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Abstract 
The phenomenon of reflection and refraction is studied at the 
welded interface between two different porous solids. One is 
saturated with single non-viscous fluid and other is saturated with 
two immiscible viscous fluids. The incidence of Pf, Ps or SV wave 
through porous solid saturated with non-viscous fluid results in the 
three reflected waves and the four waves refracted to porous 
medium saturated with two immiscible viscous fluids. For the 
presence of viscosity in pore-fluids, the waves refracted to 
corresponding medium attenuate in the direction normal to the 
interface. It is also revealed that for the post-critical incidence of Ps 
wave, the reflected Pf and SV waves becomes evanescent and for 
the post-critical incidence of SV wave, the reflected Pf wave 
becomes evanescent. While, the occurrence of critical incidence is 
not observed for the incidence of Pf wave. The ratios of amplitudes 
of reflected and refracted waves to that of incident wave are 
expressed through a non-singular system of linear algebraic 
equations. These amplitude ratios are used further to calculate the 
shares of different scattered waves in the energy of incident wave. 
For a particular numerical model, the energy shares are computed 
for incident direction varying from normal incidence to grazing 
incidence. The conservation of energy across the interface is 
verified. Effects of non-wet saturation of pores, frequency of wave 
and porosity on the energy partitions are depicted graphically and 
discussed. 
 
Keywords 
Reflection and refraction, porous solid, non-viscous, viscosity, 
critical angle, saturation, energy partition. 
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1 INTRODUCTION 

A mathematical model of the porous medium is intended to characterize the mechanical behaviour 
besides particle dynamics. A theory of porous media aims to explore the surprisingly large number of 
applications of porous materials. The most ideal area of application is geophysics. While petroleum 
geophysics or petrophysics, due to its economic importance, appears to monopolize the field of 
potential applications, one should not minimize the importance of other applications such as rock 
mechanics, soil mechanics and hydrogeology. The quantitative description of elastic wave propagation 
in a porous medium containing a single fluid is one of the classic problems in the physics of flow 
through porous materials. Biot (1956a, b; 1962a, b) derived the fundamental equations for the study 
of wave motion in porous solids saturated with a compressible fluid. One additional but slow 
dilatational wave has been the main feature of wave propagation in such materials. Confirmation of 
Biot's theory came a bit late. Plona (1980) and Berryman (1981) conducted experiments to observe 
this slow dilatational wave. 

An extension of the theory to include the effects of two immiscible pore fluids on the behavior 
of elastic waves was proposed long ago by Brutsaert (Brutsaert 1964, Brutsaert and Luthin 1964) as 
a generalization of the seminal Biot (1962) poroelasticity model for a single-fluid system. Literature 
is extensive on mixture theories. Other notable references are Morland (1972), Bedford and 
Drumheller (1978), Bowen (1980, 1982). Hassanizadeh and Gray (1990) have shown that Biot's 
theory and mixture theory are equivalent, if Biot's parameter for fluid-solid coupling is neglected. 
Mixture theory for porous media saturated by fluids includes the concept of volume fraction to 
characterize the microstructure of the medium. Bedford and Drumheller (1983) gave an extensive 
survey of continuum theories of mixtures of immiscible constituents. In later years, Santos et al. 
(1990a, b) derived the governing equations and presented a method to calculate elastic constants for 
isotropic porous solids saturated by two fluids. Then the credit for comprehensive discussion on 
wave propagation in porous solids saturated with multiphase fluids goes to Garg and Nayfeh (1986), 
Corapcioglu and Tuncay (1996), Tuncay and Corapcioglu (1997) and Lo et al. (2005). 

Phenomenon of reflection and refraction of waves from the boundaries of poroelastic materials 
has been discussed by many researchers, for example, Deresiewicz (1960, 1964a, b), Deresiewicz and 
Rice (1962), Dutta and Ode (1983), Sharma and Gogna (1991), Sharma and Saini (1992), Sharma 
(2008), Lin et al. (2005), Tomar and Arora (2006), Arora and Tomar (2007), Yeh et al. (2010), 
Markov (2009), Sharma and Kumar (2011), Kumar and Saini (2012), Sharma and Saini (2012), 
Kumar and Sharma (2013), Kumar and Kumari (2014). Present problem considers to study the 
reflection and refraction phenomenon at a plane interface between a non-viscous porous solid 
saturated with single fluid and a porous solid saturated by two immiscible fluids. The fluid-
saturated porous solid is modeled with the classical Biot's theory and fluids-saturated porous solid 
is described by the poroelasticity theory of Tuncay and Corapcioglu (1997). The field equations of 
classical Biot's theory and poroelasticity theory of Tuncay and Corapcioglu (1997) are solved for 
harmonic propagation of three longitudinal waves and one transverse wave in porous medium 
considered. The work presented here considers the reflection and refraction phenomena at 
poroelastic/poroelastic interface without any restriction on incidence angle. Porous medium 
saturated with two immiscible viscous fluids is considered dissipative due to the presence of 
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viscosity in pore-fluids. Hence, the waves refracted to dissipative porous medium are identified as 
inhomogeneous waves with attenuation always normal to the interface. 
 
