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Constitutive model for bimodular elastic damage of concrete

Abstract

An elastic damage model for concrete has been proposed

considering damage-induced bimodularity. A scalar damage

parameter has been chosen to quantify the damage. Expres-

sions for the material compliance tensor components have

been derived from the assumed strain and complementary

energy functions stated in terms of the principal stresses

and strains. Incremental constitutive equations have been

derived incorporating the elastic behavior due to stress in-

crements as well as stiffness degradation. Within the current

damage surface, the stiffness of the material with constant

damage varies with applied stress variations. During loading

beyond the current damage surface, the material experiences

stiffness degradation due to increase in extent of damage suf-

fered by it. Using the proposed elastic damage model, the

material response has been predicted for different load his-

tories.
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1 INTRODUCTION

Concrete is a nonlinear inelastic quasi-brittle solid exhibiting energy dissipation, irreversible

deformations and stiffness degradation upon short-term loading. Obviously, the elasto-plastic-

damage framework is most appropriate for its constitutive modeling. Most of such available

constitutive models of concrete [1], [6], [28], [35] and [34] are premised upon a theory of

damage mechanics and a theory of elastoplasticity. These two theories are generally coupled

together under state laws and evolution laws associated with damage and elastoplasticity under

incremental loading. In the recent past, a number of very sophisticated constitutive models

dealing with elastic damage uncoupled with plasticity have been proposed [4], [8], [9], [11],

[16], [17] and [22]. The primary focus of the present paper is on the presentation of elastic-

damage part of elastoplastic damage formulation. It has been assumed that the elastic damage

does not result in any irreversible deformations, but only in energy dissipation and stiffness

degradation.
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Many of the available damage models of concrete employ the relevant concepts, principles

and approaches followed in the field of continuum damage mechanics. In these phenomeno-

logical models, concrete is assumed to be a homogeneous isotropic linear elastic solid and the

micromechanics of discrete cracks and their evolution upon loading are ignored. The most

distinguishing characteristics of damage mechanics of concrete include different nature and

extent of damage suffered by it under compression and tension, damage-induced anisotropy

and partial stiffness recovery upon crack closure under compression. In continuum damage

mechanics, this last aspect of behavior of damaged solids is termed as unilateral effect or dam-

age deactivation under compression. Unilateral effect has been characterized as a difficult and

open research field [9]. These aspects of observed behavior of concrete have been incorporated

by using an approach involving spectral decomposition of stress/strain tensors into positive

and negative components affecting material behavior differently. This approach involves de-

composing stress and strain tensors into their positive and negative components by using

fourth rank projection operators. Because of the asymmetry of the secant compliance/stiffness

tensor derived in some earlier models [29] and [33], the approach has been criticized as result-

ing in spurious energy dissipation or generation in closed load cycles [9] and [7]. Following

Lemaitre’s approach, Gibbs elastic potential has been split in some models into deviatoric and

hydrostatic parts respectively associated with a damage tensor and a damage scalar [11]. Of

course, a few constitutive models have been proposed without invoking the spectral composi-

tion of the stress/strain tensor [22]. Still others have constructed their damage models based

upon loading surface [7].

A thermodynamically-consistent elastic damage model has been proposed [24] by consider-

ing the material to be composed of an elastic phase and a no-tension phase. Volume fraction

of the no-tension phase chosen as the damage measure and its special gradients with the cor-

responding thermodynamic forces are taken as state variables. Also, the indicator function

distinguishing between the active/de-activated status of damage is based on the sense of the

eigenvalues of the stress tensor.

Most of the earlier damage models [26] and [31] are incapable of incorporating all the

experimentally observed behaviour such as load-induced damage anisotropy, damage-induced

elastic anisotropy, unilateral effect, tension-compression asymmetry, non-negative damage evo-

lution, anisotropic stiffness degradation, material failure, etc. The following attempts have

been made to satisfy most of the above desirable characteristics of damage models [4] and

[8] and to avoid the pathologies such as discontinuous stress strain relations, spurious energy

generation/dissipation, etc., present in the earlier constitutive models.

Kuna-Ciskal and Skrzypek [17] and [32] have presented damage model of concrete based on

modified Murakami and Kamiya model [27] of elastic material. The unilateral crack opening

/closing effect has been incorporated in such a way that the continuity requirement during

loading holds. Failure criterion is adopted based on checking positive definiteness of Hessian

matrix of the free energy function. Damage has been modelled using a second order tensor and

a scalar variable. These researchers obtained the incremental form of stress-strain relations

using local approach to fracture. Challamel et al. [8] have provided strain based continuum
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damage model for quasi-brittle material describing damage as a second rank symmetric tensor.

The model meets the continuity of stress-strain relations, consistent thermodynamic frame-

work, unsymmetry in tension and compression, crack closure effects and anisotropic damage

behaviour.

Badel et al. [4] have presented an anisotropic damage model of concrete where damage has

been considered anisotropic in tension but isotropic in compression. The observed asymmetry

between tension and compression has also been incorporated . Decomposing the value of

strain in tension and compression, these researchers have provided expression for specific free

energy which accounts for continuity of stress with respect to strain and damage variables and

have also discussed the convexity of the function with respect to existence and uniqueness.

Desmorat and Cantournet [11] have presented unified damage model which considers isotropic

and anisotropic damage together with unilateral effects. The model is an extension of Lemaitre

[20] approach for anisotropic damage and Ladeveze and Lemaitre’s [18] decomposition of stress

in tension and compression. Issues related to coupling of damage and plasticity as well as

damage and elasticity have been discussed.

The Murakami-Kamiya model [27] has also been applied by Kolari [16] to simulate the

observed splitting mode of failure of concrete under uniaxial compression. Proposed within

the paradigm of thermodynamically consistent general standard material, most of these models

are based upon Helmholtz or Gibb′s free energy functions and spectral decompositions of the

stress/strain tensors using fourth rank projection operators. Using Green′s theorem, general

constitutive equations for stress (or strain) tensor components are obtained and stated in terms

of positive and negative strain (or stress) tensors, generally second rank damage tensors, etc.

