0

∂y
[A12 (

∂ua0
∂x
+ 1

2
(∂w

a
0

∂x
)
2

) +A22 (
∂va0
∂y
+ 1

2
(∂w

a
0

∂y
)
2

)]

−W 3q (x)]dxdy

+ ∮
Γe

W 3 [(Qx +Nxx
∂w0

∂x
+Nxy

∂w0

∂y
)nx + (Qy +Nxy

∂w0

∂x
+Nyy

∂w0

∂y
)ny]ds = 0,

∫
Ωe

(∂W 4

∂x
Ma

xx +
∂W 4

∂y
Ma

xy +W 4Q
a
x)dxdy + ∮

Γe

W 4 (Mxxnx +Mxyny)ds = 0,

∫
Ωe

(∂W 5

∂x
Ma

xy +
∂W 5

∂y
Ma

yy +W 5Q
a
y)dxdy + ∮

Γe

W 5 (Mxynx +Myyny)ds = 0,

∫
Ωe

W 6 (−
Qa

x

KsA55
+ ∂w

a
0

∂x
+ ϕax)dxdy = 0,

∫
Ωe

W 7 (−
Qa

y

KsA44
+ ∂w

a
0

∂y
+ ϕay)dxdy = 0,

∫
Ωe

W 8 (−D∗11Ma
xx −D∗12Ma

yy +
∂ϕax
∂x
)dxdy = 0,

∫
Ωe

W 9 (−D∗12Ma
xx −D∗22Ma

yy +
∂ϕay

∂y
)dxdy = 0,

∫
Ωe

W 10 (−D∗66Ma
xy +

∂ϕax
∂y
+
∂ϕay

∂x
)dxdy = 0. (25)

The primary and the secondary variables of Model IV are the same as in Model III. The

finite element model is of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K( 1)( 1)] ⋯ [K( 1)( 7)]
⋮ ⋱ ⋮

[K( 5)( 1)] ⋯

⋯ [K( 1)( 10)]
⋰ ⋮
⋯ [K( 5)( 10)]

⋮ ⋰ ⋮
[K(10)(1)] ⋯ [K(10)(6)]

⋱ ⋮
⋯ [K(10)(10)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{uj}
⋮
{p2j}
⋮

{M3
j }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{F( 1)}
⋮

{F( 5)}
⋮

{F(10)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (26)

where the nonzero coefficients are
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[K11] = ∫
Ωe

{A11
∂ψu0

i

∂x

∂ψu0

j

∂x
+A66

∂ψu0

i

∂y

∂ψu0

j

∂y
}dxdy

[K12] = ∫
Ωe

{A12
∂ψu0

i

∂x

∂ψv0
j

∂y
+A66

∂ψu0

i

∂y

∂ψv0
j

∂x
}dxdy

[K13] = 1

2
∫
Ωe

{
∂ψu0

i

∂x
(A11

∂wa
0

∂x

∂ψw0

j

∂x
+A12

∂wa
0

∂y

∂ψw0

j

∂y
) +A66

∂ψu0

i

∂y
(∂w

a
0

∂x

∂ψw0

j

∂y
+ ∂w

a
0

∂y

∂ψw0

j

∂x
)}dxdy

[K22] = ∫
Ωe

{A22
∂ψv0

i

∂y

∂ψv0
j

∂y
+A66

∂ψv0

i

∂x

∂ψv0

j

∂x
}dxdy

[K21] = ∫
Ωe

{A12
∂ψv0

i

∂y

∂ψu0

j

∂x
+A66

∂ψv0

i

∂x

∂ψu0

j

∂y
}dxdy

[K23] = 1

2
∫
Ωe

{
∂ψv0

i

∂y
(A22

∂wa
0

∂y

∂ψw0

j

∂y
+A12

∂wa
0

∂x

∂ψw0

j

∂x
) +A66

∂ψv0

i

∂x
(∂w

a
0

∂x

∂ψw0

j

∂y
+ ∂w

a
0

∂y

∂ψw0

j

∂x
)}dxdy

[K31] = ∫
Ωe

{
∂ψw0

i

∂x
(A11

∂wa
0

∂x

∂ψu0

j

∂x
+A66

∂wa
0

∂y

∂ψu0

j

∂y
) +

∂ψw0

i

∂y
(A66

∂wa
0

∂x

∂ψu0

j

∂y
+A12

∂wa
0

∂y

∂ψu0
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2
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∂wa