2 FUNDAMENTAL THEORY 

2.1 Review of Biot's Theory 

Let u  and fU  be the displacement vectors of the matrix and the interstitial fluid respectively. 

According to Biot's theory (1956, 1962a, b), the equations of motion for fluid-saturated 
homogeneous poroelastic solid, in the absence of dissipation, are 
 

2 2 2 2( ) ( . ) ( . ) ( ) / ,fM M t                             u u w u w  (1) 
 

2 2{ ( . ) ( . )} ( ) / ,fM M m t             u w u w  (2)
 

where w  refer to the relative displacement vector of the fluid with respect to the solid matrix 
measured in volume per unit area, i.e., '( ),f   w U u  ,    =Lame’s constant for the solid, 

  and f  are the mass densities of the bulk material and fluid respectively, m  is Biot's 

parameter which depends upon porosity  , density ,f    and M  are elastic constants related 

to the coefficients of jacketed and unjacketed compressibilities. 
The constitutive equations for the isotropic porous solid are written as follows 

 

22 {( ) . . '} ,   ( , 1,2,3),'ij ij ije M M i j                u w  (3) 
 

{ . . },f M       u w  (4) 
 

where ij   are components of the total stress on a representative element of volume of the solid 

skeleton, ije  are the components of strain in skeleton and f   is the pressure in pore fluid. 

Considering the Helmholtz resolution of each of the two displacement vectors in the form 
 

,      ' ,         u H w J  (5)
 

where ,  H  are the potential functions of the solid phase of porous medium, and ,   J  are the 

potential functions of flow of the pore fluid relative to the solid. Inserting these expressions of u  
and w  into equations (1)-(2), we obtain the following equations 
 

2 2 2 2' ,    ,f fP Q Q M m                                (6) 
 

2 ,   0 ,f f m               H H J H J     (7)
 

where 22 ,P M        Q M  and dots over these scalars and vectors denote partial time 

derivatives. 
For two-dimensional propagation of harmonic waves in the x - z  plane, we assume 
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{ , , , }( , , ) { , , , }( , ) .tx z t x z e            H J H J  (8)
 

Substituting   and   into equation (6), and eliminating ,   then P -wave equations for 

solid frame become 
 

4 2 2 4 0,A B C               (9)
 

where 2 ,A PM Q    2 ,fB mP M Q       2.fC m      

Equation. (9) can be decomposed into 
 

2
2

2
( ) 0,    ( 1, 2),j

j

j
v

    


 (10)

 

where 1
2 2

2
,

( 4 )
j

A
v

B B A C


 

   
  1,2 .j    

Here, Equation (10) shows that two P -waves exist in the medium. The wave corresponding to 

1  is called fast P  (or fP ) wave propagating with phase velocity 1v  and the wave corresponding 

to 2  is called slow P  (or sP ) wave propagating with phase velocity 2v . Therefore, the general 

solution of P -waves for the solid and fluid phase are given by 
 

1 2 ,       (11)
 

1 1 2 2 ,f f       (12)
 

where f j
j

f

f
m

   
 
   


 

 and 
2( 1) 4

,  ( 1,2)
2

j

j

B B A C
j

M


     
  . 

Substituting H  and J  into equation (7), and eliminating J , then S -wave equations for 
solid frame is obtained as 
 

2
2

0 2
3

,    ( ) 0,
v

     


J H H  (13)

 

where 3 2
f

m
v

m


 


 
 

 and 0
f

m





  . The equation (13) defines the existence of a transverse 

wave propagating with phase velocity 3v . 
The general displacements of the solid and fluid in the x - z plane are given by 

 

2 2

1 1

,   ,j j
sx sz

j j

H H
u u

x z z x

 

 

        
      (14)
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2 2

1 1

,   ,j j
sx j sz j

j j

J J
w f w f

x z z x

 

 

        
      (15) 

 

where ( ) yH   H  and 0( ) 'yJ H  J . 

 
2.2 Governing Equations for Fluids-Saturated Porous Solid 

Following Tuncay and Corapcioglu (1997), the equations of motion in the absence of body forces for 
low frequency wave propagation in a porous elastic medium saturated by gas and liquid, are defined 
as follows: 
 

11 12 13

1
(( ) . . . ) .( ) ( ) ( ),

3s fr s g l fr s g g s l l sa G a a G d d               su u u u u u u u u      (16)

 

21 22 23( . . . ) ( ),g s g l g g sa a a d          gu u u u u u    (17)
 

31 32 33( . . . ) ( ).l s g l l l sa a a d          lu u u u u u    (18)
 

The coefficients ija  denote elastic constants and are given by 
 

11 12 21 13 31

22 23 32 33

2 2
0 0

,  ( ) / , (1 )( ) / ,

( ) / ,  / ,  ( (1 ) ) / ,

(1 ) ,  / ( ),  / ( ),

fr g s l l l s l g

g g l l g l l l l g l

g l l g g g rg l l l rl

a K a a K a K D a a K a K D

a K K a D a a K K D a K K a D

D K a K d d

   

