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Second-order plastic-zone analysis of steel frames
Part I: Numerical formulation and examples of validation
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Abstract

This paper presents a second-order plastic-zone formulation for the non-linear analysis
and design of plane steel frames with geometric imperfections and residual stress. The pro-
posed numerical methodology has an inelastic formulation based on the plastic-zone method
performed by the so-called “slice technique”. This methodology also uses a beam-column
finite element model based on the Bernoulli-Euler theory and described in the updated
Lagrangian co-rotational system. The considered hypothesis and the adopted kinematic re-
lation lead to an element stiffness matrix whose terms represent the constitutive law and
second-order effects. An incremental-iterative Newton-Raphson strategy solves the global
non-linear equation system and, at the internal force recovery level, in each iteration, an
axial-force iterative process is proposed to obtain the axial-force balance at the element
ends, more precisely determining the plasticity spread. Three benchmark structural prob-
lems are studied and the present work’s findings validate the proposed numerical formulation
and the axial-force iterative process. A companion paper discusses in depth the influence of
geometrical imperfections and residual stress in steel frame design.

Keywords: Steel frames, Plastic-zone method, Non-linear analysis, Inelastic analysis, Ele-
ment axial force

1 Introduction

Today every work on second-order inelastic analysis seems to claim that the development of
computers caused the new steel-structure-design era to begin about twenty or, possibly, thirty
years ago. However, remember that the usual design process, and probably the most popular
of all time, is still the elastic first order analysis, conjugated with an isolated member’s check
using interactive formulas. For designing the beam-column member, it is necessary to define the
effective length factor (K-factor used for member length correction) to simulate the condition
of buckling, define the allowable stress during compression, and establish a link between the
isolated member and structural system.
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The effective length K-factor paradox presented by Siat-Moy [28] contributed to a wave of
researches showing several conditions under which traditional K-factors could not be precisely
defined, failed to give a reasonable answer (over-estimates) or even worse, produced unsafe
design.

New solutions or approximations intended to solve the aforementioned drawbacks, as well
as others that appear to improve or modify the design process [5, 10, 18]. Giving the AISC
point of view prevalent at the time, are works from LeMesurier [22], Hajjar [16], and Hajjar and
White [17].

With the application of second-order elastic analysis, it is possible to detect the whole picture
of slender structural system. Even in some structural cases, there is no need for the K factor at
all (K = 1 [16]). Furthermore, this process is not computer-costly and there is a lot of available
software that can perform this kind of analysis. Nevertheless, the main challenge is still to make
some sort of second-order analysis by which the K-factor and member check are not obligatory.

Research along the last twenty years has brought new ways for the engineer to design without
using the old methodology. Computer development paved the way for much research on non-
linear methods with both elastic and inelastic approximations. As processor speed, graphic
interfaces, software facilities, and memory capacity has expanded, the mathematical formulations
and computing programs have grown more complex.

However, only after the publication of Australian Standard AS4100 [1] were designers ex-
plicitly allowed to check in-plane member and frame stability solely on a second-order inelastic
analysis basis, named here advanced analysis. More recently, AISC [25] provided the option for
evaluating overall frame stability without effective length factors. To use it, of course, one must
know precisely what requirements to obey, so the first step is to define this kind of analysis.

Advanced analysis is a set of accurate second-order inelastic analyses that account for large
displacements, plasticity spread and initial imperfection effects. The structural problem is an-
alyzed in such a way that the strength or stability limit of the whole (or part of) system is
determined precisely, so individual in-plane member checks are not required. It is a direct
design.

There are two known research lines to develop a computational advanced direct analysis in
steel framed structures, i.e.:

i. the refined plastic-hinge method, where scalar parameters and tangent modulus account
for member rigidity degeneration, which diminishes section properties as soon as yield
begins. This method provides good answers and does not require too much computer
work [9, 23, 32]. In this context, Chan and Chui [6, 7] proposed a refined plastic-hinge
method based on the section assemblage concept [20,24];

ii. the plastic-zone method (PZ), where the structure is modeled using a refined mesh (mem-
bers and sections) in such a way that plastic-zone formation can be monitored along the
member’s length, as well as its cross section. This method is very accurate but requires
great computer effort. Clarke [11], Vinnakota and Foley [30], and Foley [13] followed
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this approach. The Lavall [21] and Pimenta [27] works applied one approximation of this
method called slice technique, which the present work also adopts [2, 3].

