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Abstract 
In this paper closed form analytical solution for stress components 
of thick spherical shell made of transversely isotropic functionally 
graded hyperelastic material subjected to internal and external pres-
sure is presented. Reinforced neo-Hookean strain energy function 
with variable material parameters is used to model pressure vessel 
material. The material constants of strain energy function are 
graded along the radial direction based on a power law function and 
have been calculated from experimental data by using Levenberg–
Marquardt nonlinear regression method. Stress components and 
stretches of pressure vessel have been obtained for centrally sym-
metric condition. Following this, profiles of extension ratio, de-
formed radius of sphere, normalized radial stress and normalized 
circumferential stress are plotted as a function of radius of sphere 
in the undeformed configuration for different material inhomogene-
ity parameterሺmሻ. The obtained results show that the inhomogene-
ity properties of FGMs structure parameterሺ୆

୅
ሻ have a significant 

influence on the displacement, stretch and stresses distribution 
along the radial direction.  
 
Keywords 
Transversely isotropic hyperelastic material, thick-walled spherical 
shells, finite deformation, functionally graded material. 
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1 INTRODUCTION 

The principal problem in the elasticity theory is to find the relation between the stress and the strain 
in a body under certain external forces. In small deformation, linear elasticity and Hooke’s law are 
applied to find stress-strain relation but in large deformation, materials show nonlinear elastic behav-
ior which can be characterized by hyperelasticity. Examples of these nonlinear elastic materials are 
rubber like materials and soft tissues. Constitutive models for rubber like materials and soft tissues 
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are often considered with incompressibility assumption. Because of the geometric simplification of 
zero volume change, from the mathematical point of view the advantage of the incompressibility 
assumption is simplifying the nonlinear equations to describe the mechanical behavior of hyperelastic 
materials. Thus it has been possible to get analytical closed-form solutions for a wide group of inter-
esting problems in this case. Simple constitutive relations for studying their mechanical behavior 
consist of the neo-Hookean and the Mooney–Rivlin strain energy functions. Modeling the mechanical 
behavior of rubber like materials within the framework of nonlinear elasticity theory was the subject 
of a lot of studies, which could be found in the review articles contributed by Beatty (1987), Horgan 
and Polignone (1995), Attard (2003) and the monograph contributed by Fu and Ogden(2001).  In 
the recent years numerous investigations were done on constitutive modeling of hyperelatic materials 
under different loading condition such as works by Anani and Alizadeh (2011), Bao et al. (2003) 
Pascon and Coda (2013). As a result of continually increasing uses of rubber like materials and soft 
tissues, researchers have attracted to study and analyze the behavior of these materials, related 
boundary value problems and composed structures of them. Analyzing thick pressure vessel is one of 
the most popular and interesting boundary value problems in the mechanical engineering. Shells are 
general structural elements in many engineering applications, including pressure vessels, sub-marine 
hulls, ship hulls, wings and fuselages of airplanes, automobile tires pipes, exteriors of rockets, missiles, 
concrete roofs, chimneys, cooling towers, liquid storage tanks, and many other structures. Further-
more they are found in nature in the form of leaves, eggs, inner ear, bladder, blood vessel, skulls, and 
geological formations (Reddy 2007), therefore, the main concern of this paper is transversely isotropic 
thick spherical shell made of Functionally Graded (FG) rubber like materials. Rapid growth in tech-
nology has ushered in an era when it is possible to synthesize materials that exhibit a varia-
tion/graded-variation in their properties for proper design in different components such as shells and 
pressure vessels. A Functionally Graded Material (FGM) is nonhomogeneous in composition. The 
properties of these materials may change gradually and continuously along the coordinate. These 
variable properties can be simulated using an analytical function. This functional distribution of 
material properties can help researchers in order to control the distribution of displacement or stress 
in a solid structure. There is extensive literature on FGMs pressure vessels in linear elasticity and it 
is impossible to review it in a paper other than in a review article but some recent researches are done 
by Nie et al. (2011), Ghannad and Nejad (2012), Gharooni and Ghannad(2015) and Ghasemi et al 
(2015).  