    

     

       

      

         
 

 

where ,su  gu  and lu  are the displacement vectors in porous elastic solid, gas and liquid phases 

respectively. Dots over these vectors denote partial time derivatives. gK  and lK  are the bulk 

moduli of gas and liquid phases respectively whereas frK  is bulk modulus of the porous frame or 

drained matrix. frG  is the shear modulus of porous solid. ,s  g  and l  are the volume fractions 

of the solid, gas and liquid phases respectively. ,s   g  , and l   are the volume-averaged 

densities of porous solid, gas and liquid phases respectively. / , ( , )i iS i g l    and 

/ ,  ( , )i iS i g l    with 1lS    and (1 ),l capa K     capK  is equivalent to bulk modulus 

for macroscopic capillary pressure (Garg and Nayfeh 1986).   porosity of the porous media. gd  

and ld  are the dissipation coefficients of gas and liquid phases, respectively. These coefficients 

involve relative permeabilities ( , rg rl  ) and viscosities ( , g l  ) of the corresponding phases and the 

intrinsic permeability of the composite medium ( 0 ). 

Following Tuncay and Corapcioglu (1997), then stress in porous solid is given by 
 

11 12 13

2
( . . . ) ( ( ) . ),

3
T

s s g l fr s s sa a a G             u u u I u u u I  (19)
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and pressures in fluids are given by 

21 22 23( . . . ) ,g s g la a a       u u u I  (20)
 

31 32 33( . . . ) ,l s g la a a       u u u I  (21)
 

where I is unit tensor. 
Through the usual Helmholtz resolution of a vector, the displacement vectors can be 

conveniently written in the following form 
 

,      . 0,s    u H H  (22)
 

,     . 0,g     u G G  (23)
 

,      . 0.l    u J J  (24)
 

Inserting these values of , s gu u  and lu  into equations (16)-(18), we obtain the following 

equations 
 

* 2 2 2
11 12 13 ( ) ( ),s g la a a d d                        (25)

 

2 2 2
12 22 23 ( ),g ga a a d                  (26) 

 

2 2 2
13 23 33 ( ),l la a a d                  (27) 

 

2 ( ) ( ),s fr g lG d d       H H G H J H     (28) 
 

( ),g gd   G H G   (29)
 

( ),l ld   J H J    (30)
 

where *
11 11

4

3 fra a G   and dots over these scalars and vectors denote partial time derivatives. 

For two-dimensional propagation of harmonic waves in x-z plane, we assume 
 

{ , , }( , , ) { , , }( , ) ,tx z t x z e         (31)
 

where   denotes angular frequency of the vibration of constituent particles in porous aggregate. 
Substituting these values of ,    and   in (25), (26) and (27), yields 

 

* 2 2 2 2 2 2
11 12 13( ) ( ) ( ) 0,s g la a a                  (32)

 

2 2 2 2 2
12 22 23( ) ( ) ( ) 0,g ga a a               (33)

 

2 2 2 2 2
13 23 33( ) ( ) ( ) 0,l la a a               (34)
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where ,  ,  , ,  .g g l l s s g l g g g l l ld d
         
 

                   

The equations (33) and (34) of this system are solved into two relations, given by 
 

4 2 2 4 4 2 2 4
3 3 3 1 1 1( ) ( ) ,A B C A B C               (35)

 

4 2 2 4 4 2 2 4
3 3 3 2 2 2( ) ( ) .A B C A B C               (36)

 

Using these relations into equation (32), we obtain 
6 2 4 4 2 6[ ] 0,A B C D           (37)

 

where 
 

* *
11 3 12 1 13 2 11 3 3 12 1 13 2 1 2

*
11 3 3 12 1 13 2 1 2 3 1 2

,  ,

,  ,

s g l

s g l s g l

A a A a A a A B a B A a B a B A A

C a C B a C a C B B D C C C

 

   

        

         
  

 

1 23 13 12 33 2 12 23 13 22 3 22 33 23 23  ,  , , A a a a a A a a a a A a a a a        
 

1 33 12 23 2 22 13 23 3 22 33, , ,g l l l g g l gB a a a B a a a B a a              
  

1 2 3, , .l g g l g lC C C       
. 

 

The solution of equation (37) is written as 
 

1 2 3,       (38)
 

Where 
 

2
2

2
( ) 0,    ( 1,2,3).i

i

i
v

      (39)

 

The solutions of equation (39) correspond to the three longitudinal waves. The waves 

corresponding to    ( 1,2,3)i i  being the three longitudinal waves propagating with phase 

velocities  ( 1,2,3)iv i  , respectively. Using the equation (38) in (31), we get 
 

1 2 3,       (40)
 

1 1 2 2 3 3,         (41)
 

1 1 2 2 3 3,         (42)
 

where 
 

2 4 2 4
1 1 1 2 2 2

2 4 2 4
3 3 3 3 3 3

,   ,   ( 1,2,3).j j j j
j j

j j j j

A B v C v A B v C v
j

A B v C v A B v C v
 

   
  

