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Abstract 

Traditionally, classical methods of structural analysis such as 

slope-deflection and moment distribution methods (Cross method) 

are used for primary analysis of structures and also controlling the 

results of computer programs. The main objective of this paper is 

to introduce a new method for classical computing and extending 

it to a matrix formulation. The proposed approach, named the 

“Slope Distribution Method (SDM)”, is based on a Jacobi iterative 

procedure, in which without forming the system of linear equa-

tions, structural displacement values are obtained. Also, to make 

the method applicable and to use it in computer softwares, the 

matrix formulation of the approach is developed, where there is no 

need for iterative procedures and the nodal rotations are obtained 

through solving only one matrix equation. The SDM is able to 

analyze frames with non-vertical columns and those with nodal 

vertical displacement. Whereas current analysis softwares have 

some elimination for the analysis of non-prismatic members, the 

proposed method can be applied to analyze structures with any 

non-prismatic member. The SDM process is also developed for the 

analysis of dual lateral load resisting systems (moment resisting 

frames with other lateral load resisting elements such as bracings 

and shear walls). The advantages of the method over previous 

ones and also, its accuracy and reliability are presented through 

the article. 
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1 INTRODUCTION 

Multi-storey building frames may be considered the most widely used kind of structures, especially 

in urban and residential areas. Population growth and land scarcity increase the need of these types 

of structures. Substantial and rapid expansion of this necessity in the early decades of the twentieth 

century, led to the creation of different methods of frames analysis. On the other hand, because of 

the high indetermination degree of frames, their analysis with traditional force methods was very 

time consuming. (However, some researchers have conducted a number of studies on the analysis 

time reduction in the force method, recently (Kaveh, 1992, 2006)). Based on these two reasons, 

engineers tried to use more applicable and less time consuming methods such as slope-deflection, 

cross and Kani methods(Cross, 1930; Kani, 1957). Slope-deflection is a manual method to analyze 

the beams and bending frames and was introduced in 1915 by George A. Maney (Maney, 1915). In 

this method, with formation of equations and applying nodal and shear force equilibrium conditions, 

rotate angle of nodes and members are calculated which are placed in corresponding relations to 

determine end moments of members. Slope-deflection was a revolutionary approach in comparison 

to the previous structural analysis methods. Instead of calculating static redundancies and using 

them to find structural deformations, nodal displacements are computed firstly and used to achieve 

support reactions. 

 The fundamental problem of the Slope-deflection method appears in structures with a high de-

gree of indetermination, which leads to the formation and solving of linear equation systems; so a 

lot of efforts were done to find methods that do not have this problem. This method was used for 

one decade in many cases, until the moment distribution method was developed. In 1930, Cross  

proposed the new method and could eliminate this problem for non-sway structures (Cross, 1930). 

In the first step of MDM, the rigid connections of bending frames were assumed to be fixed, and the 

moments created by external loads on these connections were obtained. These moments are unbal-

anced at the joints of the original non-restrained structure, and in order to equilibrate the joints, 

the moments are distributed proportionally to corresponding members’ stiffness. The procedure 

repeats until the unbalanced moments become negligible. The final moments at the joints of mem-

bers are the sum of all distributed incremental moments (Volokh, 2002). The Cross method in the 

sway structures needs forming and solving algebraic equations with fewer numbers of unknowns. 

The Cross approach has easy interpretation and has been taught in different universities. This 

method could be used in simple programming of structural analysis, in which end moment of mem-

bers is considered as the unknown. By using an iterative procedure, (Consecutive moment distribu-

tion and transmission among the members connected to rigid nodes), the system of linear equations 

created by the slope – deflection method is solved. Consequently, beams and frames are analyzed 

without solving any system of equation, directly. End shear force for each member is also obtained 

through static equilibrium.  

 In addition, the Gaspar Kani’s method (Kani, 1957) which is used in structural analysis, uses 

iterative procedures to solve the slope deflection equations system (Behravesh and Kaveh, 1990). In 

the moment distribution method, the unknowns (end moments of structural members) are obtained 

through performing iteration on their changes (increments), whereas in the Kani method, the itera-

tion procedure is applied on the unknowns themselves. 
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 Behravesh and Kaveh(Behravesh and Kaveh, 1990) explained the relationship between moment 

distribution and Kani methods and a numerical iterative procedure, and showed that the calcula-

tion trends in these two methods are similar to the Jacobi iteration procedure that has been used to 

solve the equations of classical displacement. The Jacobi iteration approach in both methods is con-

verged, if the stiffness matrix is diagonally dominant. A study of Volokh (Volokh, 2002)also shows 

the correlation of MDM to the Jacobi iteration approach.  