Different damage evolution laws for positive and negative stress/strain tensor histories are

stated in terms of the thermodynamical potential and the indicator function.

Expression for only one tangent coefficient has been proposed [17]. Attempts have also been

made to predict failure caused by damage ignoring the plasticity phenomenon. However, the

predicted strengths in uniaxial compression, tension and biaxial stress are far from satisfactory

[27] and [4].

Departing from the above paradigm, Proenca and Pituba have modeled the damaged con-

crete as a linear transversely isotropic bimodular hyperelastic solid [30]. Their elastic damage

model is based upon the theory of transversely isotropic conewise linear elastic solids proposed

by Curnier et al. [10] which exhibit different elastic moduli depending upon the sense of the

volumetric elastic strain.

In view of the above cited literature, following conclusions can be drawn concerning the

current state of the constitutive modelling of damage in concrete: Very ingenious form of

thermodynamical functions and indicator functions have been proposed to simulate the various

observed aspects of anisotropic damage evolution with unilateral effect. It is argued here that,

in this theory, the anisotropy and nonlinearity associated with the bimodular nature of the

damaged solid are ignored.

The objective of the present paper is to propose a phenomenological constitutive model for

elastic damage of concrete. An attempt has been made in this paper to simulate the unilat-
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eral effect without invoking spectral decomposition of stress/strain tensors. It is claimed that

the proposed model is capable of predicting various characteristic of concrete behaviour. The

scope of the present investigation is limited to concrete undergoing only small deformations.

A damage evolution law and constitutive equations for damaged concrete as well as for con-

crete undergoing damage under incremental loading have been presented. Using the proposed

model, the response of the material subjected to diverse stress histories has been predicted

and discussed. Theoretical significance of the approach followed has been delineated.

2 DAMAGE FUNCTION AND DAMAGE EVOLUTION

Upon loading, concrete is assumed to suffer only isotropic damage quantified by a scalar

damage parameter ω. Damage evolution is controlled by the following damage function :

f(I1, J2, θ) = A
J2
(f ′c)2

+ α
√
J2
f ′c
+BI1

f ′c
+C I21

(f ′c)
2
− 1 = 0 (1)

where α =Xκ cos θ + (1 − κ)Y ; C = C0(1 − κ) ; cos 3θ = 3
√
3

2
J3

J
3
2
2

Here, the parameters A,B,C0,X and Y are material constants. The stress invariants I1 and J2
are normalized by the compressive strength f

′

c of concrete. The hardening function κ controls

the evolution of the damage surfaces, in the stress space, from the initial damage surface

(κ = 0.3) to the failure surface (κ = 1). The observed behaviour of concrete is the combined

effect of elastoplasticity and damage. The elastoplastic loading surfaces are coincidental with

the damage surfaces and the loading function, called damage function here, is calibrated by

using available empirical data on concrete [2] and [3].

The empirical data formats (σ1, σ2, σ3 and θ) used for calibration include (0, 0 , -f
′

c, 60
○),

(0.1f
′

c, 0 , 0, 0○) and (0, −1.16f
′

c, −1.16f
′

c, 0
○) at the failure surface and (0, 0 , −0.3f

′

c, 60
○)

and (0.09f
′

c, 0, 0, 0
○) at the initial damage surface. The values of the material parameters

A,B,C0,X and Y turn out to be 4.064147, 3.524653, 0.420382, 10.980986 and 13.698277

respectively [2] and [3].

Concrete does not suffer any damage within the initial damage surface. Loading beyond

this initial damage surface results in an increase in the value of the hardening function κ. The

damage evolution with hardening is traced by the ω − κ relation mediated through another

variable σ. This latter variable σ is the absolute value of the stress in the uniaxial compressive

stress test used for calibrating the damage evolution. The following damage evolution law is

being proposed in this paper:
σ
f ′c
≤ 0.3, κ ≤ 0.3

ω = 0 (2)

0.3 ≤ σ
f ′c
≤ 1,0.3 ≤ κ ≤ 1

ω = ω0

⎛
⎝

σ
f ′c
− 0.3

0.7

⎞
⎠

2

(3)
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where ω0 is the maximum value of the damage parameter at failure, here assumed to be equal

to unity. The required κ − σ relation is obtained from the damage function for the state of

uniaxial compressive stress (σ33 = −σ). For this case one obtains J2 = σ2

3
;
√
J2 = σ√

3
; I1 = −σ ;

θ = 60○,

A

3
( σ
f ′c
)
2

+ 1√
3
[
√
3

2
Xκ + (1 − κ)Y ]( σ

f ′c
)

−B σ

f ′c
+C0(1 − κ)(

σ

f ′c
)
2

− 1 = 0
(4)

The evolution of the damage surfaces in the biaxial and triaxial states of stress with increase

in value of κ has been presented in Figure (1) and Figure (2). Each damage surface is char-

acterized by a particular value of κ and so of the damage parameter ω. Within the current

damage surface, the value of the damage parameter ω remains constant and corresponds to

its maximum value reached in the past. The variation of ω with κ has been presented in

Figure (3). Thus, for any load history, the value of κ, and so of σ and ω, can be obtained.

Figure 1 Evolution of damage surfaces in plane stress histories
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Figure 2 Evolution of damage surface
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Figure 3 Variation of damage parameter with hardening function

3 BIMODULAR ELASTIC DAMAGED CONCRETE UNDER PRINCIPAL STRESSES

For any load history, the extent of damage suffered by concrete at a point is measured by

the maximum value of the damage parameter ω. Damage results in stiffness degradation,

but partial stiffness recovery in damaged concrete is assumed to occur under compression

introduced by the current loading. Following Mazars and co-workers [26] and [25], two different

scalar damage parameters are defined for compression and tension respectively as follows in
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terms of the damage parameter ω. For compression,

ωc = αcω (5)

and for tension

ωt = αtω (6)

The corresponding values of Young’s moduli of elasticity are

Ec = (1 − ωc)E0 = [1 − αcω]E0 (7)

and

Et = (1 − ωt)E0 = [1 − αtω]E0 (8)

Based on the available experimental data under uniaxial compression, the value of αc has

been assumed as 0.2. The material response has been predicted by assuming αt to be 0.677.