   
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Similarly, we assume 
 

{ , , }( , , ) { , , }( , ) ,tx z t x z e H G J H G J  (43)
 

and subsisting relations (43) into equations (28)-(30), we get 
 

2 2 2 2( ) 0,fr s g lG          H G J  (44)
 

{ , } { , }g l  G J H  (45)
 

where  ,  .g l
g l

g l

 
   

 
 

By substituting relations (45) into equation (44), we get 
 

2
2

2
4

( ) 0,
v


  H  (46)

 

where 2
4 .fr

s g g l l

G
v

 

    

 The equation (46) defines the existence of a transverse wave 

propagating with phase velocity 4v . For two-dimensional motion in the x - z  plane, displacement 

of solid and fluid phases are given by 
 

3 3

1 1

,  ,j j
sx sz

j j

H H
u u

x z z x

 

 

  
   

      (47)

 

3 3

1 1

,  ,j j
gx j gz j

j j

G G
u u

x z z x

 
 

 

  
   

      (48) 

 

3 3

1 1

,  ,j j
lx j lz j

j j

J J
u u

x z z x

 
 

 

  
   

      (49) 

 

where ( ) , ( )y y gH G H   H G  and ( ) .y lJ H  J  

 
3 FORMULATION OF THE PROBLEM 

We consider a non-viscous porous solid half-space saturated with single fluid (impervious) and a 
porous solid half-space saturated by two immiscible viscous fluids chosen as gas and liquid in 
welded contact along a plane interface. Rectangular Cartesian coordinate system ( x , y , z ) is 

chosen with the plane of interface as 0z   and the z -axis is pointing into the porous elastic solid 
half-space so that, the non-viscous porous solid half-space saturated with only fluid (medium I) 
occupies the region 0z   and porous half-space saturated with two immiscible fluids (medium 
II) occupies the region 0 .z    Our aim is to study a reflection and refraction problem in two 
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dimensional x-z plane and the incident wave is assumed to be incident obliquely at the interface, 
after through the non-viscous porous solid half-space saturated with single fluid. 
 
4 BOUNDARY CONDITIONS 

We assume that two half space separated by a plane interface along 0z   are in perfect contact. 
Therefore, the boundary conditions are the continuity of stress components and displacement 
components along the interface plus one more condition which restrict the flow of two fluids of 
porous solid into non-viscous porous solid saturated with single fluid, i.e., at 0z  . 
 

,zz f s zz g l                

,   z x s z x x s xu u        

,   ,z s z z zu u u w        

,   ,s z g z s z l zu u u u      

(50)

 

where superposed dots denote the partial time derivatives. 
 
5 REFLECTION AND REFRACTION OF WAVES AT A PLANE INTERFACE 

We consider only two-dimensional reflection and refraction problem, in the ( x , z )-plane with 
incident waves assumed to originate in the non-viscous porous solid saturated with single fluid 
(medium I). The incident wave is assumed to originate in medium I and become incident at the 
plane interface 0z  , making an angle 0  with the z . It results in three reflected waves ( fP , sP  

and SV ) in medium I and refracted as four inhomogeneous plane waves ( 1 2 3, , P P P  and SV ) in the 

fluids saturated porous solid. For medium I, a set of such plane wave solutions for the displacement 
potentials for reflected waves, satisfying (10) and (13) are given by 
 

exp[ {( sin cos ) / }],   ( 1, 2,3)j j j j jA x z v t j         (51)
 

where 3  is replacing H  (to maintain the uniformity of the symbols) in the relations (14) and (15) 

and the arbitrary constant ( 1A , 2A , 3A ) denotes the amplitudes of reflected fP , sP  and SV  waves, 

respectively. 
Displacement potentials for the incident wave are as follows 

(i) for incident fP  wave 
 

1 0 0 0 1 2 3exp[ {( sin cos ) / }],   0,   0,A x z v t              (52)
 

(ii) for incident sP  wave 
 

1 2 0 0 0 2 30,  exp[ {( sin cos ) / }],  0,A x z v t              (53)
 

(iii) for incident SV  
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1 2 3 0 0 0 30,  0,  exp[ {( sin cos ) / }].A x z v t              (54)
 

Following Borcherdt (1982), the plane wave solutions for the displacement potentials satisfying 
(39) and (46) are 
 

exp( . ).exp{ ( . )}, ( 1, 2,3, 4),j j j jB t j    A r P r  (55) 
 

where 4  is replacing H (to maintain the uniformity of the symbols) in the relations (47)-(49). The 

coefficients ,  ( 1, 2,3, 4)jB j  , denotes the amplitudes of the refracted 1P , 2P , 3P  and SV  waves, 

respectively. The propagation vectors ( )jP  and attenuation vectors ( )jA  are defined by 
 

ˆ ˆˆ ˆ,  ,j R jR j I jIk x d z k x d z    P A  (56)
 

with definitions 
 

2
2 1/2

2
. ( ) , ( 1,2,3,4),j

j

d p v k j
v


    (57)

 

where . .p v  in (57) denotes the principal value in the square root of complex quantity enclosed. k  

is a complex number with 0Rk   to ensure propagation in positive x -direction. The subscripts 