 In this paper, a new analysis approach is proposed which is named “Slope Distribution Method” 

(SDM). The method is explained in manual formulation and is extended in matrix form. In this 

approach, there is no need to form and solve the system of algebraic equations which is its ad-

vantage compared to the slope–deflection approach. In comparison to the moment distribution 

method(Cross method), in the proposed method, the distribution and carry-over procedures are 

merged, and unlike the Cross and Kani approaches, instead of distributing and transmitting the 

moments at several members’ ends attached to each structural rigid node, only the nodal rotations 

(slopes) are distributed. These properties decrease the analysis parameters and lead to analysis time 

reduction of the proposed method. As the numbers of unknowns depends on the number of nodes 

and not the number of members connected to each node, the unknowns are limited in comparison 

to the Cross and Kani methods. According to the above-mentioned advantages, it will be shown 

that the proposed approach is less time-consuming than well-known methods of slope-deflection, 

Cross and Kani. The SDM process is also a proper and low-cost procedure to analyze the structures 

with non-prismatic members. It should be noted that the current analysis softwares are not able to 

model every kind of non-prismatic member; whereas by defining the corresponding coefficients, the 

SDM is capable of analyzing these structures properly. 

 The paper is organized as follows: 

 The following section describes the Jacobi scheme. Afterwards, a brief review of the slope – de-

flection method is explained. Thereafter, the proposed slope distribution method (SDM) will be 

illustrated. The relation between the new method and the Jacobi scheme is shown, and the relations 

of the proposed method for non-prismatic members are expanded. In the next part, the matrix for-

mulation of the method is extended. The approach is followed with some numerical examples and is 

compared with other traditional methods to show its advantages. The ability of the approach in 

analysis of dual systems, frames with non-vertical columns and also frames with vertical nodal dis-

placements are shown. The accuracy and reliability of the approach are shown through the paper, 

and finally, the paper ends with some conclusions that are useful for researchers. 

 
2 THE JACOBI SCHEME 

The Jacobi scheme is a iterative method for solving the diagonally-dominant systems of equations 

(Golub and Van Loan, 1996; Young, 2013). In mathematics, a system of equations can be presented 

by a matrix format. If the magnitude of the diagonal entry in each row exceeds the sum of the 

magnitudes of the non-diagonal entries in that row, the matrix is called diagonally-dominant. In 

fact, matrix A is strictly diagonally dominant if (Behravesh and Kaveh, 1990; Datta, 2010). 

 

1)(                                                                  ∑ �	���	���� <		 |	���	|  
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Where, 	a�� denotes the entry in the ith row and jth column. For solving a set of equations in the 

matrix form Ax=B, the Jacobi relation is illustrated as (Golub and Van Loan, 1996; McCormac 

and Nelson, 1997; McGuire et al., 2000): 

 

                               				x�(�)	
=	���∑ 	���		��(���)		��� ���                                             (2) 

 

In which, 	a��	 and b� denote the elements of coefficient matrix. 

 
3   A BRIEF REVIEW OF SLOPE – DEFLECTION METHOD 

As mentioned previously, in the suggested method, nodal displacements are considered the main 

unknowns. As nodal displacements are also the unknowns of the equations in the slope deflection 

method, this method will be reviewed briefly in this part. It should be noticed that unlike the slope-

deflection method, the proposed method uses iterative procedures to solve the equations, and in 

general, it will not be necessary to solve the equations directly. The Slope-deflection method, as 

applied nowadays in analyzing the structures with rigid joints, was introduced by G.A.Maney in 

1915. This method is based on evaluating the nodal rotations and displacements. 

After finding nodal rotations, end moment and shear of members can be calculated using the slope-

deflection relations. These relations express end moment of a member based on rotations of nodes 

and elements, and also the external loads on the members. For element ij with constant bending 

rigidity, and length L (Figure 1), the relation is as follows (McCormac and Nelson, 1997; Norris et 

al., 1976). 
 

 

Figure 1: Deformation curve of the elastic beam. 
 

 ��� = 2� ! "2Ѳ� + Ѳ� − 3&��' + (���� 																																																																		(3) 
 ��� = 2� ! "2Ѳ� + Ѳ� − 3&��' + (����																																																																			(4) 

 

In these equations, the effects of axial and shear deformation are neglected, because the effect of 

these two parameters on the bending deformation is small. Using equations (3) and (4) and writing 

the equations of static equilibrium for the member ij, the end shear will be found as follows(Megson, 

2005): 



 S.M.H. Mirfallah and M. Bozorgnasab / A New Jacobi-based Iterative Method for Classical Analysis of Structures    2585 

Latin American Journal of Solids and Structures 12 (2015) 2581-2617 

 

*�� = −6� 	!, "Ѳ� + Ѳ� − 2&��' + (�*��																																																															(5) 
 *�� = 6� 	!² "Ѳ� + Ѳ� − 2&��' + (�*�� 																																																																				(6) 

 Ѳ�	and	Ѳ� are  the  rotation of node i  and  j respectively, and φ�� shows the sway rotation of mem-

ber ij that is calculated through the below equation. FEM and FEV are the fixed end moment and 

shear.  