In spite of numerous works on FGMs in linear elasticity, there is hardly any research related to 
functionally graded rubber like materials. For the first time, graded rubber like materials were created 
by Ikeda (1998) via a construction-based method in the laboratory.  Inhomogeneities can be intro-
duced in rubber like materials either during vulcanization or uneven interaction with thermal, radia-
tive and oxidative environments (Bilgili 2002). Bilgili et al. also treated the material nonhomogeneity 
within the context of hyperelasticity and finite thermoelasticity (2003). Their studies confirmed that 
the spatial variation pattern of the nonhomogeneity has a great influence on the stress-strain fields 
and that strong localization in the form of boundary layers can occur. Moreover, Bilgili worked to 
clarify effects of material inhomogeneities on through-the-thickness stress distributions and how to 
employ them for optimally designing circular cylinders made of rubber like materials. In another 
plane strain deformations of a circular cylinder made of an inhomogeneous neo-Hookean material with 
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circumferential displacements prescribed on the inner and the outer surfaces studied by Bilgili (2004). 
Batra (2006) analyzed the torsion of a cylinder made of incompressible Hookean material with the 
shear modulus varying along the axial direction, and found the axial variation of the shear modulus 
to manage the angle of twist of a cross-section. Batra and Bahrami (2003) investigated cylindrical 
pressure vessel made of FG rubber like material under internal pressure. To calculate stress compo-
nents of the pressure vessel, they assumed axisymmetric radial deformations of a circular cylinder 
composed of FG Mooney–Rivlin material with the material parameters varying continuously through 
the radial direction either by a power law or an affine relation. 

Surveying through the researches done on different structures gives a clear view of a gap in 
analyzing spherical shell made of transversely isotropic FG rubber like materials although such spher-
ical shells gain attentions in engineering applications. Therefore, stress analyzing of above mentioned 
spheres is the objective of this research. To that end, exact analytical solution is derived for stresses 
and displacements of pressurized thick spheres made of transversely isotropic functionally graded 
rubber like materials (FGM) with power law variation material properties in radial direction. 
 
2 PROBLEM FORMULATION 

A hollow thick sphere with an inner radius A and an outer radius B made of transversely isotropic 
FG rubber like materials is considered. The sphere is subjected to internal and external pressure p୧ 
and p୭ respectively (Fig. 1) and also it is assumed to be an initially stress-free thick-walled sphereand 
deformed statically. We consider (R,Θ,Φ) and (r,θ,φ) are  the spherical coordinates in the undeformed 
and deformed configurations, respectively. In these configurations the geometry of the sphere are 
described as follows: 
 

 

Figure 1: Configuration of hollow sphere. 

 
A ൑ R ൑ B 0 ൑ Θ ൑ 2π  0 ൑ Φ ൑ π (1)

 

a ൑ r ൑b 0 ൑ θ ൑ 2π  0 ൑ φ ൑ π (2)
 

With the assumption of centrally symmetric deformation, the deformation of spherical shell is 
given by: 
 



410     Y. Anani and G. Rahimi / Stress Analysis of Thick Spherical Pressure Vessel Composed of Transversely Isotropic Functionally Graded… 

Latin American Journal of Solids and Structures 13 (2016) 407-434 
 

r ൌ rሺRሻ, θ ൌ Θ,φ ൌ Φ (3)
 

The above deformation field is a member of the family of universal solutions proposed by Ericksen 
(1954). The deformation gradient ۴ is given by: 

۴ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
dr
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0
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Where,	λ୰ ൌ
ୢ୰

ୢୖ
, λ஘ ൌ λ஦ ൌ

୰

ୖ
. In this problem,	܀ ൌ ۷, therefore, ܄ ൌ ۴. The corresponding left 

Cauchy–Green deformation tensor and its invariant are: 
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For incompressible materials Iଷ ൌ Jଶ ൌ1, accordingly: ቀୢ୰
ୢୖ
ቁ ቀ

୰

ୖ
ቁ
ଶ
ൌ 1, and radial deformation is 

calculated: 
 