R and I  denote the real and imaginary parts of the corresponding complex quantities. In terms of 
the angle j between propagation vector and attenuation vector and angle of refraction ( )j   in 

medium II, complex wave number k  can be written as 
 

| | sin | | sin( ).j j j j jk       P A  (58)
 

Making the use of potentials, given by (51) and (55), the boundary conditions are satisfied 
through the Snell’s law, given by  
 

0 31 2

0 1 2 3

sin sinsin sin
,Rk

v v v v

      
   

  
 (59) 

 

and 
 

0,Ik   (60)
 

which implies that ,  ( 1, 2,3, 4)j j j     i.e., waves in porous solid with twin fluid attenuating in 

z -direction. 0 jv v  is used for incident wave identified with ‘j’ in porous medium with single fluid. 

In addition to equations (59) and (60), the amplitude ratios jZ  of reflected fP , reflected sP , 

reflected SV , refracted 1P , refracted 2P , refracted 3P  and refracted SV  waves to that of incident 

wave should satisfy the system of seven non-homogeneous equations represented as 
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7

1

,   ( 1,2,3,4,5,6,7).ij j i
j

c Z b i


   (61)

 

The coefficients ijc  are as follows 

 

2 2 2 2 31 2
11 1 1 12 2 2 13[ ( ) (2 )( ) ],  [ ( ) (2 )( ) ],  2 ,R R R dk d k d k

c c c  
     

 
            

 
 

32 2 4 1 2
1 3 3 17 21 22( ) ( ) ,  2 ,  2 ,  2 ,jR R R R

j j j fr

dk k d k d k d
c c G c c   

       


 

  
     

  
 

32 2 2 23 4
23 2 27 31 32[( ) ( ) ],  2 ,  [( ) ( ) ],  ,  ,jR R R R R

j fr fr

dd k k k d k k
c c G c G c c

       


      
  

33 4 1 2
33 3 37 41 42 43 4 47,  ,  ,  ,  ,  ,  ,  ,jR R R

j j

dd k d d d k k
c c c c c c c c

       
  

            
  

 

1 2
51 1 52 2 53 0 54 55 56 57(1 ) ,  (1 ) ,  ( 1) ,  0,Rd d k

c f c f c c c c c
  
 

         
  

 

61 62 63 6 3 67 71 72 730,  (1 ),  (1 ) ,  0,R
j j g

k
c c c c c c c c

         
  

 

7 3 67(1 ),  (1 ) ,   R
j j l

k
c c

      4,5,6j  , 

 

where 
 

11 21 31

12 22 32 13 23 33

2
,  2 ,    ( 1,2,3),  ,

3
,  ,  ( )( 1),   ( 1,2)

j j j j j fr fr

i i

a b c G j a a a a G

b a a a c a a a M f i

    

  

            

                  
 

The constant terms ib  on the right hand side of equations (61) are given by 

(i) for incident fP  wave 
 

1 11 2 21 3 31 4 41 5 51 6 7,  ,  ,  ,  ,  0,  0,b c b c b c b c b c b b           
 

(ii) for incident sP  wave 
 

1 12 2 22 3 32 4 42 5 52 6 7,  ,  ,  ,  ,  0,  0,b c b c b c b c b c b b           
 

(iii) for incident SV wave 
 

1 13 2 23 3 33 4 43 5 53 6 7,  ,  ,  ,  ,  0,  0.b c b c b c b c b c b b           
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We now consider a surface element of unit area at the interface between two media. Purpose is 
to calculate the partition of energy (of the incident wave) among the reflected and refracted waves 
on the both sides of this surface. Following Achenbach (1973), the rate at which the energy is 
transferred per unit area of the surface is given by the scalar product of surface traction and the 

particle velocity, denoted by *P . The time average of *P  over a period, denoted by * ,P   

represents the average energy transmission per unit surface area per unit time. Thus, on the surface 
with normal along z -direction, the average energy intensities of the waves in the fluid saturated 
porous solid are defined by 
 

* ( ) ( ) ( ) ( ) ( ) ( ).zx x zz z f zP u u w                    (62)
 

We have 
1

( ) ( ) ( ),
2

f g f g       for two arbitrary complex functions f  and g . This 

relation is used to calculate the energy ratios giving the rate of average energy transmission of all 
the reflected and refracted waves to that of incident wave. 

Expressions for these energy ratios ( 1,2,3)iE i   for the reflected fP , sP , SV waves, 

respectively, are given by 
 

*

*
0

,     ( 1,2,3),i
i

P
E i

P

 
 
 

 (63)

 

where  
2

* 2 0
2 2 3

0

sin1 1
2 ( ) | | ,i i i i

i i

P M f Z v
v v v

  
 

            
   

 for  1,2i  , 

 

2
* 2 0

3 3 3 2 2 3
3 0 3

sin1 1
| | ,P Z v

v v v


 

      
      

 

and 
(i) for incident fP  wave 
 

*
0 1 0 3

1

1
{ 2 ( )} (cos ) ,P M f

v
            


  

 

(ii) for incident sP  wave 
 

*
0 2 0 3

2

1
{ 2 ( )} (cos ) ,P M f

v
            


  

 

(iii) for incident SV  wave 
 

*
0 0 3

3

1
{ } (cos ) ,P

v
    


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which are the energy intensities of the incident fP , sP , SV waves, respectively. 