 

)7(                                                                &�� = 0123 = 01�023  

 

Δ:Relative displacement of the member ends. 

In Table 1, values of fixed end shear, moment and sign convention for different loading cases are 

shown(Mau, 2003): 		
FEM FEV Loads FEV FEM 

−5!8  
52 

 

52 

 

5!8  

−7!,12  
7!2  

 

7!2  
7!,12  

 

Table 1: Values of fixed end shear and moment (Mau, 2003). 

 
 

Also, Equations (3) to ( 6) could be written in matrix formulation (Megson, 2005): 

 

9:
;������*��*�� <=

> =
?@
@@@
A BCD3 ,CD3 �ECD3,CD3 BCD3 �ECD3�ECD3F �ECD3F G,CD3FECD3F ECD3F �G,CD3F HI

III
J
K L�L�&��M + 9:

;(����(����(�*��(�*�� <=
>

                                            (8) 

 

By replacing the values of nodal displacements in the above matrix formulation, end shear force and 

moment of members are calculated. This matrix formation can be used in programming of the SDM 

matrix procedure. 

If a static equilibrium equation is written for a non-prismatic member, the shear force at the 

end of each member can be calculated. Given that the values of bending moments are defined ac-

cording to nodal rotations, lateral rotation of members and also the external loads, the shears of 

members’ ends are also obtained based on these three parameters: 
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*�� = −NO�K� + O�K� − PO� 	+ 	O�Q&��R + 	(�*��																																																					(9) 
 *�� =	 NO�K� + O�K� − PO� 	+	O�Q	&��R + 	(�*�� 																																																					(10) 
 

where T� and T� are defined as follows: 

 O� = V12W	X21	V213 = V12W	X12	V123 = V12	(GW	X12	)	3 																																																						(11)  
 O� = V21W	X12	V123 = V21W	X21	V213 = V21	(GW	X21	)	3 																																																							(12) 

 

In the above equations,	C�� and	C��	 are moment carry-over factors. Also, S�� and S��	are	bending stiff-

ness values of the two ends of the non-prismatic member and could be calculated by integration 

methods or using related handbooks(Association, 1958). 

 
4 THE PROPOSED APPROACH: SLOPE DISTRIBUTION METHOD (SDM) 

4.1 Introduction  

SDM is an iterative method which is based on a series of computational cycles that are repeated 

until the results converge to a final value in each stage. By this repetition, simultaneous solving of 

algebraic equations is not necessary. This is a unique structural analysis method, in which the solu-

tion is obtained through an iterative process, without solving any equations to find problem param-

eters. SDM uses a Jacobi iterative scheme to find displacements in the system of equations pro-

duced by the slope-deflection method. 

 

4.2 SDM equations 

From static equilibrium, if external moment (M`�) is applied at the node B, the rotation at this 

node will take place until moment equilibrium is achieved, ∑Ma = M`� (Figure 2). 

 

 

Figure 2: Free-body diagram for moment at node B (Lopes et al., 2011). 

 �ab + �ac = Mde																																																																												(13) 
 

Using the equations from the Slope-Deflection Method given by Laursen (Laursen, 1988) and 

Kassimali (Kassimali, 1995), we have: 
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 Mab = f2EIL jab k2Ѳa + Ѳb − 3φabl + FEMab = f4EIL jab (Ѳa) − f6EIL jab φab + FEMab																	(14) 
 Mac = f2EIL jac k2Ѳa + Ѳc − 3φacl + FEMac = f4EIL jac (Ѳa) − f6EIL jac φac + FEMac																			(15) 

 

L is the length of the member, EI is the cross-section rigidity, and BѲ  is the rotation at B 

(Kassimali, 1995; Laursen, 1988). 

Placing Equations (14) and (15) into equation (13) and solving for BѲ , we have: 
 

Ѳa =	Mà� − 	FEMab−FEMacn4	EIL oab +	n4	EIL oac
+	 n6	EIL oabn4	EIL oab +	n4	EIL oac

φab + n6	EIL oacn4	EIL oab +	n4	EIL oac
φac																					(16) 

 

In general, initial rotation of rigid node "i" has a direct relationship with the external load and the 

lateral rotation angle of members connected to the node. This dependency is shown in equation 

(17): 
 

	L�(p) =	��de − ∑ (�����qr�qG	4	(	∑ s��)�qr�qG 	+ t 	1.5	v��	
�qr
�qG &��(p)																																																					(17) 

 

In the mentioned equation, N is the number of elements connected to node i, R��=	 y��∑ 	y�z{�z� ��		is the 

relative bending stiffness of members connected to node i and K��= (}~� )�� is bending stiffness of each 

of these members.  