Besides being considered a complete second-order inelastic analysis, the computational ad-
vanced analysis must still fulfill the following minimum requirements:

i. rigorous mathematics formulation based on well-understood engineering theories of solid
mechanics;

ii. structural model shall include the stability effects P-∆ and P-δ;

iii. member forces cannot violate the cross section strength: full plasticity condition;

iv. structural model must capture plasticity spread;

v. strength, deformations, and internal force distribution must be close to benchmark solu-
tions;

vi. initial geometric imperfections and residual stress effects must be included in the analysis.

This paper presents a second-order plastic-zone formulation for the non-linear inelastic anal-
ysis and design of plane steel frames according to these requirements. Thus, the next section
displays the numerical formulation, including the strain field, the finite element model, and
the second-order inelastic stiffness matrix. The considered hypothesis and kinematic relations
adopted lead to a beam-column element stiffness matrix whose terms represent the constitu-
tive law and second-order effects. The standard incremental-iterative Newton-Raphson strategy
solves the global non-linear equation system. This work also presents a new proposal: axial
force iterative integration. This iterative process, developed at element level, aims to catch axial
force balance when yield starts, which can more closely follow the plasticity spread. To validate
this proposed numerical formulation, three steel structures are analyzed and some final remarks
are presented in the last section.

A companion paper sheds some light on the last requirement stated above (material and
geometric imperfections), called here main aspects. The initial geometric configurations, treated
as a sum of the structure’s out-of-plumbness and some member’s out-of-straightness, coupled (or
not), with residual stress effects, are studied on simple and very sensitive structures like portal
frames.

2 The inelastic formulation

The plastic zone method defines every prismatic member as a finite element (FE) chain, as
shown in Fig.1(a). All members (and its FEs) have uniform “I” cross sections. Figure 1(b)
shows the mesh of these cross sections. Thus each FE, divided into a set of straight longitudinal
rectangular strips called slice, provides the plasticity spread monitoring [26].
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Figure 1: Plastic zone model.

The slice’s centerline is named fiber, as shown in Fig.1(c). The slice technique assumes that,
by evaluation of the fiber’s stress-strain relation, it is possible to capture the state of each slice.
So integrating the properties of the fiber from all slices along the section will update the section
state, with the properties encountered on the two joints. This is similar to the moment-thrust-
curvature integration procedure [15]. Hence, this establishes the FE state, giving the plastic-zone
formation.

2.1 Strain field and finite element model

Considering that one fiber in the current state has Lc length, and turns to be Ld length in
the deformed (or updated) state, as Fig.2(a) sketches, then the fiber stretching λ and its linear
elongation can be defined by:

λ =
Ld

Lc
(1a)

ε = λ− 1 (1b)

Assuming a fiber to represent the slice as a whole, with slice’s area As, where updated
axial force Nd does fiber stretching, and also knowing the nominal (or Biot) stress σ and linear
elongation ε energetically conjugate, the following relations can be written:

σ =
Nd

As
(2a)

σ = σ(ε) = Dε, with D =
dσ

dε
(ε) (2b)

in which D is the stiffness modulus defined by the stress level (see Fig.2(b)). Thus D can be
either E the Young modulus, when the fiber is in the elastic range, σ < σy , where σy is the
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yielding stress of steel; or Et , the tangent modulus, when in the plastic range, σ < σy (see
Fig.2(c)). In case of elastic unloading, the stiffness modulus D assumes the value of the Young
modulus E.