Obviously, better estimation of αc and αt, as and when available, can easily be incorporated

in the proposed model. The variation of Ec and Et with κ is presented in Figure (4). The

variation of Ec and Et with damage is more or less compatible with available experimental

data on concrete under uniaxial compression. The axial compressive and lateral tensile moduli

at peak stress have been found to be respectively 60 % and 20 % of modulus of intact concrete

[21]. Also, as assumed in this paper, under uniaxial tension, the elastic modulus has been

predicted by others reduce to about one-third of its value for undamaged concrete [27].
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Figure 4 Variation of Young’s modulus in compression and tension with hardening function

The operative Young’s modulus of elasticity out of the two possible values Ec and Et in

any principal direction at a point in a bimodular damaged concrete is assumed to depend upon
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the sense of the corresponding principal strain. Thus, depending upon the sense of the three

principal strains, four elastically-distinct cases can be identified for the linear hyperelastic

material point. The expressions for the principal stresses σi and the strain energy density

function W are stated in terms of principal strain εj as

σi = Cijεj (9a)

W = 1

2
Cijεiεj (9b)

where Cij denote the relevant secant elasticity coefficients.

In the case of principal strains of the same sense, the material point is isotropic. Other-

wise, it is transversely isotropic requiring only four independent elastic constants for relating

principal stresses and strains. The elastic constants for the above four elastically distinct cases

are identified as follows:

• Case I. ε1 ≥ ε2 ≥ ε3 ≥ 0
C11 = C22 = C33 = a1,C23 = C31 = C12 = c1

• Case II. ε1 ≥ ε2 ≥ 0 ≥ ε3
C11 = C22 = a2,C33 = b2,C23 = C31 = d2,C12 = c2

• Case III. ε1 ≥ 0 ≥ ε2 ≥ ε3
C11 = a3,C22 = C33 = b3,C23 = c3,C31 = C12 = d3

• Case IV. 0 ≥ ε1 ≥ ε2 ≥ ε3
C11 = C22 = C33 = b4,C23 = C31 = C12 = c4

The strain energy in aforementioned cases are as follows.

WI =
1

2
a1 [ε21 + ε22 + ε23] + c1 [ε1ε2 + ε2ε3 + ε3ε1] (10)

WII =
1

2
a2 [ε21 + ε22] +

1

2
b2ε

2
3 + c2ε1ε2 + d2 [ε2ε3 + ε3ε1] (11)

WIII =
1

2
a3ε

2
1 +

1

2
b3(ε22 + ε23) + c3(ε2ε3) + d3(ε1ε2 + ε3ε1) (12)

WIV =
1

2
b4 [ε21 + ε22 + ε23] + c4 (ε1ε2 + ε2ε3 + ε3ε1) (13)

Following Green and Mkirtichian [15], the principal stresses and strain energy are required

to be continuous functions of the principal strains. This constitutive restriction is imposed

even though the material exhibits sudden change in the elastic constants as and when any of

the principal strains suffers change in sense.

In view of these restrictions, the following equalities between the elastic constants are es-

tablished:

a1 = a2 = a3 = a, b2 = b3 = b4 = b
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c1 = c2 = c3 = c4 = d2 = d3 = c

The following constitutive equation is adopted for the conventional isotropic linear elastic

solids.

σi = λ(ε1 + ε2 + ε3) + 2µεi (14)

where λ and µ are Lame’s constants.

Thus, the parameter c is equal to the constant λ in the conventional isotropic linear elastic

solid. Its value is same for the open (or closed) cracks under tensile (or compressive) principal

strains in Case I and Case IV respectively for all values of the damage parameter. Obviously,

the value of c is expected to be independent of the value of damage parameter ω. Thus, c is

same for the damaged as well as undamaged solid.

The Lame′s constants for the Case I (triaxial tension), Case IV (triaxial compression) and

for the undamaged solid respectively are (λt, µt), (λc, µc) and (λ,µ). Thus, c = λt = λc = λ.
The Poisson′s ratios νt and νc are determined in terms of ν0 from the above condition.

Etνt
(1 − 2νt)(1 + νt)

= Ecνc
(1 − 2νc)(1 + νc)

= E0ν0
(1 − 2ν0)(1 + ν0)

(15)

Also

a = λ + 2µt b = λ + 2µc 2µt = Et

1+νt
2µc = Ec

1+νc

Thus, only three required independent elastic constants can be either (a, b, c) or (λ,µt, µc)

or (Et,Ec, νt or νc). Since Ec,Et and νc and νt all are known in terms of E0 and ν0 for the

specified value of the damage parameter ω, the three independent parameters characterizing

the damaged elastic solid are identified as E0, ν0 and ω. Out of these, the elastic constants

E0 and ν0 of the intact concrete are known, while the relevant value of the damage parameter

ω is uniquely determined by the load history. It is to the credit of the proposed elastic dam-

age model that no new empirical parameter need be determined to establish the constitutive

identity of the damaged concrete. Even though their variation with damage parameter ω is

linear, the elastic moduli Et and Ec vary nonlinearly with hardening function κ as shown in

Figure (4). Computations show that, at maximum damage (ω0 = 1), in partial compatibility

with available data [27], the Poisson′s ratios νc and νt attain values of 0.23 and 0.35 respec-

tively as shown in Figure (5). As the effect of Poisson′s ratio is small, the variation of the

shear moduli µc and µt with ω, plotted in Figure (6), also turns out be almost linear.

The conclusion that, while the value of one of Lame’s constant λ is invariant under change

of state of damaged solid, the value of other constant µ depends upon the state of strain

signifying the particular case as well as upon the extent of damage suffered by the material.

These facts are in accordance with those deduced by Green and Mkrtichian [15] even though

the approach followed in the present paper is quite distinct.