Rଷ ൌ rଷ െ ሺbଷ െ Bଷሻ (7)
 

b should be calculated by using boundary conditions. In transversely isotropic elastic solid with 
preferred direction N in undeformed configuration, Cauchy stress cannot, in general, be sufficiently 
determined by measuring the stretches along the principal directions of ܄ alone, but measurements 
of deformation related to the deformed preferred direction, namely	n ൌ ۴N are also required (Ericksen 
qnd Rivlin 1954). According to Spencer (1984) (see also references therein), W can be expressed as a 
function of (Iଵ, Iଶ, Iଷ) together with two more invariants, namely Iସ and Iହ, which depend on N and 
embody the anisotropic attribute of the material. These are taken to be respectively given by(Brunig 
2004): 
 

Iସ ൌ n. n,  Iହ ൌ n. ሺ۰nሻ (8)
 

Therefore, Cauchy stress in transversely isotropic incompressible hyperelastic material is given 
by: 
 

ો ൌ െp۷ ൅ 2൭
∂W
∂Iଵ

۰ ൅
∂W
∂Iଶ

ሺIଵ۰ െ ۰ଶሻ൱ ൅ 2
∂W
∂Iସ

ሺn⊗ nሻ ൅ 2
∂W
∂Iହ

ሺn⊗ ۰n ൅ ۰n⊗ nሻ (9)

 

According to the principle of conservation of linear momentum, the equilibrium equation of the 
thick-walled sphere, in the absence of body forces in the radial direction, is expressed as: 
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dσ୰
dr

൅ 2
σ୰ିσ஘
r

ൌ 0 (10)
 

Constant uniform radial pressure p୧ and p୭ are applied at inner and outer surfaces of the spherical 
shell. Therefore, the boundary conditions are: 
 

σ୰ሺr ൌ aሻ ൌ െp୧ and σ୰ሺr ൌ bሻ ൌ െp୭ (11)
 

Now, stress for thick pressure vessel made of hyperelastic FG material is calculated. 
 
2.1 Formulation for ܅ ൌ ,ሺ۷૚܅ ۷૛, ۷૝ሻ 

We begin our analysis by considering a unit vector N, defined in the reference configuration, serving 
to identify locally a preferred direction. Further, we assume that N lies in the radial direction of the 
undeformed body, so we consider "N ൌ R". For transversely isotropic incompressible hyperelastic ma-
terial, strain energy function W is considered	W ൌ WሺIଵ, Iଶ, Iସሻ, therefore Cauchy stress tensor is given 
by: 
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p is the hydrostatic pressure related to the incompressibility constraint. Substitute σ୰ and σ஘ 
equation (12) to equation (10) and integration respect to r yields: 
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Constants are calculated by: 
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Maximum shear stress σ୰஘ ൌ σ୰஦is determined as: 
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(16)

2.1.1  Case Study: Reinforced Neo-Hookean Model Function: 

Reinforced neo-Hookean strain energy function of transversely isotropic FG incompressible hypere-
lastic material is given by: 
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Where the constant μ଴ ൐ 0 represents the shear modulus of the isotropic base material and ρ ൐ 0 
is a material constant that characterizes the degree of anisotropy associated with the presence of the 

preferred direction Therefore, Wଵ ൌ
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comes: 
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By integration of above equation, radial stress is attained: 
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Where	ଶFଵሺa, b; c; x) is the Gauss-hypergeometric function (Arfken 1985). Second boundary con-
dition of equation (11) gives: 
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Two other stress components are as follows by using equations (14), (19) and (20): 
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Maximum shear stress σ୰஘ ൌ σ୰஦is determined by means of equation (16): 
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3 RESULT AND DISCUSSION 

Levenberg–Marquardt nonlinear regression method is used to find material constants μ଴ and ρ of the 
rubber tested by Dorfmann and Ogden (2004). Therefore, μ଴ ൌ 0.0157 and  ρ ൌ 0.24 are attained by 
numerical calculation and comparison with experimental data. 