Applying the plastic-zone method, steel behavior can exhibit some other strain-hardening
laws as shown in Fig.2(c). Additionally, to study the member behavior, the following hypotheses
are considered:

i. the Bernoulli-Euler simplifications are adopted (all sections remain normal to FE’s axis
and cross-sections remain plane after loading application);

ii. the Poisson’s effect is neglected;

iii. all members are braced out-of-plane (the generalized displacements and element forces are
in plane only);

iv. the shear stress effect in yielding is disregarded;

v. all cross-sections are compact (WF profiles, which are not recommended for deep sections
steel frames);

vi. all members are rigid connected and there is no finite node effect (panel distortion).
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(c) Some stress-strain laws.

Figure 2: Slice and fiber behavior.

Based on these hypotheses, elementary kinematics is applied accepting that any cross-section
point’s P behavior can be traced (stress and strain) by the cross-section’s center 0, which in
turn (in elastic phase) is placed on the FE’s axis. Then following Fig.3(a), the general P
point displacements (ud, vd ) can be related to the 0 centroid’s displacements (u0d, v0d ), by the
following relations:
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ud(x, yp) = u0d(x)− yp sin ρ (3a)

vd(x, yp) = v0d(x)− yp(1− cos ρ) (3b)

in which x is the position of some section along the member (in the local system, in deformed
configuration), and yP is the distance between P point and 0 centroid.

 

θ

ϕd

ϕc

θa

θb

ρb
ρa

p6= θb = θ + ρb

p3= θa = θ + ρa= ϕd-ϕc

(a) Point P movement related to axis 0.  (b) Specific rotation of the fiber.

Figure 3: Fiber and axis relationship.

Figure 3(b) shows a differential FE with length dx, closed by two end sections, where d is
the section depth, R0d is the section-axis curvature ratio and Rd is the curvature ratio of a fiber
placed at generic point P. The elongation of the point P can be written as:

ε = ε0 − ypρ
′ (4)

in which ε0 is the elongation of the axial fiber and ρ ’ is the angle change of the chord joining
the FE’s ends in relation to the overall parallel x axis.

According to the geometry relations shown in figures, the secant approximation, combining
Eqs. (1a) and (1b), and also assuming some simplifications (sin ρ ∼= tan ρ ∼= ρ , cos ρ ∼= 1−ρ2/2
, sec ρ ∼= 1 + ρ2/2 ), the basic relationship for the strain field in the numerical formulation is
given by [2, 21,27]:

ε = (1 + u
′
0d)


1 +

1
2

(
v
′
0d

1 + u
′
0d

)2

− 1− yc

v
′′
0d

(1 + u
′
0d)

(5)
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where u0d and v0d are the FE axis’ displacements and yc is the centroid element coordinate
which only coincides with yr (reference coordinate, e.g. initial value) in the elastic range. When
plasticity begins, the remaining elastic section’s centroid does not necessarily coincide with the
EF’s axis, so the yc value has to update for yd at each iteration cycle.

Updated co-rotational Lagrangian formulation evaluates the strain field on the finite element
movement. In the local co-rotational system, it defines three displacements as follows (see
Fig.4(a)):

q1 = Ld − Lc (6a)

q2 = ρa = θa − θ (6b)

q3 = ρb = θb − θ (6c)

where the rotation θ = ϕd − ϕc is the FE’s rigid body rotation, which is subtracted from θa

and θb rotations to obtain q2 and q3 , while q1 is the change of EF’s chord length. An overall
Cartesian system of the model describes these nodal motions permitting the conventional three
degrees of freedom per node placed together in Fig.4(a), and is written as:

Node A : p1 = ua; p2 = va; p3 = θa (7a)

Node B : p4 = ub; p5 = vb; p6 = θb (7b)

In the finite element context, u0d and v0d are provided by interpolating functions in the
reference configuration. In traditional way, a linear function is chosen for u0d and a third degree
polynomial function for v0d :

u0d(x) ∼= Ψ1q1 (8a)

vod(x) ∼=
[
1 +

q1

Lr

]
[Ψ2q2 + Ψ3q3] (8b)

with

Ψ1(x) =
x

Lr
+

1
2

(9a)

Ψ2(x) =
8x3 − 4Lrx

2 − 2L2
rx + L3

r

8L2
r

(9b)

