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Abstract 

The Rayleigh-Ritz-Meirovitch substructure synthesis method 

(RRMSSM) is extended to buckling analysis in framed structures. 

The objective is a computational procedure capable of yielding 

very accurate critical loads through solution of very-low-order 

eigenvalue problems. In this regard, numerical examples demon-

strate that the convergence characteristics of the proposed 

RRMSSM for stability analysis are superior to those associated 

with the finite element method. 
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1 INTRODUCTION 

A perpetual goal of Computational Mechanics is the development of approximate methods that 

produce highly accurate results –critical loads in Structural Stability– and that involve low num-

bers of degrees of freedom. When the analyst’s demands are those both, high accuracy and low-

order models, the finite element method is not the most efficient in some Computational Mechan-

ics instances (Meirovitch & Kwak 1990, Meirovitch & Kwak 1991, Morales 2000a). 

 The Rayleigh-Ritz substructure synthesis method (Meirovitch & Hale 1981) with 

quasicomparison functions (Meirovitch & Kwak 1990) was presented compoundly by Meirovitch 

and Kwak (1991). Several investigations on applications of this methodology to Structural Dy-

namics have shown the superiority of the convergence characteristics of the technique when it is 

compared with the finite element method (FEM), and when the structures can be modeled as 

assemblages of simple substructures (Meirovitch & Kwak 1991, Morales 2000a, Morales 2000b, 

Morales 2009). Two reasons for this success of the methodology: 1) the structure is divided into 
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its natural and intuitive substructures or superelements and, principally 2) the selection of admis-

sible functions that are related to the dynamics problem being solved and that make up a 

quasicomparison function. This new technique is referred to as Rayleigh-Ritz-Meirovitch sub-

structure synthesis method (RRMSSM) (Morales 2009). 

 As it is noted, this RRMSSM has been developed and applied to carry out dynamic analysis, 

that is, to obtain natural frequencies and modes (eigensolution); because it has been successful in 

the analysis of some structures such as frames, the question is if it would also be highly efficient 

in other Structural Mechanics problems involving frames, as stability analysis. It is also noted 

that the main reason for the achievement is the idea of quasicomparison function (QCF), it has 

been lately redefined as a linear combination of admissible functions (AF) that is capable of satis-

fying the complementary boundary conditions (Morales & Goncalves 2007), the implication is that 

the AF should be from different families of functions. 

 In this paper, therefore, extension of Rayleigh-Ritz-Meirovitch substructure synthesis to buck-

ling analysis in frames is investigated. The energy or static approach to stability is considered 

herein (Bazant & Cedolin 1991); previously, the vibration or dynamic approach to stability was 

considered; nonetheless, this methodology (synthesis through the dynamic method) involves two 

converging processes which make it very cumbersome (Morales & Ciaccia 2007). The objective of 

the present work is a computational procedure able to yield very accurate critical loads through 

solution of very-low-order eigenvalue problems; in other words, to solve the unwieldiness of the 

dynamic method. It is reported that the goal has been obtained: examples prove that the conver-

gence characteristics of this proposed RRMSSM for buckling analysis, are superior to those asso-

ciated with the FEM. 

 Even though the particular literature review on the RRMSSM is straightforward as basically 

Meirovitch, Morales and collaborators have worked on this method, a related-subject and recent 

literature review has been conducted. Areny et al. (2011) have also worked on linear structural sta-

bility using substructuring; nevertheless, the concentration was on a new uncertainty propagation 

method based on the concept of lack of knowledge, which comes from the field of Model Updating; 

interestingly, there is an application of the RRMSSM in Model Updating (Halevi et al., 2005). 

Rahman and Alam (2014) have dealt with buckling in hybrid piezoelectric beams under electrome-

chanical load; on the other hand, da Mota et al. (2015) have worked on nonlinear stability of piles 

subjected to bilateral contact constraints underground. In these two cases, the FEM is by far the 

preferred method; in the first case the coupled zig zag theory is the basis for the FEM. Finally, Sinir 

et al. (2014) have studied buckling in Euler-Bernoulli beams with elastic supports and considering 

the von Kármán nonlinearity. 