0

∂x
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∂wa
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∂y
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j

∂x
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[K36] = ∫
Ωe

{
∂ψw0

i

∂x
ψQx

j }dxdy [K37] = ∫
Ωe

{
∂ψw0

i

∂y
ψ
Qy

j }dxdy

aaa [K66] = ∫
Ωe

⎧⎪⎪⎨⎪⎪⎩
−
ψQx

i ψQx

j

(KsA55)
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Ωe

{ψQx

i

∂ψw0

j

∂x
}dxdy
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Ωe

{ψQx

i ψϕx

j }dxdy [K75] = ∫
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{ψQy

i ψ
ϕy

j }dxdy
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⎧⎪⎪⎨⎪⎪⎩
−
ψ
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i ψ
Qy

j
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⎫⎪⎪⎬⎪⎪⎭
dxdy [K73] = ∫

Ωe

{ψQy

i

∂ψw0

j

∂y
}dxdy

[K88] = ∫
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i ψ
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j }dxdy
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∂ψϕx

j
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j

∂y

⎫⎪⎪⎬⎪⎪⎭
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{F 1} = ∮
Γe

ψu
i {nxNxx + nyNxy}ds, {F 2} = ∮

Γe

ψv0
i {nxNxy + nyNyy}ds,

{F 3} = ∫
Ωe

{ψw0

i q (x)}dxdy + ∮
Γe

ψw0

i [(Vx)nx + (Vy)ny]ds,

{F 4} = ∮
Γe

ψϕx

i {Mxxnx +Mxyny}ds, {F 5} = ∮
Γe

ψ
ϕy

i {Mxynx +Myyny}ds, (27)

4 NUMERICAL RESULTS

In this section we will discuss the numerical results obtained with the finite element models

developed in Section 3. Comparisons of various models are presented with linear and nonlinear

solutions available in the literature. The Newton’s iterative technique is used to solve the non-

linear equations. The tangent stiffness coefficients are computed from the stiffness coefficients

(see Reddy [6] for details).

We consider a square plate with the following material properties:

a = b = 10 in, h = 1 in, E = 7.8 × 106 psi,

ν = 0.3 (or 0.25 for linear analysis) (28)

Due to the biaxial symmetry of the geometry, boundary conditions, and applied load, only

a quadrant of the plate was used as the computational domain. Three types of boundary

conditions are considered with common boundary conditions along the symmetry lines of the

quadrant. The specific boundary conditions are shown in Fig. 2.

 

 

 
  Figure 2 Boundary and symmetry conditions in a quadrant of the square plate.
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4.1 Linear analysis

To verify the accuracy of the newly developed plate bending models, solutions obtained with

the new models are compared with those of the existing models [1, 2, 6] and analytic solutions.

First, the linear solutions of the mixed CPT models will be discussed by comparing the results

obtained with displacement based model [4, 6].

The comparison of the results of the various models under the simple support I (SS1)

and clamped (CC) boundary conditions are given in Tables 1 and 2. For the simple support

boundary condition (SS1), Model II showed best accuracy for the center vertical deflection,

while Model I provided better accuracy for the center bending moment, as shown in Table 1.

For the clamped (CC) boundary condition, the Model I showed best accuracy both for the

center vertical deflection and the center bending moment as shown in Table 2. By including

the shear forces (i.e., Vx and Vy) as nodal values in Model I, more accurate center bending

moment and center vertical deflection were obtained.

Table 1 Comparison of the linear solution of various CPT Models, isotropic ( ν = 0.3 ) square plate, simple
supported (SS1).