Ψ3(x) =
8x3 − 4Lrx

2 − 2L2
rx− L3

r

8L2
r

(9c)
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2.2 Second-order inelastic stiffness matrix

Applying the Virtual Work Principle for the FE equilibrium on the reference volume Vr (initial),
one can write:

∑

i=1 to 6

Piδpi =
∫

Vr

σδεdVr (10)

As the change of δε can be expressed using the chain rule (assuming that ε is a function of
qα and also qα is related to pi ), the following equilibrium relation is obtained:

Pi =
∫

Vr

σ

(
∂ε

∂qα

) (
∂qα

∂pi

)
dVr = Qα

(
∂qα

∂pi

)
(11)

being Qα the co-rotational forces, which correspond to the six Cartesian forces shown in Fig.4(b).
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(a) General and co-rotational displacements.  (b) Local and co-rotational forces.

Figure 4: Cartesian and co-rotational systems.

Thus, FE’s stiffness matrix refereed to the overall system can be determined by the derivation
of Eq. (11) in relation to a global displacement pi . In this way:

Ki,j =
∂Pi

∂pj
=

∂qα

∂pi

(
∂Qα

∂qβ

)
∂qβ

∂pj
+ Qα

∂2qα

∂pi∂pj
= qα,iDα,βqβ,j︸ ︷︷ ︸

constitutive law

+ qα,iHα,βqβ,j︸ ︷︷ ︸
curvature P−δ

+ Qαqα,ij︸ ︷︷ ︸
P−∆and M−Φ

(12)

where:

Dα,β =
∫

Vr

(
∂ε

∂qα

)
D

(
∂ε

∂qβ

)
dVr (13a)
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Hα,β =
∫

Vr

σ

(
∂2ε

∂qα∂qβ

)
dVr (13b)

qα,ij =
∂2qα(ϕd = 0)

∂pi ∂pj
(13c)

The first term represents the constitutive law, while the others include second-order effects
caused by FE’s curvature (P-δ) and by both the P-∆ and M-Φ effects. Equation (12) can be
rewritten in matrix notation as follows:

K = KM + KH + KGα (14)

where KM is the constitutive stiffness matrix and both KH and KGα define the geometrical
stiffness matrix. Numerical approximations provide the components of these matrices, and are
given in the Appendix.

Finally, the structure stiffness matrix is built by summing the contribution of every element.
As is usual in incremental analyses, some parts of the prescribed nodal loading are applied in
steps. This process forms a set of linear equations, which is solved here by Gaussian reduction
with backwards substitution [26]. With the displacements known, the stress and strain of every
slice from each section (at nodes A or B) can be found and the internal forces evaluated. For
the next iteration, the new loading uses the joint forces that were not equilibrated and the cycle
stops only when equilibrium of the joint forces is attained (residual forces become negligible).
In fact, this is the standard Newton-Raphson iterative strategy to solve nonlinear structural
problems [26].

3 Axial force iterative integration (AFII)

According to Fig.5(a), if some fiber is in the elastic range, for a known strain ε1 there is a stress
σ1 < σy , and ε1 = σ1/E < εy . In this case, the internal axial force Q1 = Nk , with k node
index equal to a or b, as shown in Fig 5(b)(I), where Nk is obtained by integrating all slices on
side k of FE (see Appendix).

However, when a strain increment occurs like ε2 = ε1 + dε > εy at any load step of an
incremental process, the new stress calculated by σ2 = ε1 + Edε is greater than σy , therefore
the fiber will be in the plastic range. There will be some plastic strain d p with an elastic strain
εy = ε1 + dεe in such a way that ε2 = εy + dεp . Figure 5(b)(II), for example, shows a FE where
plasticity occurs at node A but the other side remains elastic (node B), and a strip plastic zone
will appear along the FE. In this case, the internal axial force Na 6= Nb . This creates a problem
about Q1 definition.