 
2 RRMSSM FOR FRAME STABILITY 

The expansion of the RRMSSM to buckling analysis in framed structures is studied. As previous-

ly indicated, the RRMSSM has been a dynamic analysis technique; because the static or energy 

approach to stability is considered in this work (Bazant & Cedolin 1991), the procedure will have 

modifications that are studied or will arise in this section. A two-dimensional representative of 

this type of structures is shown in Fig. 1; nonetheless, the following analysis is valid for three-
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dimensional frames; indeed, more general structures can be negotiated as long as the system can 

be modeled as an assemblage of simple substructures (Meirovitch & Kwak 1991, Morales 2000a). 

The principal concern is the computational efficiency of the method with regard to attainment of 

the first critical load Pcr. 

 The definition of the algebraic (or matrix) buckling eigenvalue problem of a general structure, 

an approximation to the actual differential eigenvalue problem, requires the derivation of the 

stiffness matrix of the structure, which can be in turn obtained through its potential energy ex-

pression; nonetheless, in the case of frames or multiply supported structures what it is dealt with 

at the outset is the potential energy of a partially disjoint structure, Vd; the disjoint structure is 

afterward fully coupled by enforcing the geometric compatibility conditions that have not been 

considered. 

 In the spirit of a generalized Rayleigh-Ritz theory (Meirovitch & Hale 1981), the elastic de-

formation vector in a substructure is assumed in the form of a finite series of vectors of space-

dependent admissible functions (AF) multiplied by generalized coordinates. Therefore, the sub-

structure deformation field can be expressed as 
 ������ = ∑ ��	
��� ����		��	 = ������		��																										� = 1,2,… , �    (1) 
 

where rs is the substructure position vector, ��	 are 3-order vectors of AF, ΦΦΦΦs is a 3×ns matrix of 

AF and qs is a vector of substructure generalized coordinates; lastly, ns is the number of sub-

structure coordinates and N is the number of substructures; in vibrations, the coordinates vector 

is time-dependent, this is the first difference or modification to note in relation to previous work. 

Now, AF must satisfy certain conditions for each of the 3 components of us to qualify as a 

quasicomparison function (QCF) which in turn insures the extraordinary convergence characteris-

tics previously reported (Meirovitch & Kwak 1990, Meirovitch & Kwak 1991, Morales 2000a, 

Morales 2000b, Morales 2009, Morales & Goncalves 2007). In fact, each ΦΦΦΦs row must include 

functions from different families; more precisely or as indicated in the Introduction, a QCF is a 

linear combination of AF that is able to satisfy the complementary boundary conditions (Morales 

& Goncalves 2007, Baruh & Tadikonda 1989). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Framed structure under load. 
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Now, the QCF vectors us are to be introduced into the disjoint potential energy expression Vd, 

this lets us write this energy as ����� = ����� 	�����	��             (2) 
 

which brings in the disjoint stiffness matrix Kd(P). Two more fundamental differences between 

the original RRMSSM for dynamic analysis (Meirovitch & Kwak 1991, Morales 2000a) and this 

RRMSSM for stability analysis, first, herein kinetic energies are no longer relevant, secondly, the 

dependence here of the stiffness matrix on the load P. qd is the m-order disjoint configuration 

vector, �� = ���� ��� … ��� ��            (3) 
 

Next, the stiffness matrix of the assembled or actual structure is obtained by imposing the com-

patibility conditions not satisfied up to this point in the analysis. These conditions yield linear 

equations in the components of qd; naturally, if there are j such constraint equations, the assem-

bled structure has finally n = m - j degrees of freedom (DOF). Hence, if q is the chosen n-order 

vector of independent generalized coordinates of the coupled structure, its relation with the dis-

joint configuration vector can be written in the form 
 �� =  �               (4) 
 

where C is a sparse m × n constraint matrix. This equation is introduced into eq. 2 to get the 

potential energy of the assembled structure, and thus the structure’s stiffness matrix as 
 ���� =  ������              (5) 
 

But in elastic buckling the stiffness matrix, either disjoint or actual, can be separated into elastic 

and geometric stiffness matrices, ���� = �! − �#���           (6a) 
 ����� = ��,! − ��,#���          (6b) 

 

An interesting note is that in the literature there are diverse equivalents for elastic when dealing 

with Ke, material, conventional, standard, linear and even mechanical can be read; in the case of 

Kg there is not much consensus either, initial-stress, incremental, differential, load-geometric and 

stability-coefficient are ‘synonyms’ for geometric. 