The proposed elastic damage model is based upon a theory of bimodular isotropic linear

elastic solids undergoing small deformations. This latter theory of bimodular solids, through

motivated by the work of Green and Mkrtichian [15], is distinct from it. Similarities between

these two theories include four elastically distinct cases depending upon the sense of principal
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Figure 6 Variation of shear moduli with damage parameter

strains and the requirement of continuity of functional dependence of stresses and strain energy

upon the strains. To bring out the difference between these two theories clearly, the expressions

for strain energy and stress tensor proposed by Green and Mkrtichian for Case II are reproduced

below:

W = 1

2
[trε]2 + µttrε

2 + (µc − µt)ε23 (16)

σ = λ[trε]I + 2µtε + 2(µc − µt)ε3[a3a3] (17)

where σ and ε denote stress and strain tensors. Here, the symbol a3 denotes the unit normal
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vector along principal strain ε3. It should be remembered that ε3, the minor principal strain,

is the principal strain of distinct sense and its orientation represents the axis of rotational

symmetry for Case II. Thus, Green and Mkrtichian express strain energy in terms of principal

strains of distinct sense and the stress tensor in terms of its orientation. In contrast, in this

paper, the strain energy is expressed in terms of strain tensor components and the expressions

for stress tensor components do not require the determination of the orientation of the principal

strain directions. Also, in contrast to Green and Mkrtichian, the elasticity and compliance

tensors are stated here explicitly in reference to any general orientation of the coordinate

system. Still, for the same state of strain, both of these theories of isotropic bimodular solids

predict the same energy and state of stress.

4 ISOTROPIC HYPERELASTIC DAMAGED CONCRETE

The expression for the complementary energy function Ω for hyperelastic damaged concrete

can be stated in terms of principal stresses σi as

Ω = 1

2
Dijσiσj (18)

where Dij = C−1ij is the compliance matrix in reference to principal axes for the material. Typ-

ical variation of some components of compliance matrix with damage ω has been presented

in Figures (7) and (8). The compliance tensor so obtained pertains to the principal coordi-

nate axes. The constitutive equations as well as explicit expressions for the components of

compliance matrix in reference to an arbitrary Cartesian coordinate system are derived below:
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The expressions for the principal stresses in terms of the stress invariants are stated as

σr =
I1
3
+ 2√

3

√
J2 cos θr r = 1,2,3 (19)

where θ1 = θ; θ2 = θ − 2π
3
; θ3 = θ + 2π

3

In view of these expressions, the expression for the complementary energy function takes

the form

Ω = 1

9
N1I

2
1 +

2

3
√
3
N2I1

√
J2 +

4

3
N3J2 (20)

where N1, N2 and N3 depend upon Dij and Lode angle θ.

Using Green′s theorem, one obtains the following constitutive equation for hyperelastic

damaged concrete

εij =
∂Ω

∂σij
= α1δij + α2Sij + α0Tij (21)

where ∂I1
∂σij
= δij ∂J2

∂σij
= Sij

∂θ
∂σij
= Tij

Here σij and Sij denote stress tensor and deviatoric stress tensor components. The coefficients

α1,α2 and α0, all scalar functions of the stress invariants (I1, J2, θ), are given as

α1 =
∂Ω

∂I1
= [2N1

9
I1 +

2N2

3
√
3

√
J2] (22)

α2 =
∂Ω

∂J2
= [ N2

3
√
3
I1

1√
J2
+ 4

3
N3] (23)

α0 =
∂Ω

∂θ
= [ 2

3
√
3
I1
√
J2N4 +

4

3
J2N5] (24)
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Expressions for the tangent compliance tensor components, Dijkl = ∂εij
∂σkl

in general coordinates

are derived as follows:

Dijkl = aδijδkl + b [δikδjl −
δijδkl

3
] + c [δijδkl + δklδij]

+ d [δijTkl + δklTij] + e(δijδkl) + f[TijTkl]

+ (g + h)[SijTkl + SklTij] + α0
∂2θ

∂σij∂σkl

(25)

where

a = 2
9
N1; b = α2; c = 1

3
√
3
N2

1√
J2
; d = 2

3
√
3
N4

√
J2;

e = −1
6
√
3
N2

I1

J
3
2
2

; f = −2
3
√
3
N2I1

√
J2 + 4

3
N5J2;

g = 1

3
√
3
N4

I1√
J2
; h = 4

3
N5

Also

Tij =
3
√
3

4 sin 3θ

J3

J
5
2

2

Sij −
√
3

2J
3
2

2 sin 3θ
SirSrj +

1√
3 sin 3θ

1√
J2
δij (26)

where SirSrj = Si1S1j + Si2S2j + Si3S3j

and

∂Tij

∂σkl
= −15

√
3

8

1

sin 3θ
J3Sij

1

J
7
2

2

Skl

+ 3
√
3

4

1

sin 3θ

Sij

J
5
2

2

(SkrSrl −
2

3
J2δkl)

+ 3
√
3

4 sin 3θ

J3

J
5
2

2

(δikδjl −
1

3
δijδkl) −

9
√
3

4

J3

J
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2

2

Sij

cot 3θ csc 3θTkl +
3
√
3

4 sin 3θ
SirSrj

1

J
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2

2

Skl +
3
√
3

2

SirSrj

J
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2

2

cot 3θ csc 3θTkl −
√
3

2J
3
2

2 sin 3θ
[Si1(δ1kδjl

−
δ1jδkl

3
) + S1j(δikδ1l −

δi1δkl
3
) + Si2(δ2kδjl

−
δ2jδkl

3
) + S2j(δikδ2l −

δi2δkl
3
) + Si3(δ3kδjl

−
δ3jδkl

3
) + S3j(δikδ3l −

δ3jδkl

3
)] − 1

2
√
3
δij

1

sin3θ

1

J
3
2

2

Skl −
√
3√
J2

cot 3θcsc3θTklδij

(27)
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The expressions for N1, N2, N3, N4, N5 and N6 are as follows:

N1 =
1

2
(D11 +D22 +D33) +D23 +D13 +D12 (28a)

N2 = N2a cos θ +N2b sin θ (28b)

N2a =D11 −D23 −
D22

2
+ D31

2
+ D12

2
− D33

2
(28c)

N2b =
√
3

2
(D22 −D31 −D33 +D12) (28d)