Mesh
size

Current Models Mixed
Reddy
[4]

Mixed
Herrmann

[2]

Hybrid
Allman

[1]

Compatible
cubic

displacement
Model [6]Model I Model II

Liner
(4-node)

Center deflection (* equivalent quadratic),
w = w ×D11 × 102/(q0 × a4) (Exact solution, 0.4062 [4])

1×1 0.4613( * - ) 0.4613( - ) 0.4613 0.9018 0.347 0.220
2×2 0.4383(0.4154) 0.4237(0.4154) 0.4237 0.5127 0.392 0.371
4×4 0.4135(0.4067) 0.4106(0.4067) 0.4106 0.4316 0.403 0.392
6×6 0.4094(0.4063) 0.4082(0.4063) 0.4082 0.4172 - -
8×8 0.4079(0.4063) 0.4073(0.4063) - - - -

Liner
(4-node)

Center bending moment (equivalent quadratic),
M =M × 10/(q0 × a2) (Exact solution, 0.479 [4])

1×1 0.7196( - ) 0.7196( - ) 0.7196 0.328 0.604 -
2×2 0.5029(0.4906) 0.5246(0.4096) 0.5246 0.446 0.515 -
4×4 0.4850(0.4797) 0.4892(0.4796) 0.4892 0.471 0.487 -
6×6 0.4816(0.4790) 0.4834(0.4790) 0.4834 0.476 - -
8×8 0.4804(0.4788) 0.4814(0.4789) - - - -

Current CPT mixed models were compared with the displacement based model. For the

CPT displacement based model, non-conforming and the conforming [6] elements should be

used because of the continuity requirement of the weak formulation. Current mixed models

provided better accuracy when the compatible nine-node quadratic element was used. Even the

four-node liner element also provided acceptable accuracy compared with the non-conforming

displacement based model. The stresses obtained from the current mixed models showed better

accuracy, because the stresses can be directly computed by using bending moment or shear

resultant obtained at a node.
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Table 2 Comparison of the linear solution of various CPT Models, isotropic ( ν = 0. 3) square plate, clamped
(CC).

Mesh
size

Current Models Mixed
Reddy
[4]

Mixed
Herrmann

[2]

Hybrid
Allman

[1]

Compatible
cubic

displacement
Model [6]Model I Model II

Liner
(4-node)

Center deflection (* equivalent quadratic),
w = w ×D11 × 102/(q0 × a4) (Exact solution, 0.1265 [4])

1×1 0.1576(* - ) 1.6644( - ) 1.6644 0.7440 0.087 0.026
2×2 0.1502(0.1512) 0.1528(0.1512) 0.1528 0.2854 0.132 0.120
4×4 0.1310(0.1279) 0.1339(0.1278) 0.1339 0.1696 0.129 0.121
6×6 0.1284(0.1268) 0.1299(0.1268) 0.1299 0.1463 - -
8×8 0.1265(0.1265) 0.1270(0.1266) - - - -

Liner
(4-node)

Center bending moment (equivalent quadratic),
M =M × 10/(q0 × a2) (Exact 0.230 [4])

1×1 0.4918( - ) 0.5193( - ) 0.5193 0.208 0.344 -
2×2 0.2627(0.2552) 0.3165(0.2552) 0.3165 0.242 0.314 -
4×4 0.2354(0.2312) 0.2478(0.2310) 0.2478 0.235 0.250 -
6×6 0.2318(0.2295) 0.2374(0.2295) 0.2374 0.232 - -
8×8 0.2286(0.2290) 0.2310(0.2291) - - - -

Next, the numerical results of the Model III and IV are compared with the results of

Reddy’s mixed model [4] in Table 3. The mixed model developed by Reddy [4] included

bending moments as independent nodal value in the finite element model, while current Model

III and IV included vertical shear resultants (i.e., Qx and Qy), as independent nodal value.

Note that the difference between Model III and VI comes from the presence or absence of

membrane forces (i.e., Nxx, Nyy and Nxy) in the finite element models. Thus, the solution of

the linear bending of each model is essentially the same as shown in Table 3.

Table 3 Comparison of the current mixed FSDT linear solution with that of the other mixed model (Reddy
[4]), with isotropic (ν = 0.25, Ks = 5/6) square plate, simple supported (SS1).