 Finally, recalling that the condition of instability or critical load is (Bazant & Cedolin 1991, 

Chajes 1974) det	���� = 0              (7) 
 

and that Kg is a linear function of the load P, the stability algebraic eigenvalue problem can be 

written as �!� = ��#∗�              (8) 
 

which is a Rayleigh-Ritz approximation to the actual differential eigenproblem of the framed 

structure. The eigensolution –critical loads (eigenvalues) and buckling modes– is attained by a 

converging process in which the number ns of vectors of AF in eq. 1 is increased continuously, for 



2622      J. I. Colombo and C. A. Morales / Quasicomparison Functions for Frame Stability Analysis 

Latin American Journal of Solids and Structures 12 (2015) 2618-2630 

 

each substructure. A main difference between this static approach and the dynamic one (Morales 

& Ciaccia 2007) is that in the latter, two distinct converging processes are involved which make it 

unwieldy; as indicated before, to correct this is an objective of this paper. 

 
3 APPLICATIONS AND RRMSSM AND FEM CONVERGENCE COMPARISON, RESULTS 

The proposed buckling analysis method is applied to two structures. The simple one is a two-span 

continuous beam, shown in Fig. 2, it is clamped at one end and simply supported at an interme-

diate point and the other end. In this case there definitely are two natural and intuitive substruc-

tures or superelements. As explained in the theoretical or last Section, the first part of the proce-

dure is the derivation of the structure’s potential energy. It is just easier to start with a disjoint 

structure potential energy, 
 

�� = 12)* +, -.�/�.0�� 1
� −23

4
� 5./�.0�6

� .0� +* +, -.�/�.0�� 1
� −28

4
� 5./�.0�6

� .0�9																�9� 
 

where L1 and L2 are the lengths of the two spans, EI is the flexural rigidity of the beam and y1 

and y2 are the substructures elastic deformations. The local rigid-body axes, x1 and x2, over which 

elastic deformation occurs, are shown in Fig. 3. 

 

 

 

 

 

Figure 2: Loaded two-span continuous beam. 

 

Figure 3: Deformed beam. 

 

Next, the elastic deformation of each substructure is expressed in terms of quasicomparison func-

tions (QCF) as follows 
 /��0�� = ;��0����																				/��0�� = <��0����            (10a,b) 
 

where f and g are vectors of admissible functions (AF); recall that AF satisfy only geometric 

boundary conditions (Meirovitch 1997); in the case of frames, substructural AF should satisfy the 

substructure geometric boundary conditions (GBC). Now, it was pointed out that selected AF 

must be related to the mechanics problem under consideration; thus, in the case of frame buckling 

beam-column eigenfunctions represent an unbeatable alternative; more importantly, if AF are to 

P 

1 2 
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be combined into a QCF, this linear combination must be capable of satisfying the complemen-

tary boundary conditions (CBC) (Morales & Goncalves 2007). 

 A thorough explanation of the function families selection process is necessary. First, the prima-

ry and inviolable substructural GBC are:  
 /��0� = 0															 ./�.0� �0� = 0															/��=�� = 0																													(11a-c) 

/��0� = 0															/��=�� = 0              (12a,b) 
 

Thus, in the case of the first beam the basic or admissibility requisite demands that each family 

making up the QCF be characterized by a clamped left end; notice that the other standard beam 

end conditions: free, pinned and sliding, do not satisfy both GBC. At the other boundary, x1=L1, 

there is only one GBC to be satisfied, and this can be done with either a pinned or clamped 

boundary. Because the QCF concept demands at least or just two families of functions, the prob-

lem for the first beam seems solved; it is, the final word or reason is that the mixture of clamped-

pinned plus clamped-clamped is able to satisfy the CBC which can be expressed as 
 .�/�.0�� �0� ≠ 0								 .?/�.0�? �0� ≠ 0								 ./�.0� �=�� ≠ 0								 .�/�.0�� �=�� ≠ 0								 .?/�.0�? �=�� ≠ 0					(13a-e) 

 

It has to be emphasized that the combination should just have the freedom to satisfy the CBC; it 

is not that the each function must satisfy all CBC, that is for GBC. 