Example: Two spherical shells with inner and outer radius A ൌ 1 m, B ൌ 1.4 m and A ൌ 1 m, 
B ൌ 1.8 are considered in this case. p୧ is the applied internal pressure and it is considered ୮౟

ஜ
ൌ 0.3	and 

୮౟
ஜ
ൌ 0.5. We use equation (22) to find unknown b for different values of  m. We use reinforced neo-

Hookean strain energy function with variable material constant. Distributions of extension ratio, 
deformed radius, normalized radial and normalized hoop stress and normalized maximum shear stress 
for different m illustrate in the next figures. Figs.2-5 show the distribution of extension ratio through 
the thickness for different m and for ୮౟

ஜ
ൌ 0.3 and ୮౟

ஜ
ൌ 0.5, respectively. Maximum of extension ratio 

is occurred in the inner radius where body subjected to internal pressure. It decreases through the 
thickness and its minimum is occurred in the outer radius which is a stress free surface. Moreover, 
because of increasing material strength by increasing m, extension ratio in each arbitrary radius 
decreases. Additionally, in each arbitrary pressure, ratio of extension ratios decreases in the radial 
direction. For example, in the inner surface and ୮౟

ஜ
ൌ 0.3, ratio of extension ratios for m ൌ 0 and m ൌ

11 is 1.065 but it is only 1.021 in the outer surface. By comparison Fig.2 and Fig.3, it is observed 
that in an arbitrary radius, extension ratio increases by increasing internal pressure. Additionally, it 
is found out in an arbitrary radius, extension ratio decreases by increasing structure parameterሺ୆

୅
ሻ. 

 

 

Figure 2: Distribution of extension ratio through the thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.3). 
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 Figure 3: Distribution of extension ratio through the thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.5). 

 

 

Figure 4: Distribution of extension ratio through the thickness for different m ( ୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.3). 

 

 

Figure 5: Distribution of extension ratio through the thickness for different m ( ୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.5). 
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Figs. 6-9 illustrate radius of sphere in the current configuration versus radius of sphere in the 
reference configuration for different m and and for ୮౟

ஜ
ൌ 0.3 and ୮౟

ஜ
ൌ 0.5, respectively. Deformed radius 

in each arbitrary undeformed radius decreases by increasing m. Moreover, by comparing these figures, 
it is observed deformed radius increases by increasing pressure. 

 
 

 

Figure 6: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.3). 

 

 

Figure 7: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.5). 
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Figure 8: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m ( ୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.3). 

 

 

Figure 9: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m ( ୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.5). 

 
Figs.10-13 present distribution of normalized radial stress through the thickness for different val-

ues of  m for ୮౟
ஜ
ൌ 0.3 and ୮౟

ஜ
ൌ 0.5, respectively. When	m decreases magnitude of normalized radial 

stress in an arbitrary radius decreases. At points away from the boundaries, normalized radial stress 
shows significant differences for different	m, while at points near the boundaries, the reverse holds 
true. In addition, in each arbitrary radius, increasing internal pressure causes increasing in magnitude 
of normalized radial. Furthermore, it is understood that in an arbitrary radius by increasing thickness 
of the pressure vesselሺ୆

୅
ሻ, magnitude of normalized radial stress increases. In addition, in an arbitrary 

material inhomogeneity parameter	ሺm), decrease rate for magnitude of normalized radial stress in 
thicker vessel is slower than the thinner one. 
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Figure 10: Distribution of normalized radial stress through the thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.3). 

 

 

Figure 11: Distribution of normalized radial stress through the thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.5). 

 

 

Figure 12: Distribution of normalized radial stress through the thickness for different m and (୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.3). 
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Figure 13: Distribution of normalized radial stress through the thickness for different m and (୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.5). 