N3 = N3a +N3b cos 2θ −N3csin2θ (28e)

N3a =
3

8
(D22 +D33 − 2D23) (28f)

N3b =
1

4
(2D11 −D22 −D33 − 2D12 + 4D23 − 2D31) (28g)

N3c =
√
3

8
(D22 −D33 − 2D12 + 2D31) (28h)

∂N2

∂σij
= N4Tij

N4 = N2b cos θ −N2a sin θ (28i)

∂N3

∂σij
= N5Tij (28j)

N5 = −2N3c cos 2θ − 2N3b sin 2θ (28k)

∂N5

∂σij
= N6Tkl (28l)

N6 = (4N3c sin 2θ − 4N3b cos 2θ) (28m)

It can be observed that θ, I1 and J2 are homogeneous functions of order zero, one and two

of the stress tensor components. Consequently, compliance tensor components Dijkl, strain

tensor components εij and the complementary energy function Ω respectively are functions

positively homogeneous of order zero, one and two of the stress tensor components. In view of

Euler’s theorem for such functions,

∂εij

∂σkl
σkl =Dijklσkl = εij (29)

∂Ω

∂σij
σij = εijσij = 2Ω (30)

The first of the above equations implies the equality of the secant D̄ijkl and tangent Dijkl

compliance tensor coefficients. The second equation proves the validity of the Clayperon’s the-

orem. Conventionally, these statements are considered to be valid only for linear mechanical
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systems. Here, the validity of these statements has been proved even for a class of nonlinear

mechanical systems. Also, under proportional stress variations, the damaged concrete has con-

stant compliance tensor coefficients and behaves as a linear elastic solid. Damaged concrete is

shown to exhibit nonlinear behaviour only under non-proportional stress variations resulting in

rotation of principal stress and strain directions. However, even the non-proportional variation

of purely normal stresses is not accompanied by material nonlinearity.

In terms of the secant compliance tensor D̄ijkl, the constitutive equation for the damaged

concrete can be restated as

εij = D̄ijklσkl (31)

On incremental loading, the strain increments are obtained as

dεij = D̄ijkldσkl + σkldD̄ijkl (32)

As per Dougill [12] and [13], the strain increments are contributed by stress increments as well

as by stiffness degradation. Also, in terms of tangent compliance matrix Dijkl,

dεij =Dijkldσkl (33)

As D̄ijkl = Dijkl, a comparison of Equations (32) and (33) implies that the variation of the

compliance tensor coefficients under incremental loading does not result in additional strain

increments. The validity of this conclusion is restricted to stress variations within the current

damage surface wherein the value of the damage parameter remains constant. As shown in

the next section, such is not the case when the material is loaded beyond the current damage

surface.

5 INELASTIC CONCRETE UNDERGOING DAMAGE

At the current damage surface, the state of strain is determined by the current state of stress

and the extent of damage suffered affecting the compliances. Thus,

εij = εij (σkl, ω) (34)

On application of stress increments resulting in additional damage, the strain increments in-

troduced are obtained as

dεij =
∂εij

∂σkl
dσkl +

∂εij

∂ω
dω (35)

As complementary energy, Ω, is the continuous function of σij and ω, one can write

∂εij

∂ω
= ∂

∂ω
( ∂Ω
∂σij
) = ∂Z

∂σij
(36)

where Z = ∂Ω
∂ω

is complementary energy release rate playing the role of complementary energy

conjugate of the damage parameter ω.
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The loading function for the damaged concrete is stated as

f = f (σij , ω) (37)

Adopting an approach followed by many researchers, the consistency condition implies [31]

df = ∂f

∂σkl
dσkl +

∂f

∂ω
dω = 0 (38)

which gives

dω = − 1
∂f
∂ω

∂f

∂σkl
dσkl (39)

In view of expressions (35) and (39), the incremental constitutive equation for concrete suffering

incremental damage is stated as

dεij =Ded
ijkldσkl (40)

where the elastic-damage compliance tensor Ded
ijkl turns out to be

Ded
ijkl =Dijkl −

1
∂f
∂ω

∂Z

∂σij

∂f

∂σkl
(41)

Since the functions Z and f are distinct, the tensor Ded
ijkl turns out to be asymmetric.

Also, using Equation (36), the component of the strain increment associated with damage

increment is determined as follows:

dεdij =
∂εij

∂ω
dω = dλd

∂Z

∂σij
(42)

where the scalar multiplier is obtained as

dλd = dω = −
1
∂f
∂ω

∂f

∂σkl
dσkl (43)

Thus, the function Z has been shown to play the role of the damage potential and the damage

parameter increment dω itself plays the role assigned to the scalar multiplier dλd in the flow

theory of plasticity. Since the damage potential Z(σij , ω) happens to be distinct from the

damage function f(σij , ω), the material is said to obey non-associative ’flow’ rule stated in

Equation (42). This fact implies the asymmetry of the tangent elastic-damage compliance

tensor as already established.

6 RESULTS AND PREDICTIONS OF THE PROPOSED ELASTIC DAMAGE MODEL

The mechanical behaviour of purely elastic gradually fracturing solids has been studied by

Dougill [13] [12]. With the intention of comparing the efficacy of the proposed model with

that of Dougill’s, the mechanical behaviour of purely elastic concrete subjected to diverse pro-

portional loading and unloading cycles has been presented in Figures (9, 10, 11, 12). The
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predicted loading, unloading and reloading behavior has been shown in these figures for differ-

ent values of the hardening parameter such as κ = 0.65,0.85 and 1. From the Figure (9), it can

be observed that, like Dougill’s gradually fracturing solid, there is no permanent strain/plastic

strain in unloading curve in uniaxial compression. For every value of the hardening parameter,

the unloading curves reach the zero strain point and again upon reloading, it traces the path

of the previous load path. Similarly, equal and unequal biaxial compression, and triaxial com-

pression followed by unloading from different damage surfaces have been presented in Figures