Based on the elastic-perfectly plastic material behavior shown in Fig.5(a), the plasticity
of node A, for example, requires that σ2 must be σy . Thus an unbalanced stress dσ will
naturally appear, and now the vector Qα (Q1, Q2 and Q3 ) will show a difference in axial force,
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Figure 5: Axial force iterative integration.
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dN = Na −Nb 6= 0 , which cannot be restored with the Newton-Raphson process only. For this
reason, the present work proposes a new iterative process to adjust the stress and strain for all
FEs with plasticity on any fiber. While the difference |dNk| > tolerance (∼= 0.001 kN) exists, a
new axial strain on the node k index (a or b), where dNk occurs, will be evaluated and is given
by:

δεk =
dNk

DAck
(15)

in which Ack is the section area in that iteration (current value), obtained at the node k index,
that will be updated iteratively. Afterwards, the process finds a new stress, calculates new forces
Q, and repeats the whole cycle until convergence. The goal of this procedure is to guarantee
that each FE always verifies Q1 = Na

∼= Nb , assuming the axial force must be constant (fixed
between FE extremes). Figure 5(c) shows a simplified flow-chart of this iterative process, which
can also solve more complicated cases like that of Fig.5(b)(III).

Moreover, the iterative integration procedure applied here brings the point with plasticity
back to the yielding surface, correcting unavoidable distortions from the integrals of forces in
plastic zone sections. This procedure is similar to what happens in the refined plastic-hinge
approach, where a correction vector is used to keep the point on interaction surface (e.g. when
axial force grows, it is necessary to reduce the plastic moment correspondingly [7, 23,24]).

In the early stages of this formulation and computational program, the co-rotational axial
force Q1 was assumed to be a mean value of nodal integrated forces Na and Nb . Using this
mean value results in unwanted differences afterwards, and this justifies the present proposal.

4 Examples of validation

Three validation examples are presented. The first investigates a beam-column with member’s
out-of-straightness; the second shows the results obtained using the two strategies to evaluate
the axial force component Q1 (with and without the axial force iterative-integration proposed);
and the third, it is the famous Vogel’s portal frame, that is usually adopted for calibrating
advanced second-order inelastic analysis.

4.1 Galambos-Ketter’s beam-column

Chen et al. [9] pointed out the structural problem illustrated in Fig.6 as a benchmark problem for
second-order inelastic analysis. The goal is to verify the interaction between the axial force and
end moments at collapse, for different values of slenderness ratio L/rz , in which L is the column
length and rz is the radius of gyration of the cross sectional area surrounding the centroidal
axis. Figure 6 also presents the corresponding data, where only the case with no residual stress
was considered. A companion paper studies the case with residual stress.

Figure 7 demonstrates the good agreement between the answers from the present work and
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Figure 6: Galambos and Ketter’s beam-column.

those produced by the BCIN program [9,11]. The latter also performed a plastic-zone approach
but with the finite difference method and using a mesh of 20 sections, having both flange and
web divided into 40 strips and an initial out-of-straightness δ0 = 0.5 mm at the middle length.
This work considered a mesh with only 6 FEs to model the beam-column, and the half-flanges
and the web were divided into 20 and 36 slices, respectively.
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4.2 Galambos’ portal frame

Figure 8 shows the steel portal frame studied by Galambos [14] and also adopted to validate the
slices technique formulation [21]. The frame’s equilibrium paths are presented in Fig.9, showing
the results obtained by using two different strategies to evaluate the element axial force, i.e.,
with and without the axial force iterative integration proposed. In the last case, a mean value
of the element end axial forces was assumed [21].
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Figure 8: Galambos’ portal frame equilibrium path.

The equilibrium paths computed by the axial force iterative integration (AFII) and axial force
mean (AFM) are very close to the answers by Galambos as displayed in Fig.9. The collapse loads,
presented in Tab. 1 with the drift uAn prior collapse, show close agreement as well. Nevertheless,
it is worth mentioning that when the structural collapse is caused by inelastic buckling instead
of incomplete plastic mechanism formation, the numerically determined collapse load by the
AFM strategy tends to be a little bigger and the equilibrium path increases a little, too. Figure
9 illustrates this behavior.