In Figs. 14-17 distribution of normalized hoop stress through the thickness of the vessel for different 
m are presented for ୮౟

ஜ
ൌ 0.3 and ୮౟

ஜ
ൌ 0.5, respectively. Normalized hoop stress in each arbitrary radius 

increases by increasing internal pressure. Furthermore from the comparison of the Figs. 14-17, it is 
understood distribution of hoop stress has the same trend for above mentioned shells, but the thicker 
vessel demonstrates higher hoop stress in an arbitrary radius for the same internal pressure. In fact, it 
is found that hoop stress increases by increasing structure parameter (B/A). Figs. 18-21 present distri-
bution of normalized maximum shear stress through the thickness for different m. Normalized maximum 
shear stress has the same distribution as normalized hoop stress. From the comparison of the Figs. 18-
21, it is understood distribution of normalized maximum shear stress has the same trend for above 
mentioned shells, but the thicker vessel demonstrates higher normalized maximum shear stress in an 
arbitrary radius for the same internal pressure. In fact, it is found that normalized maximum shear 
stress increases by increasing shell thicknessሺ୆

୅
ሻ. In contrast with normalized radial stress which has the 

same distribution for different m, the most interesting part of the results is distribution of normalized 
hoop stress and normalized maximum shear stress which changing from monotonically decreasing in R 
to monotonically increasing in R as a function of gradient parameter m. This distribution is very helpful 
for design of this type of pressure vessel to postpone or avoid vessel failure. 
 

 

Figure 14: Distribution of normalized hoop stress through the thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.3). 
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Figure 15: Distribution of normalized hoop stress through the thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.5). 

 

 

Figure 16: Distribution of normalized hoop stress through the thickness for different m and (୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.3). 

 

 

Figure 17: Distribution of normalized hoop stress through the thickness for different m and (୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.5). 
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Figure 18: Distribution of normalized maximum shear stress through the  

thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.3). 

 

 

Figure 19: Distribution of normalized maximum shear stress through the  

thickness for different m ( ୆
୅
ൌ 1.4,

୮౟
ஜ
ൌ 0.5). 

 

Figure 20: Distribution of normalized shear stress through the thickness for different m and (୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.3). 
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Figure 21: Distribution of normalized shear stress through the thickness for different m and (୆
୅
ൌ 1.8,	୮౟

ஜ
ൌ 0.5). 

 
Example 2 (thin sphere): A spherical shell with inner and outer radius A ൌ 1 m, B ൌ 1.1 m is 

considered in this case. The applied internal pressure ୮౟
ஜ
ൌ 0.1. Equation (22) is solved to find b by 

considering ୆
୅
ൌ 1.1. In this case, pressure vessel is classified as a thin pressure vessel. Extension ratio 

of this vessel decrease approximately linearly with R, as shown in Fig. 22. In Fig.23 radius of sphere 
in the current configuration versus radius of sphere in the reference configuration is shown. Fig. 24, 
25 and 26 demonstrate distribution of radial, hoop and shear stresses of this vessel. 
 
 

 

Figure 22: Distribution of extension ratio through the thickness for different m (୆
୅
ൌ 1.1,	୮౟

ஜ
ൌ 0.1). 
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Figure 23: Radius of sphere in the current configuration versus radius of sphere in the reference  

configuration thickness for different m ( ୆
୅
ൌ 1.1,	୮౟

ஜ
ൌ 0.1). 

 

 

Figure 24: Distribution of normalized radial stress through the thickness for different m ( ୆
୅
ൌ 1.1,	୮౟

ஜ
ൌ 0.1). 

 

 

Figure 25: Distribution of normalized hoop stress through the thickness for different m ( ୆
୅
ൌ 1.1,	୮౟

ஜ
ൌ 0.1). 
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Figure 26: Distribution of normalized shear stress through the thickness for different m ( ୆
୅
ൌ 1.1,	୮౟

ஜ
ൌ 0.1). 