 For the second beam, mere AF are defined by eq. 12 which imply that each family must be 

either pinned or clamped at each edge. Now and again, a genuine QCF or combination of two 

families of AF must be able to allow for the CBC to be satisfied, which are: 
 ./�.0� �0� ≠ 0								 .�/�.0�� �0� ≠ 0								 .?/�.0�? �0� ≠ 0								 ./�.0� �=�� ≠ 0								 .?/�.0�? �=�� ≠ 0								(14a-e) 

 

Because the fundamental GBC imply that there are only four possible families: pinned-pinned, 

pinned-clamped, clamped-pinned and clamped-clamped, 14c and 14e are disregarded because they 

are satisfied by any function of this remaining set. Now, at the left end we must have one AF 

pinned and the other clamped so that the QCF allows the possibility of the inequalities 14a and 

14b, respectively. Finally, at the right boundary both functions cannot be clamped because there 

would not be capability of satisfying 14d; consequently, the possible pairs of AF or combinations 

are: pinned-pinned plus clamped-clamped, pinned-clamped plus clamped-pinned and pinned-

pinned plus clamped-pinned. The last couple of families is chosen because it perfectly satisfies 
 .�/�.0�� �=��																																																																							�15� 
 

this is neither a GBC or a CBC, which are the sole preoccupations in the Rayleigh-Ritz-

Meirovitch method, but if we have the freedom or chance to satisfy it, one should take advantage 

of it as another type of worry is convergence speed. A more intuitive and less mechanistic reason 

is “because the actual end of the structure is pinned”. It could be argued that there is another 

GBC that was not considered around eqs. 11 and 12; indeed, the other GBC is: 
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./�.0� �=�� = ./�.0� �0�																																																													�16� 
 

Nonetheless, this is an example of constraint equations (previous theory) which are different from 

substructure GBC in that two or more substructures are involved, there is impossibility of being 

satisfied at the outset as consequence; nevertheless, this equation is considered in a necessary and 

subsequent constraining process as explained in Section 2. Regardless of this, the quasicomparison 

functions, eqs. 10, are conclusively defined through 
 ; = �BCD� BCC� BCD� BCC� BCD? 	…	�� 										< = �BDD� BCD� BDD� BCD� BDD? 	…	�� 	   (17a,b) 
 

where Ycp, Ycc and Ypp are the clamped-pinned, clamped-clamped and pinned-pinned beam-

column eigenfunctions (Colombo & Morales 2012a). 

 Next, substituting eqs. 10 into eq. 9, the disjoint potential energy can be expressed as 
 

�� = 12)* +,�;′′�����
23
4

− ��;′�����.0� +* +,�<′′�����
28
4

− ��<′�����.0�9												�18� 
 

or as eq. 2 after writing the various quadratic forms in matrix notation and integrating. Advanta-

geous, closed-form and interestingly simple results for the integrals involved have been obtained 

in this same research project and released earlier (Colombo & Morales 2012a). 

 Finally, the geometric compatibility conditions not satisfied up to this point in the analysis 

must be enforced by a constraining process. The slope compatibility between the beams at x1=L1 

(x2=0) has not been taken into account yet, that implies that the beams remain at a zero angle 

with respect to each other at that joint; the mathematical expression of this compatibility condi-

tion is the constraint equation 16. Inserting eqs. 10 into the constraint equation leads to 
 ;G��=���� = <G��0���             (19) 
 

which can be used to define the constraint matrix C by means of eq. 4; at the end, the assem-

bled-structure stiffness matrix is defined through eq. 5. 

 To corroborate the effectiveness of the proposed synthesis method for structural stability, we 

consider a continuous steel (E =2×1011 Pa) beam with the following characteristics: L1=2.6 m, 

L2=2 m and I =8.333 ×10-6 m4. The buckling problem is solved by both, the RRMSSM and the 

FEM; in the last case, beam elements with 2 DOF per node and cubic polynomials as interpola-

tion functions have been used; furthermore, we have a third approximate solution for the beam 

with this geometry (Bazant & Cedolin 1991). The convergence of the first critical load to 4 digits 

is shown in Table 1. 