Table 2 shows the internal forces near collapse load on elements 1 and 12 obtained by AFII
and AFM. While the first has the same value for axial forces (Na

∼= Nb ) the latter has different
ones (Na < Nb ). In this example, plasticity only happens at node A, while node B remains
elastic at that selected FE. This drawback can only be detected when the integrated axial forces
are printed. Moreover, Tab. 2 shows that not only the Na and Nb values are different when
using AFM, but also the bending moments in the plastic-zone nodes (1 and 12) are bigger than
expected. In contrast, on the other end (2 and 11 nodes), forces continue to grow reaching
plasticity. Briefly: the axial force begins to reduce in node A and to grow at node B as the
Newton-Raphson iterations develop and the moment is not reduced in those plastic zones as
would be expected!

Finally, the difference dN tends to be larger as the plasticity and load step increases, which
justifies the present work contribution. Using the AFII procedure, the iterations stop when
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Figure 9: Galambos’ portal frame.

Table 1: Galambos’ frame: collapse load factor and drift.

Galambos [14] Lavall [21] Present Work
EPH(4) PZ PZ

λ [%] uAn [cm] λ [%] uAn [cm] λ [%] uAn [cm]
31 7.464 31.0 8.769 31 8.378
32 7.780 32.0 9.615 31.7 9.965

33.2 8.167 33.0 12.006 31.8(3) 33.633
30.47(1) 17.50 34.0(2) - - -
Notes: 1. Galambos does not define collapse-load; 2. No further information;

3. Matrix shows singularity, last iteration’s drift uAn is given;

4. EPH: second-order elastic-plastic hinge.

Table 2: Galambos’ frame: forces near collapse.

λ(1) FE
Node(2) AFM: Axial Force Mean(6) AFII: Axial Force

[%]

Iterative Integration

A B
Na Nb Ma Mb dN(3) Q

(4)
1 Na = Nb Ma Mb

[kN] [kN] [kNcm] [kNcm] [kN] [kN] [kN] [kNcm] [kNcm]

30
1 1 2 543.426 553.649 10244.0 6156.9 -10.223 548.538 548.505 10254.7 6161.0
12 12 13 573.641 587.978 6090.5 10114.3 14.337 580.810 580.840 6075.6 10100.0

31
1 1 2 555.816 575.879 10681.3 6340.0 -20.063 565.848 565.657 10684.3 6319.3
12 12 13 588.273 613.813 6231.0 10490.1 25.540 601.043 601.214 6194.0 10471.2

Notes: 1. The collapse occurs at λ = 31.8;
2. Plasticity appear at nodes 1 and 13 only, while nodes 2 and 12 remain elastic;

3. dN=Na −Nb; 4. Q1 = (Na + Nb)/2
5. Max. difference (corresponds to bold values) is dN/Q1= 5.37%;
6. AFM results obtained by present work computational program.
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the absolute value of dN ≥ 0.001 kN or when a given number of cycles (200 adopted here) are
performed without convergence.

4.3 Vogel’s portal frame

Figure 10 [31] shows this portal frame and all required data. The European rolled shapes were
used considering ECCS [12], with a residual stress of σr = 0.5 σy . Furthermore, the structural
model, as required by advanced analysis, includes the out-of-plumbness ∆0 = L/400 and the
out-of-straightness σ0 = L/1000 for both columns. Since the frame collapse is determined
by the column’s inelastic buckling, this example is a good benchmark test for any inelastic
formulation [11].
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Figure 10: Vogel’s portal frame.

Ziemian et al. [33] and Clarke [11], both applying PZ formulation, adopted 120 elements (50
FEs by column). Based on plastic-hinge methodology, Teh and Clarke [29] and Machado [24]
used four FEs for the whole structure. There is not much details about Liew’s FE model, who
used the refined plastic-hinge and notional load approaches [9]. Avery and Mahedran [4], and
Kim and Lee [19], using the Abacus commercial software, modeled the frame with 8952 3D-shell
elements. Chan and Zhou [8] adopted the coarsest mesh (one FE by member) and the refined
plastic-hinge method with a high-order polynomial function called PEP.