For the porous solid saturated with twin fluid, the average energy intensities of the waves on 
the surface with normal along z -direction, are defined by 
 

* ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ),i j i j i j i j
ij s xz sx s zz sz g zz gz l zz lzP u u u u                      (64)

 

and evaluated as 
 

* 4 2
3 3

* 4 24
4 3 7

[{2 ( 2 ( ) ) } ],

[{ 2 ( 2 ( ) ) } ],

j j ji iR R
ij fr i i fr i i j i i j i j

i iR R R R
i fr i i fr i i g i i l i

d d dd dk k
P G G Z Z

d dk d k k k
P G G Z Z

    
      

  
      

 



           

              

 

* 4 4
4 0 7 3

* 4 4 4
44 0 7 7

[{ 2 } ],

[{ 2 } ],

jR R
j fr fr j

R R
fr fr

dk d k
P G G Z Z

d d k k
P G G Z Z


   


   

      

       

 

 

where 2 24
0 ( ) ( ) ,Rk d

 
    and 2 2

11 12 13

2
( ) ( ) ,  ,

3
jR

i i j j fr

dk
a a a G  

 
         

 

12 22 23 13 23 33, , ( 1, 2,3).i j j i j ja a a a a a i           
 

 

An energy matrix 
 

*

*
0

, ( , 1, 2,3, 4),ij
ij

P
E i j

P

 
  

 
 (65)

 

calculates the distribution of energy among the four waves traveling into the dissipative porous 
medium saturated by two immiscible fluids. Solving the system of equations (61), by Gauss 
elimination method, provides the complex unknowns ( 1,2,...,7)iZ i  , which are used further in 

relations (63) and (65) to calculate the energy ratios ( 1,2,3)iE i   and  ( , 1, 2,3, 4)ijE i j  , 

respectively. 
The diagonal entries of energy matrix ijE  represent the energy share of the four refracted 

waves in the medium. Terms 11 22 33 44, , ,E E E E  are identified as the refraction (energy) coefficients 

for 1 1 3, , , P P P SV  waves, respectively. Sum of all non-diagonal entries of this energy matrix gives the 

share of interaction energy among all the refracted waves in the medium. This part of energy, given 
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by 
4 4

1 1

( )RR ij ii
i j

E E E
 

   , yields the conservation of incident energy across the interface, through 

the relation 1 2 3 11 22 33 44 1RRE E E E E E E E         

 
6 NUMERICAL RESULTS AND DISCUSSION 

6.1 Numerical Example 

The derivations for velocities, amplitude ratios and energy ratios involve a large number of 
parameters. Then, in order to study the dependence of amplitude and energy ratios on the direction 
of oblique incidence, we confine our numerical work to a particular model. Keeping in view the 
availability of numerical data, we consider the model consisting of a reservoir rock (sandstone) 
saturated with water and 2CO  is chosen for the numerical model of porous medium (Garg and 

Nayfeh; 1986) in welded contact with water-saturated sandstone which is assumed to be an 
impervious porous solid. 

The elastic and dynamical constants for the dry porous are given by, 
312 , 9 , 0.8, 2120 / .fr fr s sK GPa G GPa kg m        A part ( g ) of the pore volume is 

occupied by 2CO  gas of bulk modulus 3.7gK MPa  and partial density 
3(1 )103 / .g s kg m       With bulk modulus 2.7lK GPa  and partial density 

3(1 )(1 )990 / ,l s kg m       water is the other pore-fluid that occupies the remaining pore 

volume. The value of 0.1capK MPa  is used to represent capillary pressure. The values chosen for 

dissipation coefficient are 20.04 /gd MPa sec m   and 21 /ld MPa sec m  . 

The elastic and dynamical constants for the water-saturated sandstone are given by 
 

3 3

3

3.034 ,  9.22 ,  8.87 ,  2170 / ,  1000 / , 

 3731 / ,  0.3227,  0.268.

fGPa Gpa M Gpa kg m kg m

m kg m

   

 

       

     
 
6.2 Reflection and Refraction Coefficients 

The energy of incident wave is shared among the three reflected ( , , )f sP P SV  waves, four refracted 

1 2 3( , , , )P P P SV  waves interaction energy. Due to the inhomogeneous propagation of refracted 

waves, a part of the refracted energy share identified as the interaction energy. The variations in 
energy partition with incident direction are presented in Fig. 1-3 (for incident fP  wave), Fig. 4-6 

(for incident sP  wave), Fig. 7-9 (for incident SV  wave) and are discussed as follows. 