 It can be concluded that, for a given accuracy, the solution yielded by the RRMSSM requires 

appreciably fewer DOF than a solution produced by the FEM; to be specific, 4-digit convergence 

is achieved with just 7 DOF by means of the synthesis method; in contrast, thru the application 

of the FEM that accuracy level is achieved with 50 DOF. The other or third approximate method 

mentioned above may lead to erroneous loads in some cases, as discussed in the reference (Bazant 

& Cedolin 1991). 
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 The other studied structure is the symmetrically-loaded portal frame such as the one shown in 

Fig. 4. Naturally and intuitively, there are 3 substructures in this case. A disjoint potential ener-

gy, of an L-shaped structure plus a cantilever column, is 

 

�� = 12)*+,C -.�/�.0�� 1
� −2

4
� 5./�.0�6

� .0� +*+,H -.�/�.0�� 1
� .0�I

4
																																						

+ *+,C -.�/?.0?� 1
� −2

4
� 5./?.0?6

� .0?9																																																																																						�20� 
 

where L and EIc, and l and EIb are the length and flexural rigidity of the columns and beam, 

respectively; the local rigid-body axes, xi, are shown in Fig. 5. The elastic deformations are ex-

pressed in terms of QCF as follows 

 /��0�� = ;��0����																				/��0�� = <��0����																				/?�0?� = ;��0?��?        (21a,b) 

 
 

n P [kN] 

 RRMSSM FEM 

1 450.6  

2  578.2 

3 447.8  

5 447.7  

6  454.2 

7 447.6  

9 447.6  

10  449.1 

14  448.1 

18  447.8 

22  447.7 

26  447.7 

30  447.7 

34  447.7 

38  447.7 

42  447.7 

46  447.7 

50  447.6 

 

Table 1: Continuous beam critical load convergence. 



2626      J. I. Colombo and C. A. Morales / Quasicomparison Functions for Frame Stability Analysis 

Latin American Journal of Solids and Structures 12 (2015) 2618-2630 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Loaded portal frame. 

 

 
 

Figure 5: Deformed portal frame. 

In this case, the untouchable and primary substructural GBC are: 

 /��0� = 0															 ./�.0� �0� = 0																																																			�22a, b� 
 /��0� = 0															/��L� = 0          (23a,b) 

 /?�0� = 0															 ./?.0? �0� = 0																																																			�24a, b� 
 

Consequently, the admissibility requisite demands, in the case of both columns, that each family 

forming the QCF be characterized by a clamped left end. At the ‘right’ end, x1(3)=L, there are 

not GBC to be satisfied. Now, the QCF concept requires that the linear combination of (at least) 

two families be capable of satisfying the CBC, which for column 1 can be expressed as 
 .�/�.0�� �0� ≠ 0				 .?/�.0�? �0� ≠ 0				/��=� ≠ 0				 ./�.0� �=� ≠ 0				 .�/�.0�� �=� ≠ 0				 .?/�.0�? �=� ≠ 0					(25a-f) 

P P 
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(column 2 has the same CBC). Notice that the first 2 conditions are already satisfied if, as estab-

lished, the AF are clamped at x1(3)=0; more importantly, note that at the other edge, the combi-

nation must be capable of allowing for nonzero displacement, slope, bending moment and shear-

ing force. Therefore, there are only 2 correct possibilities for the mixture: clamped-free plus 

clamped-clamped and clamped-sliding plus clamped-pinned; the first combination is chosen here-

in, for both columns. 

 It must be pointed out that even though we have analyzed this structure in a previous regional 

conference paper (Colombo & Morales 2012b), the thorough explanation of the admissible func-

tion selection process is missing therein; it should be stressed that this function families selection 

process is the most important and interesting part of the substructure synthesis method as it is a 

part that cannot be done by a computer or program, it is the work of the dynamicist who has to 

choose optimal families of functions for the particular structure involved; furthermore, how to 

choose correct AF is important for anybody who wishes to learn the SSM methodology. For this 

reasons, herein the full AF selection process is presented.  

 For the cross-beam, bare AF are defined by eqs. 23 which imply that each family must be 

either pinned or clamped at each boundary. Again, a genuine QCF must allow the possibility, in 

this case, of nonzero slope, moment and force at both ends; of course, each of these conditions is 

connected with one of the substructure CBC, which can be written as 

 ./�.0� �0� ≠ 0				 .�/�.0�� �0� ≠ 0				 .?/�.0�? �0� ≠ 0				 ./�.0� �L� ≠ 0				 .�/�.0�� �L� ≠ 0				 .?/�.0�? �L� ≠ 0		(26a-f) 