Mesh
size

Current Models
Mixed
Reddy
[4]

Current Models
Mixed
Reddy
[4]Model(III) Model(IV) Model III Model IV

Liner
(4-node)

Center deflection, Center bending moment
w = wD11 × 102/(q0a4), M =M × 10/(q0a2),

(Exact 0.427 [5]) (Exact 0.479[5])
1×1 0.4174(* - ) 0.4174( - ) 0.4264 0.6094( - ) 0.6094( - ) 0.6094
2×2 0.4293(0.4345) 0.4293(0.4345) 0.4321 0.5060(0.4779) 0.5060(0.4779) 0.5070
4×4 0.4280(0.4277) 0.4280(0.4277) 0.4285 0.4849(0.4779) 0.4849(0.4779) 0.4850
8×8 0.4275(0.4273) 0.4275(0.4273) - 0.4803(0.4785) 0.4803(0.4785) -
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4.2 Nonlinear analysis

A total of 12 load steps were used with the following values of the load parameter

P = q0a4/ (E22h
4):

P = { 6.25, 12.5, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 } (29)

A tolerance ϵ = 0.01 was used for convergence in the Newton’s iteration scheme. Model I

and II was compared with the CPT displacement base model to see its non-linear behavior.

The center defection, w0, of the newly developed models are presented in Table 4. In every load

step, the converged solution was obtained within 4 iterations. Results of full integration and

the reduced integration are presented in Table 4. In both models both membrane and shear

locking are not severe, as judged against the published solutions, and the effect of reduced

integration is not significant.

Table 4 Effect of reduced integration in Model I and II.

P = q0a
4

(E22h4)

Center deflection, w, CPT-(SS1)

MODEL I MODEL II

4x4-Linear 2x2-Quadratic 4x4-Linear 2x2-Quadratic

FI RI FI RI FI RI FI RI

6.25 0.2736 0.2737 0.2691 0.2691 0.2718 0.2719 0.2691 0.2691

12.50 0.5090 0.5096 0.5005 0.5007 0.5059 0.5064 0.5005 0.5007

25.00 0.8608 0.8629 0.8468 0.8475 0.8565 0.8579 0.8470 0.8476

50.00 1.3119 1.3163 1.2923 1.2943 1.3061 1.3093 1.2932 1.2947

75.00 1.6185 1.6244 1.5960 1.5997 1.6114 1.6157 1.5977 1.6004

100.00 1.8572 1.8641 1.8328 1.8383 1.8488 1.8539 1.8357 1.8394

125.00 2.0559 2.0637 2.0302 2.0377 2.0462 2.0521 2.0339 2.0391

150.00 2.2280 2.2365 2.2011 2.2107 2.2171 2.2235 2.2059 2.2125

175.00 2.3811 2.3900 2.3529 2.3649 2.3689 2.3757 2.3588 2.3669

200.00 2.5196 2.5289 2.4901 2.5045 2.5062 2.5133 2.4971 2.5068

225.00 2.6465 2.6562 2.6158 2.6327 2.6320 2.6394 2.6240 2.6352

250.00 2.7641 2.7741 2.7321 2.7515 2.7484 2.7561 2.7414 2.7541

The nonlinear load vs. deflection and load vs. stress are presented in Fig. 3. For the SS3

boundary condition, both vertical deflection and stresses of Models I and II showed very close

agreement with the displacement finite element model. The normal stresses and the membrane

stresses were computed at points (0,0,0.5h) and (0,0,0) , respectively. The 9-node quadratic

element mesh showed closer agreement with the displacement FSDT model.

The nonlinear center deflection, normal and membrane stresses of Models I and II are

compared with the results of the displacement model. The results are presented in Table 5.

A 4×4 mesh of nine-node element showed the closest agreement with the displacement FSDT
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Figure 3 Plots of the membrane and normal stress of Model I, II and CPT displacement model under SS3
boundary condition.

model, as shown in Fig. 4. To see the convergence of the various models, center deflections

of previously developed models with 2×2 quadratic and 4×4 linear meshes under SS1 and SS3

boundary conditions are compared in Table 6. Every model showed good convergence with a

tolerance ϵ = 0.01, except for the Model IV. The Model IV showed acceptable convergence with

SS3 boundary condition but with SS1 boundary condition it took slightly more iterations to

converge. This is due to the fact that plates with SS1 boundary conditions are more flexible

and exhibit greater nonlinearity.
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Figure 4 Plots of the center deflection, normal and membrane stress of Model III with that of the FSDT
displacement model under SS1 and SS3 boundary conditions.
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Table 5 Comparison of the center deflection and normal stress of Model I and II with the CPT displacement
model.