 
Example 3: Two spherical shells with inner and outer radius A ൌ 1 m, B ൌ 1.4 m and A ൌ 1 m, 

B ൌ 1.8 are considered in this case. The applied external pressure is p୭. In this example, we considered 
୮౥
ஜ
ൌ 0.3	and ୮౥

ஜ
ൌ 0.5. b is calculated for different values of  m by using equation (22). Reinforced 

neo-Hookean strain energy function with variable material constant is used in this example. Distri-
butions of extension ratio, deformed radius, radial and hoop stress and maximum shear stress for 
different m illustrate in the next figures. Figs.27-30 show the distribution of extension ratio versus 
undeformed radius for different m for above mentioned vessels. Minimum of extension is occurred in 
the inner radius of the vessel then it increases through the thickness and its maximum is happened 
in outer radius. Moreover, by increasing material inhomogeneity (m) parameter, extension ratio in 
each arbitrary radius increases. Additionally, in each arbitrary pressure, ratio of extension ratios 
increases in the radial direction. For example, in the inner surface and ୮౥

ஜ
ൌ 0.3, ratio of extension 

ratios for m ൌ 0 and m ൌ 11 is 0.953 but it is 0.981 in the outer surface. By comparison Figs.27-30, 
it is observed that in an arbitrary radius extension ratio decreases by increasing external pressure. 
Furthermore, it is observed that extension ratio increases by increasing structure parameterሺ୆

୅
ሻ. It 

means that by increasing shell thicknessሺ୆
୅
ሻ, radial deformation decreases. In Fig.31-34 radius of sphere 

in the current configuration versus radius of sphere in the reference configuration is shown.  
 

 

Figure 27: Distribution of extension ratio through the thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.3). 
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Figure 28: Distribution of extension ratio through the thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.5). 

 

 

Figure 29: Distribution of extension ratio through the thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.3). 

 

 

Figure 30: Distribution of extension ratio through the thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.5). 
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Figure 31: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.3). 

 

 

Figure 32: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.5). 

 

 

Figure 33: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.3). 
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Figure 34: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.5). 

 
 

In Figs. 35-38, normalized radial stress through the thickness for different m is illustrated. Mag-
nitude of normalized radial stress in each radius decreases by increasing m. At points away from the 
boundaries, normalized radial stress shows significant differences for different m, while at points near 
the boundaries, the reverse holds true. Additionally in each arbitrary radius, magnitude of normalized 
radial stress increases by increasing external pressure. Magnitude of normalized radial stress decreases 
in an arbitrary radius as structure parameterሺ୆

୅
ሻ increases. In addition, increase rate of magnitude of 

normalized radial stress in thicker vessel is slower than the thinner one. 
 
 
 

 

Figure 35: Distribution of normalized radial stress through the thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.3). 
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Figure 36: Distribution of normalized radial stress through the thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.5). 

 

 

Figure 37: Distribution of normalized radial stress through the thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.3). 

 

 

Figure 38: Distribution of normalized radial stress through the thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.5). 
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In Figs. 39-42 distribution of normalized hoop stress versus radius for different m is presented. Figs. 
43-46 presents distribution of normalized maximum shear stress through the thickness for different m. 
Normalized maximum shear stress has the same pattern of distribution as normalized hoop stress. 
 

 

Figure 39: Distribution of normalized hoop stress through the thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.3). 

 

 

Figure 40: Distribution of normalized hoop stress through the thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.5). 

 

 

Figure 41: Distribution of normalized hoop stress through the thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.3). 
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Figure 42: Distribution of normalized hoop stress through the thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.5). 

 

 

Figure 43: Distribution of normalized maximum shear stress through the  

thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.3). 

 

 

Figure 44: Distribution of normalized maximum shear stress through the  

thickness for different m( ୆
୅
ൌ 1.4,	୮౥

ஜ
ൌ 0.5). 
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Figure 45: Distribution of normalized shear stress through the thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.3). 

 
 

 

Figure 46: Distribution of normalized shear stress through the thickness for different m( ୆
୅
ൌ 1.8,	୮౥

ஜ
ൌ 0.5). 