(10, 11, 12) for different values of the hardening parameter.
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Figure 9 Loading, unloading and reloading in uniaxial compression (0,0,−1.0)
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Figure 10 Loading, unloading and reloading in equal biaxial compression (0,−1.0,−1.0)
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Figure 11 Loading, unloading and reloading in unequal biaxial compression (0,−0.52,−1.0)
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Figure 12 Loading, unloading and reloading in triaxial compression (−0.52,−0.52,−1.0)

In each loading, unloading and reloading case the concrete behaves in a similar fashion

to the theory of progressively fracturing solids proposed by Dougill. It can be observed that

the stiffness degradation introduced by damage renders the material nonlinear during loading
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even for proportional increase in stresses. Upon unloading, concrete is shown to exhibit energy

dissipation but without any irreversible strains. Also, the material can be observed to exhibit

stiffness degradation upon loading. In other words, the material stiffness upon unloading and

reloading is obtained to be lesser than that of the intact undamaged concrete. Stiffness degra-

dation suffered by the material is higher upon unloading from the current fracturing surface

with higher value of damage associated with higher value of hardening function. From Fig-

ure 12, concrete can be observed to exhibit little stiffness degradation in triaxial compression.

These predictions of the proposed model imply its similarity to Dougill’s model for gradually

fracturing solids [13] and [12].

Likewise, for all these stress histories, the material response upon unloading and reloading

remains linear elastic. Such happens to be the case only because, in these examples, unloading

has been achieved along proportional stress path. The proposed model is indeed capable of

predicting nonlinear elastic behaviour within the current damage surface. It has been shown

that the damaged concrete is nonlinear elastic solid. Obviously, the principle of superposition

is not expected to be valid. The material response under non-proportional stress variations

has been shown in Figure (13). A particular state of stress denoted by point A (σ33

f ′c
= 0.5)

is reached through proportional load path. The stress increments for the path segment AB

(point B:(σ33

f ′c
= 2.6) ) have been chosen to be different from those for the segment OA. It can be

observed for the proportional load path OA, the strains are proportional to the stresses. Such a

proportional stress-strain variation is absent in the non-proportional load path AB. However,

as for each path segment, the respective stress increments are kept same, the stress-strain

curves OA and AB are straight lines.

Figure 13 Response to monotonic loading along non-proportional stress paths
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7 DISCUSSION AND INTERPRETATION

The extent and pattern of damage as well as the consequence stiffness degradation suffered by

quasi-brittle material like concrete depends on the load history. It is well known that tensile

stresses inflict more damage on concrete than do compressive stresses of the same magnitude.

In the present paper, the extent of damage is quantified by the value of the scalar damage

parameter ω. For any history of loading, the relevant value of the scalar damage parameter

depends upon the maximum value of the hardening function κ which, in turn, is uniquely

determined by the stress history via damage function. Thus, the extent of damage suffered

by concrete is a continuous function of the monotonically increasing stresses. It is predicted

here that concrete does not suffer any damage until the initial damage surface is reached.

This occurs under a uniaxial tensile stress, pure shear stress, uniaxial compressive stress, equal

biaxial compressive stress and hydrostatic pressure of magnitude 0.0902f
′

c, 0.0783f
′

c, −0.2972f
′

c,

−0.7276f
′

c and −4.0837f
′

c respectively for concrete of grade f
′

c.

Likewise for the first four stages of stress, the maximum damage ω0 is predicted to occur at

peak stresses of magnitude 0.1f
′

c, 0.1008f
′

c, −f
′

c and −1.16f
′

c respectively, whereas such a stage is

never reached under hydrostatic pressure. The explanation for the damage suffered by concrete

under applied hydrostatic pressure lies in complex non-hydrostatic state of micro-stresses in the

porous heterogeneous material like concrete. Thus, in compatibility with the empirical data

on concrete [22], stress histories with dominant tension are predicted to cause more damage

in it. As stated earlier, the scope of the paper is restricted to pre-peak behaviour of concrete.

Some researchers [4] and [22] have questioned the validity of employing the continuum damage

approach to the post-peak stage.

When subjected to general load history, concrete is known to suffer anisotropic damage in

the form of oriented micro-cracks. As such, damaged concrete is an anisotropic elastic solid in

response to general applied states of stress resulting in microcraks activated or deactivated in

all directions. In the present paper, concrete is assumed to suffer only isotropic damage under

all load histories. As such, the scope of validity of the proposed constitutive model is restricted

only to hydrostatic stress histories causing isotropic damage. However, as argued below, the

proposed model can still be applied for more general stress histories.

For the case of proportional monotonic loading, the distinction between the stress history

and current state of stress is obliterated. This is because of the fact that, in such cases, the

current state of stress fully characterizes the stress history as well. Let it be reiterated that

the proposed model predicts isotropic damaged concrete when subjected to spherical tensile or

compressive states of stress. The model predicts isotropic damaged concrete when the principal

stresses differ slightly from each other whereas non-spherical states of stress are known to

transform concrete into an anisotropic solid. However, the error in the model predictions does

not increase with increase in the difference between the major and minor principal stresses.

For understanding this claim, one has to recognize the bimodular nature of the isotropically

damaged concrete.

The isotropically damaged concrete is predisposed to possess two values of Young’s moduli

of elasticity. Which one of these is excited in any particular principal acoustic axis depends
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upon the sense of the corresponding principal strain. As the difference between the principal

stresses in the above case increases, one of the principal strains assumes a sense different from

the other two. This renders even the isotropically damaged concrete transversely isotropic.

The axis of rotational symmetry is oriented along either the major or minor principal stress

which differs more from the intermediate principal stress whereas the plane of isotropy is

constituted by the remaining two principal stresses differing from slightly each other. For such

monotonic proportional stress histories, the damaged concrete has been observed to behave

as orthotropic solids. However, the Young’s moduli of elasticity in the directions of principal

stresses with slightly different magnitudes do not differ much.