Table 3 displays the collapse load factor λcol and the column top horizontal displacement
uAn . This table shows that displacements ranging from 14.2 to 17.3 mm are a good response
and the present work’s value falls within this range.

Figure 11 illustrates the Vogel’s frame nonlinear equilibrium path obtained by some re-
searchers. Notice that present work’s results agree well with the Vogel’s path, yet both are
above Machado’s refined plastic-hinge analysis. Table 4 demonstrates the element forces at the
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Table 3: Vogel’s frame: collapse load factor and drift

Collapse
Vogel Ziemian Clarke Chen et al.

point
[31] [33] [11] [9]

PZ EPH PZ RPH PZ NL-PH RPH
λcol [%] 102.2 101.7 99.9 105.0 102.3 99.9 96.0

uAn [mm] 17.3 11.5 14.2 12.0 17.1 12.9 14.8

Collapse
Teh and Avery and Kim and Chan and Machado Present

point
Clarke [29] Ma-hendran [4] Lee [19] Zhou [8] [24] Work

PZ PZ PZ PEP RPH AS-PH PZ
λcol [%] 100.5 101.0 103.0 103.3 94.0 98.0 100.7

uAn [mm] 20.0 16.2 19.2 16.0 17.01 32.56 17.00
Notes on methods: PZ - plastic zone; EPH - second-order elastic-plastic hinge;

RPH - refined plastic hinge; NL-PH - notional load plastic hinge;

PEP - polynomial enhanced plastic hinge; AS-PH - assembly section plastic hinge [6]

collapse load, in which N is the axial force, Q the horizontal shear, and M the bending moment.
The subscript letters mean: (A) left column, (B) beam and (C) right column, (1) base node and
(n) columns top node. The present work’s values are again near Vogel’s and Ziemian’s, both
with PZ formulation, and show a slight difference in relation to the other researchers’ answers.
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Figure 11: Vogel portal frame’s equilibrium path.

The explanation for this variety of answers is in Fig.12, which shows the yielded slice diagram
of the structure near the collapse load. As displayed, there are two plastic zones in each column,
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Table 4: Vogel’s frame: forces near collapse.

Forces(1)

Vogel Ziemian Clarke Chen et al. Machado Present
[31] [33] [11] [9] [24] Work
PZ PZ PZ RPH NL-PH AS-PH PZ

NA

[kN]

2770.2 2765.0 2821.0 2649.0 2752.0 2711.0 2780.7
NC 2829.9 2843.0 2905.0 2721.0 2846.0 2791.0 2858.5
NB 13.4 - - - - - 15.8
Q1 30.8 - - - - - 40.5
Qn 28.4 - - - - - 21.7

MA1

[kNcm]

9071.0 8703.0 9385.0 8586.0 10600.0 9248.0 9854.4
MAn 7464.0 7955.0 8721.0 7357.0 9580.0 8174.0 8058.1
MC1 9055.0 8242.0 8277.0 8389.0 9270.0 8784.0 8832.1
MCn 7462.0 7573.0 8084.0 7069.0 9207.0 7804.0 7492.7

λcol 1.022 0.999 1.023 0.960 1.040 0.980 1.007
FE/col. - 50 50 1 1 1 8

Notes: 1. Indexes: A and C for left and right column, B for beam, 1 and n for first and last nodes in the member;

2. some values are not given in the existing literature.

created by compression along the member, and no yielding occurs in the beam. These two
columns’ plastic-zones seem to be equal, and the collapse happens by inelastic instability.
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Figure 12: Vogel portal frame’s plastic zones.
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5 Final remarks

A numerical procedure involving a second-order inelastic analysis of steel structures using the
plastic-zone method and producing a new axial force iterative integration procedure is presented
in this paper. The slice technique is the base for the plastic-zone formulation adopted. All three
studied benchmark problems presented good agreement with those found in literature. This
seems to validate the proposed formulation.

It is worth noting that the proposed numerical methodology was able to trace what occurs
inside the steel section and along the member, which means the identification of the start and
spread of plasticity. Therefore, this formulation can supply a more comprehensive investigation
on the strength and stability of the steel structures.