P = q0a
4

(E22 h4) Center deflection, w, CPT-(SS3)

MODEL I MODEL II DSPL DSPL

8×8-L 4×4-Q 8×8-L 4×4-Q 8×8-CF 8×8-UCF
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25.00 0.6836 0.6774 0.6966 0.6771 0.6690 0.6700

50.00 0.9581 0.9501 0.9743 0.9497 0.9450 0.9460

75.00 1.1388 1.1296 1.1572 1.1293 1.1270 1.1280

100.00 1.2775 1.2675 1.2977 1.2672 1.2670 1.2680

125.00 1.3919 1.3813 1.4137 1.3809 1.3830 1.3830

150.00 1.4902 1.4791 1.5134 1.4787 1.4830 1.4830

175.00 1.5770 1.5654 1.6015 1.5650 1.5710 1.5710

200.00 1.6552 1.6432 1.6809 1.6428 1.6510 1.6510

225.00 1.7265 1.7142 1.7533 1.7138 1.7240 1.7240

250.00 1.7923 1.7796 1.8201 1.7793 1.7910 1.7910

P = q0a
4

(E22 h4) Normal stresses, σnormal
xx (0,0,0.5h) × a2/E11, CPT-(SS3)

MODEL I MODEL II DSPL DSPL

8×8-L 4×4-Q 8×8-L 4×4-Q 8×8-CF 8×8-UCF
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25.00 5.5195 5.5008 5.3402 5.4980 5.4260 5.4230

50.00 8.2751 8.2782 8.0297 8.2741 8.2470 8.2270

75.00 10.2633 10.2937 9.9885 10.2901 10.3090 10.2710

100.00 11.8988 11.9589 11.6072 11.9541 12.0170 11.9610

125.00 13.2682 13.4106 13.0238 13.4098 13.5130 13.4400

150.00 14.6077 14.7273 14.3036 14.7196 14.8670 14.7770

175.00 15.8033 15.9322 15.4838 15.9311 16.1170 16.0090

200.00 16.8734 17.0628 16.5872 17.0613 17.2870 17.1620

225.00 17.8924 18.1308 17.6290 18.1271 18.3930 18.2510

250.00 18.9188 19.1385 18.6199 19.1411 19.4460 19.2870

The distributions of various quantities are presented in Figs. 5 and 6. The data was post-

processed inside of each element using 10 Gauss points ranging from -0.975 to 0.975, for both

newly developed models (i.e., Models I and III) and FSDT displacement model. Converged

solutions of SS3 at load parameter P = 250.0 are used for the post processing.

Even though all models show similar patterns for each variable as shown in Fig. 5, one may

note that the contour plots obtained from the current mixed models offer better accuracy at the

boundaries of the elements, while the plots obtained from the displacement based model show

discontinuous distributions. Obviously, the plots in Figs. 6 and 4.6 show that the distributions
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Table 6 Comparison of the convergence of Model I, II , III and IV under the SS1 and SS3 boundary conditions.

P = q0a
4

(E22h4)

Center deflection, w (*iteration times to converge), SS1 various models

Model (III) Model (IV) Model (I) Model (II)

4×4-L 2×2-Q 4×4-L 2×2-Q 2×2-Q 2×2-Q
0.00 0.0000(3) 0.0000(3) 0.0000(3) 0.0000(3) 0.0000(3) 0.0000(3)

6.25 0.2821(3) 0.2816(3) 0.2877(3) 0.2847(3) 0.2691(3) 0.2691(3)

12.50 0.5213(3) 0.5195(3) 0.5281(5) 0.5233(5) 0.5007(3) 0.5007(4)

25.00 0.8730(3) 0.8695(3) 0.8801(6) 0.8736(6) 0.8475(3) 0.8476(4)

50.00 1.3195(3) 1.3187(3) 1.3237(7) 1.3169(7) 1.2943(3) 1.2947(3)

75.00 1.6228(3) 1.6282(3) 1.6302(7) 1.6256(7) 1.5997(3) 1.6004(3)