Thus, even though, in this paper, concrete has been assumed to suffer only isotropic damage

for all stress histories, the elastic response of concrete subjected to monotonic proportional

loading as predicted by the proposed model is quite satisfactory. Most of the experimental

data on concrete pertains only to such stress histories. Such happens to be the case even

for concrete in structures subjected to single dominant load combinations. Concrete is rarely

subjected to triaxial tensile strains. It has been observed that concrete subjected to triaxial

compressive stress histories suffers damage with little anisotropy [4]. Thus, from practical

considerations, modelling of damaged concrete in Case I and Case IV as an isotropic linear

elastic solid is justified to a certain extent. In the remaining two cases characterized by

principal strains of mixed sense, damaged concrete is predicted to exhibit transverse isotropy

in place of actual general anisotropy. Using the above quoted arguments by Badel et al. [4],

the stiffness in the directions of principal strains of same sense is expected to be more or less

equal, thus practically reducing the observed orthotropy to transverse isotropy as predicted by

the proposed model.

In this paper, the isotropically damaged concrete has been modelled as a bimodular

isotropic elastic solid. Material isotropy implies the co-axiality of the principal stresses and

strain axes for all the states of stress [23] and [14]. For principal strains of the same sense, the

material behaves as an isotropic linear elastic solid, albeit with different with different elastic

constants in triaxial tension and compression. Stiffness recovery under compression is only

partial due to tortuousity of microcracks resulting in softening even in the direction parallel

to microcracks [29].

It has been provided in this paper, that damaged concrete subjected to a state of stress

resulting in principal strains of mixed sense is a non-linear elastic solid. For such a case, the ma-

terial compliance tensor components and strain tensor components are functions non-negatively

homogeneous of order zero and one of the stress tensor components. These conclusions are

confirmed in constitutive models premised upon entirely different approach. For example, the

effective secant stiffness matrix components derived by Kuna-Ciskal and Skrzypek for the plane

stress case can be seen to be functions of the ratios of the strain tensor components [17]. For

similar plane stress case, investigated by Challamel et al. [8], the stress tensor components

can be observed to be first order homogeneous functions of the strain tensor components.

In this paper, it has been shown that damage affects only the diagonal components of the

material stiffness tensor Cij . This conclusion is confirmed by other researchers as well [17]. This
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fact is intimately linked to the desired continuity of the stress-strain relation as and when one

of the principal strains undergoes change of sense [27]. It is argued here that such qualitative

evidence of compatibility between the proposed model and some well-established models, rather

than mere empirical validation, constitutes a stronger proof of the basic soundness of the

proposed model.

When all the principal strains are not of the same sense, the damaged concrete exhibits

transverse isotropy [19]. Coincidence of the axis of rotational symmetry with the orientation

of the axis of principal strain of distinct sense results in reduction of number of independent

elastic constants to four. This is in contrast to the five independent elastic constants required

to characterize the conventional transversely isotropic solid. Further reduction to three inde-

pendent elastic constants is achieved by requiring the continuity of strain energy and principal

stresses with change in the sense of the principal strains.

As a matter of fact, no elastic constants other than those of the undamaged concrete are

required to describe the behaviour of the damaged concrete. Such happens to be case because

the applied stress history can be used along with the proposed damage function to obtain the

value of the scalar damage parameter. Thus, in contrast to some other constitutive model

requiring many material parameters [4], it is to credit of the proposed constitute model for

elastic damage of concrete that no further empirical calibration is required.

To recapitulate, the post-peak softening behaviour of the elastic solid undergoing damage

lies outside the scope of the proposed local elastic damage model. Softening is shown to result

in shear localisation, size effect, non-uniqueness of solutions of quasi-static boundary value

problems, non-existence of solution of initial value problems such as wave propagation, mesh

dependence of computed behaviour, etc. Non-local damage models have been found to be

quite promising for investigating such important aspects of material behaviour [5]. Also, a

constitutive model based on gradient of damage measure as a state variable has been shown

to provide a satisfactory description of the strain softening phenomenon [24]. Clearly, there

is a scope for extending the proposed elastic damage model to incorporate such softening

behaviour.

8 CONCLUSIONS

A model for damage-induced bimodularity for concrete has been developed. A scalar damage

variable has been employed to quantify the extent of isotropic damage suffered by concrete.

Stress-strain relations for damaged concrete within damage surface have been presented. The

proposed elastic damage model resembles the Dougill’s theory of gradually fracturing solids.

It is premised on, but is distinct from, the Green-Mkrtichian theory of isotropic bimodular

solids. The validity of the proposed elastic damage model is restricted only to isotropically

damaged bimodular concrete undergoing small deformation. Still, the model predicts more

damage in tension than in compression. Also, for the same extent of damage caused by some

stress history, the stiffness degradation under tensile stress as applied on the damaged solid is

more than that for the compressive stresses. For states of stress resulting in principal strains of
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mixed sense, the damaged concrete has been shown to be transversely isotropic. Constitutive

equations for the damaged elastic concrete as well as for concrete undergoing damage has been

explicitly stated. The proposed model has been critically evaluated.

References
[1] T. M. Abu-Lebdeh and G. Z. Voyiadjis. Plasticity-damage model for concrete under multiaxial loading. J. Engrg.

Mech., ASCE, 119(7):1465–1484, 1993. http://ascelibrary.aip.org/dbt/dbt.jsp?KEY=JENMDT.

[2] R. R. Babu. Elastoplastic-damage constitutive model for concrete. PhD thesis, Indian Institute of Technology Delhi,
2007.

[3] R. R. Babu, Gurmail S. Benipal., and A. K. Singh. Plasticity-based constitutive model for concrete in stress space.
Latin American J. Solids Struct., 3(4):417–441, 2006. http://www.lajss.org/index.php/LAJSS/article/view/112.

[4] P. Badel, V. Godard, and J. B. Leblond. Application of some anisotropic damage model to the predic-
tion of the failue of some complex industrial concrete structurs. Int. J. Solids Struct., 44:5848–5874, 2007.
http://www.sciencedirect.com/science/journal/00207683.

[5] Z. P. Bazant and J. Planas. Fracture and size effect in concrete and other quasibrittle materials. CRC Press, 1998.

[6] J. Bielski, J. J. Skrzypek, and H. Kuna-Ciskal. Implementation of a model of coupled elasto-plastic unilateral damage
material to finite element code. Int. J. Damage Mech., 15(1):5–39, 2006. http://ijd.sagepub.com/archive/.