For incident fP  wave: 

The variations of energy shares of three reflected ( , , )f sP P SV  waves, four refracted 

1 2 3( , , , )P P P SV  waves and interaction energy with 0
0 (0, 90 )   are exhibited in Fig. 1, for three 

different values of 0.01, 0.5, 0.99.   Values chosen for other parameters are 0.05cap lK K , 
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/ 2 0.1 , 0.45kHz     . Near normal incidence, for any , only reflected sP  and refracted 1P  

waves have larger energy shares. On the other hand, at grazing incidence for any  , only the 
reflected fP  wave has a significant energy share. A considerable variation in energy shares is visible 

with the change of gas share in pores. It is noted that with the change of gas share in pores the 
variation pattern of the energy share of reflected SV  wave is analogous to the refracted SV  wave. 

However, the response of reflected fP  wave to this change is nearly opposite to the reflected sP  

wave. A comparison among the energy shares of reflected and refracted waves implies that the 
existence propagation of dilatational (i.e., 2 3, P P ) waves is just namesake. Interaction energy may 

not have a physical significance but it ensures conservation of incident energy and certifies, by 
default, the correctness of whole analytic part of the procedure. The negative (positive) sign of 
interaction energy implies the travel of energy towards (away from) the interface. 
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Figure 1: Energy shares of reflected ( , , f sP P SV ) waves, refracted 1 2 3( , , , )P P P SV  and interaction 

among refracted waves; variations with incident direction ( 0 )and gas share in pores 

( ); 0.05 ,cap lK K  / 2 0.1kHz    , 0.45  ; incident fP  wave. 
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Figure 2: Energy shares of reflected ( , , f sP P SV ) waves, refracted 1 2 3( , , , )P P P SV  and interaction 

among refracted waves; variations with incident direction ( 0 ) and frequency of wave 

 ; 0.05cap lK K , 0.5  , 0.45  ; incident fP  wave. 

 
Fig. 2 exhibits the variations of energy shares of three reflected ( , , )f sP P SV  waves, four 

refracted ( , , )f sP P SV  waves and interaction with 0
0 (0, 90 )  , for three different frequencies 

/ 2 0.1,1 , 5   kHz. Values chosen for other parameters are 0.05 ,cap lK K  

0.5 , 0.45.kHz     0.05cap lK K , 0.5kHz  , 0.45  . The effect of wave frequency   

is clearly visible on all the energy shares. It is also noted that the effect of frequency is nearly same 
to the effect of gas share in pores except the incidence direction at which the change starts in 
energy partitions with the change in wave frequency. 
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Figure 3: Energy shares of reflected ( , , f sP P SV ) waves, refracted 1 2 3( , , , )P P P SV  and interaction 

among refracted waves; variations with incident direction ( 0 ) and porosity (  ) 

0.05cap lK K , / 2 1kHz   , 0.5  ; incident fP wave. 

 
Fig. 3 exhibits the variations of energy shares of three reflected ( , , )f sP P SV  waves, four 

refracted 1 2 3( , , , )P P P SV  waves and interaction energy with 0
0 (0, 90 )  , for three different values 

of 0.25, 0.35, 0.45.   Values chosen for other parameters are 0.05 ,cap lK K  0.5 ,kHz   

/ 2 1kHz   . Similar to the effect of   in Fig. 1 and   in Fig. 2, the significant effect of   on 
energy partition is observed. In this case, a larger porosity may be responsible for stronger refracted 

2 3( , )P P  waves. 
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Figure 4: The same as the Fig. 1 but for incident sP  wave. 

 
For incident sP  wave: 

The variations of energy shares of three reflected ( , , )f sP P SV  waves, four refracted 

1 2 3( , , , )P P P SV  waves and interaction energy with 0
0 (0, 90 )   are exhibited in Fig. 4, for three 

different values of 0.01, 0.5, 0.99.   Near normal incidence, for any  , only reflected fP  and 

refracted 1P  waves have larger energy shares. On the other hand, at grazing incidence for any  , 

only the reflected sP  wave has a significant energy share. 
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Figure 5: The same as the Fig. 2 but for incident sP wave. 

 
A significant variation in energy shares is visible with the change of gas share in pores. It is 

quite evident that in the incidence of fP  wave, the critical angles for the reflected fP  and SV  

waves are observed around 0
0 28   and 0

0 44  , respectively, for any value of  . A comparison 

among the energy shares of reflected and refracted waves shows, a relatively insignificant refracted 

2P  wave strengthens a lot for 0.01  . It is inferred from plot that reflected SV  wave is very 

little sensitive to the change in  . However, the response of the refracted SV  wave to this change 
is significant. 

Fig. 5 exhibits the variations of energy shares of three reflected ( , , )f sP P SV  waves, four 

refracted 1 2 3( , , , )P P P SV  waves and interaction energy with 0
0 (0, 90 )  , for three different 

frequencies / 2 0.1,1 , 5kHz   . The effect of wave frequency ( ) is clearly visible on all the 
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energy shares. It is also noted that the effect of frequency is nearly same to the effect of gas share in 
pores except the incidence direction at which the change starts in energy partitions with the change 
in wave frequency. 
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Figure 6: The same as the Fig. 3 but for incident sP  wave. 