 

where 26c and 26f are already satisfied. It can be concluded that there are 2 correct possibilities 

for the combination: clamped-clamped plus pinned-pinned and pinned-clamped plus clamped-

pinned. The QCF is chosen as the second option; this choice is based on results for vibrations of a 

portal frame mounted on springs where clamped-free plus free-clamped proved to deliver a supe-

rior frequency solution than clamped-clamped plus free-free (Meirovith & Kwak 1991). In this 

regard, we remark that diversity is what makes QCF much more powerful than plain AF; par-

ticularly, a combination of pinned-clamped plus clamped-pinned is more diverse than one of 

clamped-clamped plus pinned-pinned. The QCF are finally defined through 

 ; = �BCN� BCC� BCN� BCC� BCN? 	…	��										< = �BDC� BCD� BDC� BCD� BDC? 	…	��	   (27a,b) 
 

where Ycf and Ypc are the clamped-free and pinned-clamped beam-column eigenfunctions (Colom-

bo & Morales 2012a). Finally, the constraint equations in this case are 

 /��=� = /?�=�																				./�.0� �=� = ./�.0� �0�																		./?.0? �=� = ./�.0� �L�																																	�28a-c� 
 

For brevity, in this second example the expected substitution of eqs. 21 into eqs. 20 and 28 is not 

shown. 

 A fully converging eigensolution can be obtained for a wide range of frame geometry; for com-

parison purposes a 4 m × 4 m steel frame is considered (I =8.333 ×10-6 m4) (Morales & Ciaccia 

2007). The eigenproblem is solved by the RRMSSM and the FEM; again, the convergence of the 
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first critical load to 4 digits is shown, in Table 2. The fact of the previous example is confirmed, 

that the solution produced by the RRMSSM requires appreciably fewer DOF than the solution 

yielded by the FEM; in this case, 4-digit convergence is attained with 15 DOF by means of the 

synthesis method, whereas through the application of the FEM the same accuracy is achieved 

with 27 DOF. 

 Now, the same frame was analyzed by the vibration or dynamic approach to stability; none-

theless, that methodology (synthesis through the dynamic method) involves two converging pro-

cesses which make it very cumbersome (Morales & Ciaccia 2007). Moreover, 21 DOF are required 

for just 3-digit convergence of the critical load; besides, Euler-Bernoulli or vibration beam func-

tions were used in that previous work as AF, not beam-column or buckling functions as in the 

present one. Regarding this inferiority in convergence characteristics of the original dynamic 

method, another example can be reported, it is the inverted-Y structure with clamped lower ends 

and pinned upper end that is loaded at this edge. The analyzed inverted-Y structures is composed 

by 3 identical beams separated by 120°, as shown in Fig. 6; steel (m = 580 kg/m, EI = 1.3×108 N 

m2) columns are considered with lengths L = 5 m. The critical load was attained by the dynam-

ics-RRMSSM as Pcr = 73,83 MN but it is not as direct as with the statics-RRMSSM: natural 

frequency convergence (which is required before Pcr convergence can be called) was very difficult 

to attain as more than 20 DOF again are necessary but even then full or absolute convergence of 

the natural frequency was elusive. This is because as more AF are used or added into the QCF, 

linear-dependence and numerical problems arise (Ramírez 2002). 

 

n P [kN] 

 RRMSSM FEM 

3 1536 775.5 

6 794,0  

9 774.0 771.0 

12 769.4  

15 768.7 769.2 

18 768.7  

21  768.8 

27  768.7 

33  768.7 

 

Table 2: Portal frame critical load convergence. 

Therefore, the substructure synthesis through the static approach proposed herein is a genuine 

advance. This new method can be applied to more complex frames; in fact, the RRMSSM has 

been applied as successfully in dynamic analysis of more elaborate structures (Morales 2000b). 
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4 CONCLUSIONS 

Rayleigh-Ritz based substructure synthesis was expanded to static-approach buckling analysis of 

frames. Examples proved that the computational characteristics of the method are superior to 

those of the standard FEM and the dynamics substructure synthesis method; as consequence, 

very accurate critical loads can be obtained thru routines characterized by very-low-order stiffness 

matrices. 

 As indicated, the energy or static approach to stability was considered; previously, the vibra-

tion or dynamic approach to stability had been considered; nevertheless, this methodology (syn-

thesis through the dynamic method) involved two converging processes which made it very cum-

bersome. 

There are two reasons for the success of the proposed method: 1) the structure is divided into 

its natural and intuitive substructures or superelements and, mainly 2) the selection of admissible 

functions that are related to the stability problem being solved and that make up a 

quasicomparison function. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Loaded inverted-Y structure. 
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