Based on the nonlinear analysis carried out here and other already-solved steel frame prob-
lems, when comparing the proposed numerical methodology with other formulations or methods,
the following comments can be made:

i. the quality and precision of the obtained responses are equivalent to those obtained from
Abaqus or Ansys 3D plastic zone solutions, even using a more simplified model;

ii. once considered as one more precise numerical formulation, our responses can be used to
validate refined plastic-hinge computational implementations, which naturally have dif-
ficulties with plasticity spread simulation but do not require too much computer work;
and

iii. when compared with others plastic zone approaches, the proposed axial force iterative inte-
gration maintains the quality of the internal force recovery, more precisely determining the
plasticity spread and for this reason a better answer is obtained.

These comments justify and even make attractive the development of this line of research.
In spite of this, it should be mentioned that there is a long road ahead in making this process

available for offices. For example, some cases of load increment strategies can lead the solution
toward stationary points, among other critical points. In seeking completeness, this method also
deserves improvement to fulfill the design needs of non-linear connection behavior, as well as 3D
analysis.

Besides, the plastic-zone analysis often requires more computer memory, speed and a great
amount of time. The development of more powerful languages and computer resources are
needed for this kind of approach to become useful and attractive for office projects. Foley [13],
for example, applied parallel processing and vectorization to improve the computational process.
Nevertheless, the authors hope that forthcoming research will usher in new ways to make this
more affordable and that the simple shape used here can be expanded to a powerful one in the
near future.
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Appendix: The finite element matrices and numerical integration

KM =




D1m
Lr

0 D2m
Lr

−D1m
Lr

0 D2m
Lr

12D3m

LrL2
d

6D3m
(LrLd) 0 − 12D3m

(LrL2
d)

6D3m
(LrLd)

4D3m
Lr

D2m
Lr

− 6D3m
(LrLd)

2D3m
Lr

D1m
Lr

0 −D2m
Lr

12D3m

(LrL2
d)

− 6D3m
(LrLd)

sim. 4D3m
Lr




(16)

KH =




0 0 0 0 0 0

Q1

5Ld

Q1

10 0 − Q1

5Ld

Q1

10

2Q1Ld
15 0 −2Q1

15 −Q1Ld
30

0 0 0

Q1

5Ld
−Q1

10

sim. 2Q1Ld
15




(17)
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KGα =




0 Q2+Q3

L2
d

0 0 −Q2+Q3

L2
d

0

Q1

Ld
0 −Q2+Q3

L2
d

−Q1

Ld
0

0 0 0 0

0 Q2+Q3

L2
d

0

Q1

Ld
0

sim. 0




(18)

The FE matrices have terms related to deformed length (Ld ), which changes at each iterative
step, and also to initial or reference length (Lr ), which is fixed from the beginning of the analysis.
Besides the co-rotational forces Q1 , Q2 and Q3 , there are the terms D1m , D2m and D3m that
represent the elastic-plastic geometrical properties of the section to be evaluated at each step of
the incremental-iterative process. These geometrical properties are obtained by average values
using:

Djm = 0.5(Dja + Djb), with j = 1, 2, 3 (19)

where Djk is evaluated at the k node index (a or b) as follows:

Djk =
∫

Ar

D(yc)(j−1)dAr =
no. slices∑

i=1

[
Di(yci)(j−1)dAri

]
(20)

in which D1k , D2k and D3k are evaluated numerically by DdA, DycdA and Dyc
2dA integration,

respectively.
The co-rotational axial force on FE is defined by the new process proposed: Q1 = AFII

(Na, Nb ), where AFII is the Axial Force Iterative Integration applied to the axial forces Na and
Nb obtained from integration on k node index (a or b), respectively, using the expression:

Nk =
∫

Ar

σdAr =
no. slices∑

i=1

[σi dAri] (21)

in such way that these integrals have the same value as Q1 .
The co-rotational moments Q2 = -Ma and Q3 = Mb , are also given by:

Mk =
∫

Ar

σycdAr =
no. slices∑

i=1

[σiyci dAri] (22)
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