[7] I. Carol and K. Willam. Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and
damage. Int. J. Solids Struct., 33(20-22):2939–2958, 1996. http://www.sciencedirect.com/science/journal/00207683.

[8] N. Challamel, C. Lanos, and C. Casandjian. Strain-based anisotropic damage modeling and unilateral effects. Int.
J. Mech. Sciences, 47(3):459–473, 2005.

[9] F. Cormery and H. Welmane. A critical review of some damage models with unilateral effect. Mech. Res. Com.,
29(5):391–395, 2002.

[10] A. Curnier, He. Qi-Chang, and P. Zysset. Conewise linear elastic materials. J. Elasticity, 37(1):1–38, 1994.

[11] R. Desmorat and S. Cantournet. Modeling microdefects closure effect with isotropic/anisotropic damage. Int. J.
Damage Mech., 17(65-96), 2008. http://ijd.sagepub.com/archive/.

[12] J.W. Dougill. Some remarks on path independence in the small in plasticity. Quarterly Appl. Math., 32:233–243,
1975.

[13] J.W. Dougill. On stable progressively fracturing solids. ZAMP, 27:423–437, 1976.

[14] Y. C. Fung. Foundations of solid mechanics. Prentice-Hall of India, New Delhi, 1968.

[15] A. E. Green and J. Z. Mkrtichian. Elastic solids with different moduli in tension and compression. J. Elasticity,
7(4):369–386, 1977.

[16] K. Kolari. Damage mechanics model for brittle failure of transversely isotropic solids: Finite element implementation.
PhD thesis, Helsinki Univ. of Oxford, 2007.

[17] H. Kuna-Ciskal and J. J. Skrzypek. Cdm based modelling of damage and fracture mecha-
nisms in concrete under tension and compression. Engrg. Fract. Mech., 71(4-6):681–698, 2004.
http://www.sciencedirect.com/science/journal/00137944.

[18] P. Ladeveze and J. Lemaitre. Damage effective stress in quasi-unilateral conditions. In 16th Int. Congress of
Theoretical and Applied Mechanics, Lyngby, Denmark, 1984.

[19] S. G. Lekhnitskii. Theory of Elasticity of an anisotropic body. Mir Publishers, 1981.

[20] J. Lemaitre. A Course on damage mechanics. Springer Verlag, Berlin, 1998.

[21] A. Litewka, J. Bogucka, and J. Debinski. Analytical and experimental study of damage induced anisotrpy of concrete.
pages 185–222. Springer, 2003.

[22] A. Litewka, J. Bogucka, and J. Debinski. Load induced oriented damage and anisotropy of rock-like materials. Int.
J. Plasticity, 19:2171–2191, 2003. http://www.sciencedirect.com/science/journal/07496419.

Latin American Journal of Solids and Structures 7(2010) 143 – 166



166 R.R. Babu et al / Constitutive model for bimodular elastic damage of concrete

[23] L. E. Malvern. Introduction to the mechanics of a continuous medium. Prentice-Hall, NJ, 1969.

[24] H. C. Mattos, M. Fremond, and E. N. Mamiya. A simple model of the mechanical behavior of ceramic-like materials.
Int. J. Solids. Struct., 29(24):3185–3200, 1992. http://www.sciencedirect.com/science/journal/00207683.

[25] J. Mazars. A description of micro- and macroscale damage of concrete structures. Engrg. Fract. Mech., 25(5-6):729–
737, 1986. http://www.sciencedirect.com/science/journal/00137944.

[26] J. Mazars and G. Pijaudier-Cabot. Continuum damage theory – application to concrete. J. Engrg. Mech., ASCE,
115(2):345–365, 1989. http://ascelibrary.aip.org/dbt/dbt.jsp?KEY=JENMDT.

[27] S. Murakami and K. Kamiya. Constitutive and damage evolution equations of elastic-brittle materials based on
irreversible thermodynamics. Int. J. Mech. Science, 39(4):473–486, 1997.

[28] G. D. Nguyen and G. T. Houlsby. A coupled damage-plasticity model for concrete based on thermodynamic principles:
Part I: model formulation and parameter identification. Int. J. Num. Analytical Methods Geomech., 32(4):353–389,
2008.

[29] M. Ortiz. A constitutive theory for inelastic behavior of concrete. Mech. Mater., 4(1):67–93, 1985.
http://www.sciencedirect.com/science/journal/01676636.

[30] S. P. B. Proenca and J. J. C. Pituba. A damage constitutive model accounting for induced anisotropy and bimodular
elastic response. Latin American J. Solids Struct., 1:101–117, 2003. www.lajss.org.

[31] J. C. Simo and J. W. Ju. Strain and stress based continuum damage models - I. Formulation. Int. J. Solids. Struct.,
23(7):821–840, 1987. http://www.sciencedirect.com/science/journal/00207683.

[32] J. Skrzypek and H. Kuna-Ciskal. Anisotrpic elastic-brittle-damage and fracture models based on orreversible thermo-
dynamics. In Skrzypek J. and A. Ganczarski, editors, Anisotropic behaviour of damaged materials, pages 143–184.
Springer, 2003.

[33] W. Suaris, C. Ouyang, and V. M. Fernando. Damage model for cyclic loading of concrete. J. Engrg. Mech., ASCE,
116(5):1020–1035, 1990. http://ascelibrary.aip.org/dbt/dbt.jsp?KEY=JENMDT.

[34] J. Y. Wu, J. Li, and R. Faria. An energy release rate-based plastic-damage model for concrete. Int. J. Solids Struct.,
43:583–612, 2006. http://www.sciencedirect.com/science/journal/00207683.

[35] S. Yazdani and H. C. Schreyer. Combined plasticity and damage mechanics model for plain concrete. J. Engrg.
Mech., ASCE, 116(7):1435–1450, 1990. http://ascelibrary.aip.org/dbt/dbt.jsp?KEY=JENMDT.

Latin American Journal of Solids and Structures 7(2010) 143 – 166