 
Fig. 6 exhibits the variations of energy shares of three reflected ( , , )f sP P SV  waves, four 

refracted 1 2 3( , , , )P P P SV  waves and interaction energy with 0
0 (0, 90 )  , for three different values 

of 0.25, 0.35, 0.45.   Similar to the effect of   in Fig. 4 and   in Fig. 5, the significant effect 

of   on energy partition is observed. In this case, a larger porosity may be responsible for stronger 
refracted 2 3( , )P P  waves. A comparison of the energy shares of various reflected and refracted waves 

implies that the contribution of refracted 2 3( , )P P  waves to the total wave-field is just a namesake, 

for any value of  . 
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For incident SV wave: 
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Figure 7: The same as the Fig. 1 but for incident SV  wave. 

 
The variations of energy shares of three reflected ( , , )f sP P SV  waves, four refracted 

1 2 3( , , , )P P P SV  waves and interaction energy with 0
0 (0, 90 )   are exhibited in Fig. 7, for three 

different values of 0.01, 0.5, 0.99.   Near normal incidence, for any  , only refracted SV  wave 

have larger energy shares. On the other hand, at grazing incidence for any  , only the reflected 
SV  wave has a significant energy share. A significant variation in energy shares is visible with the 
change of gas share in pores. It is quite evident that in the incidence of fP  wave, the critical angle 

for the reflected fP  wave is observed round 0
0 42  , for any value of  . The response of reflected 

SV wave to this change with incident direction is nearly opposite to the refracted SV wave. 
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Figure 8: The same as the Fig. 2 but for incident SV  wave. 

 
It is clearly visible from the plot that energy share of reflected fP wave became weakens with 

the increase of gas share in pores for the incidence up to an angle around 0
0 35 .   While, energy 

share of refracted 1P  wave strengthens with the increase of gas share in pores for the incidence up 

to an angle around 0
0 35 .   Near the critical incidence, a peak in energy shares of reflected fP  

and refracted 1P  waves are observed with the change of gas share in pores. 

Fig. 8 exhibits the variations of energy shares of three reflected ( , , )f sP P SV  waves, four 

refracted 1 2 3( , , , )P P P SV  waves and interaction energy for 0
0 (0, 90 )  , with three different 

frequencies / 2 0.1,1 , 5kHz   . The effect of wave frequency ( ) is clearly visible on all the 

energy shares. It is also noted that the effect of frequency is nearly same to the effect of gas share in 
pores except the incidence direction at which the change starts in energy partitions with the change 
in wave frequency. 
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Figure 9: The same as the Fig. 3 but for incident SV  wave. 

 
Fig. 9 exhibits the variations of energy shares of three reflected ( , , )f sP P SV  waves, four 

refracted 1 2 3( , , , )P P P SV  waves and interaction energy for 0
0 (0, 90 )  , with three different values 

of 0.25, 0.35, 0.45  . Similar to the effect of   in Fig. 7 and   in Fig. 8, the significant effect 

of   on energy partition is observed. In this case, a larger porosity may be responsible for stronger 
refracted 2 3( , )P P waves. A comparison of the energy shares of various reflected and transmitted 

waves implies that the contribution of refracted 2 3( , )P P  waves to the total wave-field is just a 

namesake, for any value of  . 
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7 CONCLUSIONS 

The presented work is the theoretical analysis of the phenomena of reflection and refraction at the 
welded interface between a non-viscous porous solid saturated with single fluid and a porous solid 
saturated with two immiscible viscous fluids. There are three reflected and four refracted waves for 
given incident wave. Partition of incident energy among the reflected waves, refracted waves are 
calculated along with the interaction energy. The interaction comes from the interaction among 
refracted waves. Reflection-refraction phenomenon is studied for incidence of three waves, that is 

, f sP P  and SV . The variations in reflection/refraction energy coefficients are analyzed for a 

particular numerical model with variations in gas share in pores, frequency of incident wave and 
porosity of medium. Some interesting observations from the numerical example may be important 
and hence are explained as follows. 

 Conservation of the incident energy is obtained for the presence of interaction energy due to 
the interference between refracted waves. This certifies the correctness of all the analytic 
derivations which form the complete procedure. 

 At the normal incidence of fP  wave, the energy is shared mainly among reflected sP  and 

refracted 1P  waves. While at the grazing incidence of fP  wave, domination shifts in favor 

of the reflected fP  wave. 

 At the normal incidence of sP  wave, the energy is shared mainly among reflected fP  and 

refracted 1P  waves. While at the grazing incidence of sP  wave, domination shifts in favor of 

the reflected sP  and SV waves. While at the grazing incidence of SV wave, the reflected SV 

wave dominates over all other scattered waves. 
 For the incidence of sP  wave, the energy share of refracted 2P  wave is of diagnostic 

importance for a minute presence of gas in pores. 
 For the incidence of sP  wave, the critical angles are observed for reflected fP  and SV waves. 

On the other hand for the incidence of SV wave, critical angle is observed only for reflected 

fP  wave. 

 The effect of gas share in pores, wave frequency and porosity on energy partitions are 
observed for all the reflected and refracted waves. 
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