 
 

Example 6(thin sphere): A spherical shell with inner and outer radius A ൌ 1 m, B ൌ 1.1 m is be 
considered in this case. The applied external pressure is ୮౥

ஜ
ൌ 0.1. Equation (22) is solved to find b by 

considering ୆
୅
ൌ 1.1. In this case, pressure vessel is classified as a thin pressure vessel. Extension ratio 

of this vessel increase approximately linearly with R as shown in Fig. 47. In Fig.48 radius of sphere 
in the current configuration versus radius of sphere in the reference configuration is shown. Fig. 49, 
50 and 51 demonstrate distribution of radial, hoop and shear stresses of this vessel. 
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Figure 47: Distribution of extension ratio through the thickness for different m( ୆

୅
ൌ 1.1,	୮౥

ஜ
ൌ 0.1). 

 

 

Figure 48: Radius of sphere in the current configuration versus radius of sphere in the  

reference configuration thickness for different m( ୆
୅
ൌ 1.1,	୮౥

ஜ
ൌ 0.1). 

 

 

Figure 49: Distribution of normalized radial stress through the thickness for different m( ୆
୅
ൌ 1.1,	୮౥

ஜ
ൌ 0.1). 
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Figure 50: Distribution of normalized hoop stress through the thickness for different m( ୆
୅
ൌ 1.1,	୮౥

ஜ
ൌ 0.1). 

 

 

Figure 51: Distribution of normalized shear stress through the thickness for different m( ୆
୅
ൌ 1.1,	୮౥

ஜ
ൌ 0.1). 

 
4 CONCLUSION 

In this paper, we use member of Ericksen's family of universal solutions to investigate radial expan-
sion/contraction of a sphere made of transversely isotropic and inhomogeneous hyperelastic material. 
Reinforced neo-Hookean strain energy function is used to model material behavior. The material 
parameter varues continuously in radial direction according to a power law in the radial coordinate 
"R" in the reference configuration. Analytical method is used to find Stress components and stretches 
in thick-walled spherical shells subjected to internal and external pressure. As a result stress compo-
nents and stretches versus Radial direction are plotted for different pressure and different structural 
parameter (୆

୅
) and different material inhomogeneity parameter and effect of these parameters are 

studied carefully in stress component distribution. 
In the internally pressurized sphere, magnitude of radial stress, extension ratio and radius of 

sphere increase when pressure increases. By increasing material inhomogeneity parameterሺm), in each 
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arbitrary pressure and radius, magnitude of radial stress increases while extension ratio and sphere 
radius decrease. Increasing structural parameter ሺ୆

୅
ሻ causes decrease in extension ratio and increase 

in magnitude of normalized radial stress. In addition, in each arbitrary material inhomogeneity pa-
rameter	ሺm), decrease rate of magnitude of radial stress in thicker vessel decreases is slower than the 
thinner one.  

We consider same plots for sphere subjected to external pressure. It is found that, in each arbitrary 
radius, increase in applied external pressure causes increase in magnitude of normalized radial stress 
and decrease in extension ratio and deformed sphere radius. In an arbitrary external pressure, when 
material inhomogeneity parameterሺm) increases, extension ratio and sphere radius increase but mag-
nitude of normalized radial stress decreases. Increase in pressure vessel thickness ሺ୆

୅
ሻ causes decrease 

in radial stress in an arbitrary applied pressure. It is also observed that by increasing thickness of 
pressure vesselሺ୆

୅
ሻ, extension ratio increases while magnitude of normalized radial stress decreases. 

Furthermore, it is observed that in each arbitrary material inhomogeneity parameter	ሺm), increase 
rate of normalized magnitude of radial stress in thicker vessel is slower than the thinner one.  

In contrast with normalized radial stress which has the same distribution for different m, the 
interesting part of the results is distribution of normalized hoop stress and normalized maximum 
stress which changing from monotonically increasing in R to monotonically decreasing in R as a 
function of gradient parameter m. 

The above results show that the material inhomogeneity parameterሺm) and pressure vessel thick-
nessሺ୆

୅
ሻ have a significant influence on the mechanical behavior of thick hollow spherical shells made 

of transversely isotropic functionally graded hyperelastic materials with power law varying properties. 
Thus with selecting a proper m value and structure parameterሺ୆

୅
ሻ, engineers can design a specific 

FGM hollow sphere that can meet some special requirements. 
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