100.00 1.8589(3) 1.8720(3) 1.8684(7) 1.8663(7) 1.8383(3) 1.8394(3)

125.00 2.0553(3) 2.0769(2) 2.0682(7) 2.0688(7) 2.0377(3) 2.0391(3)

150.00 2.2251(3) 2.2552(2) 2.2420(6) 2.2456(6) 2.2107(3) 2.2125(3)

175.00 2.3757(3) 2.4141(2) 2.3914(6) 2.3973(6) 2.3649(3) 2.3669(2)

200.00 2.5116(3) 2.5580(2) 2.5308(6) 2.5392(6) 2.5045(2) 2.5068(2)

225.00 2.6376(2) 2.6898(2) 2.6592(6) 2.6704(6) 2.6327(2) 2.6352(2)

250.00 2.7521(2) 2.8117(2) 2.7717(5) 2.7850(5) 2.7515(2) 2.7541(2)

P = q0a
4

(E22h4)

Center deflection, w (*iteration times to converge), SS3 various models

Model (III) Model (IV) Model (I) Model (II)

4×4-L 2×2-Q 4×4-L 2×2-Q 2×2-Q 2×2-Q
0.00 0.0000 0.0000 0.0000 0.0000 0.000 0.000

6.25 0.2911(4) 0.2865(4) 0.2912(4) 0.2866(4) 0.2718(4) 0.2713(4)

12.50 0.4779(3) 0.4709(3) 0.4784(3) 0.4716(3) 0.4561(3) 0.4552(3)

25.00 0.7076(3) 0.6978(3) 0.7080(3) 0.6982(3) 0.6872(3) 0.6860(3)

50.00 0.9763(3) 0.9626(3) 0.9760(4) 0.9622(4) 0.9578(3) 0.9563(4)

75.00 1.1542(3) 1.1375(3) 1.1535(4) 1.1367(4) 1.1360(3) 1.1345(4)

100.00 1.2914(3) 1.2724(3) 1.2908(4) 1.2715(4) 1.2730(3) 1.2714(4)

125.00 1.4050(2) 1.3841(2) 1.4046(4) 1.3832(4) 1.3861(3) 1.3845(4)

150.00 1.5030(2) 1.4803(2) 1.5015(3) 1.4783(3) 1.4834(2) 1.4818(3)

175.00 1.5897(2) 1.5655(2) 1.5885(3) 1.5636(3) 1.5693(2) 1.5678(3)

200.00 1.6679(2) 1.6422(2) 1.6669(3) 1.6405(3) 1.6467(2) 1.6452(3)

225.00 1.7393(2) 1.7124(2) 1.7385(3) 1.7107(3) 1.7173(2) 1.7159(3)

250.00 1.8054(2) 1.7773(2) 1.8047(3) 1.7757(3) 1.7825(2) 1.7811(3)

of stresses and bending moments of Model III are relatively more accurate than those computed

in the displacement model of FSDT, even though bending moments of Model III have some

oscillations at the inter-element boundary. Of course, the displacement models exhibit even

higher discontinuities in the bending moments as well as shear forces.
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Figure 5 Post processed quadrant images of the variables in various models, SS3, with converged solution at
load parameter P = 250.
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(a) Model III
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(b) FSDT displacement model

Figure 6 Plots of the non-linear membrane stresses of Model III and FSDT displacement model along the x
= 2.5.
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(a) Model III
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(b) FSDT displacement model

Figure 7 Plots of the non-linear bending moments of Model III and FSDT displacement model along the x =
2.5.

5 CONCLUSIONS

In this study, advantages and disadvantages of newly developed nonlinear finite element models

of plate bending are investigated. In almost every case, newly developed mixed plate bending

models provided better accuracy for linear and nonlinear solutions of deflections and stress

resultants. Model IV showed poor convergence compared with other models because of the

absence of typical displacement variables. An important observation of the present study is

that the mixed models do not experience significant locking.

In summary, the two main advantages of the mixed model are the reduction in the continuity
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requirements for the transverse deflection in CPT and the increase of the accuracy for the stress

resultants. Of course, there is a slight increase in computational cost due to the increased

number of degrees of freedom per node.
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