In SDM, to calculate the slope of node i, the recursive series is defined as in equation (18): 
 

θ�(�) = θ�(��G) + 	Δθ�(��G) = 	θ�(p) + t Δθ�(�)
�q��G
�qp 																					n ≥ 1																																	(18) 

 

Where n is the number of analysis stage and θ�(p)
 is the rotation value of node i under primary loads 

that are obtained through Equation (17).  Δθ�(�)is the difference between the connection slope at 

node i, in two successive stages, due to incremental unbalanced moments. The value of Δθ�(�) will 

decrease during the analysis procedure and finally tends toward zero. In this condition, the connec-

tion rotation converges to its actual value, and the system will be balanced. 

As discussed before, in the SDM method, incremental unbalanced moments at members’ ends 

decrease to achieve nodes’ equilibrium. In each step, for moment equilibrium condition at each 

node, it is necessary that:    ∆M�(�) = M�̀ � − ∑ M��(�)�q��qG →0.  

Repeating the slope distribution approach, equilibrium is established in connection when n→ ∞. 

In this condition, ∆M�(�) = M�̀ � − ∑ M��(�)�q��qG =0. Also, incremental unbalanced moments at node i, 



2588      S.M.H. Mirfallah and M. Bozorgnasab / A new Jacobi-based Iterative Method for Classical Analysis of Structures  

Latin American Journal of Solids and Structures 12 (2015) 2581-2617 

 

lead to change in rotation of this node in each cycle of the iterative procedure (∆θ�(�)
). For nth Cy-

cle, ∆θ�(�)
is calculated through Equation (19). 

 

∆��(�) = ∆��(�)
�∑ ����q��q� = ���� − ∑ ���(�)�q��q��∑ ����q��q� 																																																					(19) 

 

Where,	M�̀ � is external moment and ∑ M��(�)�q��qG  is the sum of incrementally unbalanced moments at 

node i and ∑ K���q��qG  is the sum of the flexural stiffness of members connected to the ith node. n is 

the number of the analysis cycle and N is the number of members connected to node i. Equation 

(14) is obtained through a simple static equilibrium on node i. The equation is the same as the Ja-

cobi iterative procedure for solving the system of linear equations which has been described in pre-

vious parts. Using equation (19), the incremental unbalanced rotations caused by unbalanced mo-

ments, and consequently, the nodal rotations are calculated. 

Inserting equations (3), (4) and (18) in equation (19), the fundamental equations of the SDM 

are consequently achieved: 
 

ΔѲ�(p) = t−12
�q�
�qG R��Ѳ�(p)																																																																													(20) 

 

ΔѲ�(�) = t−12
�q�
�qG R��ΔѲ�(��G) +	t1.5	R�� �Δφ��(��G) = φ��(�)–φ��(��G)�																																		(21)�q�

�qG  

 

To compute the values of lateral rotation of the member ij,(	φ��(�)), a shear equilibrium equation 

should be used in each storey of the structure ( Figure 3).  

Through writing static equilibrium in each storey of the structure (i.e. Sth storey), the auxiliary 

equation is obtained to analyze structure without forming any equation system:  

 

*V = t *��q�
�qG 																																																																																	(22) 

 

In which, V�	is the shear of the Sth storey resulted from lateral loads such as earthquake or wind 

and V� is the shear of the jth column of that storey and obtained through relations (5) and (6). The φ�(�)	is calculated as follows: 
 &�(�) = &�(p) +	t0.5	��� �Ѳ�(�) + Ѳ�(�)��

G 																																																	(23) 
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Figure 3: The horizontal Shear of the frame in the Sth Storey (Rezaee Pajand and Aftabi Suny, 2010). 

 
m is the number of columns in the Sth  storey and i and j are the two ends of column ij; φ�(p)

is the 

initial rotation of member and D�� is the relative shear stiffness of the storey columns which is de-

fined through equations (24) and (25):   

 &�(p) = *V −	∑ (�*�G12∑ ����G 																																																																											(24) 

 ��� = ( ���∑ ����G )V							��� =  � !¡¢�� 																																																												(25) 
 

FEV is the fixed end shear of columns in the Sth storey; 	μ�� is shear stiffness of column ij, and D�� is 
the shear stiffness ratio of columns in the storey of interest. 

The SDM method can be extended for the condition where the beams jointed to a node have a 

lateral displacement, and also when the φ values of structure members in a storey are not the same. 

As the lateral displacements of structural members (∆) in each storey are related by geometric rela-

tionships, the equations can be expressed based on the lateral rotation of a storey member (φ�) 
that is considered as the base and independent one. So, the above equations will be corrected as 

follows: 
 

	L�(p) = k	��de − ∑ (�����qr�qG	4	 ∑ s���qr�qG 	l + t 	1.5	v��	
�qr
�qG (&��&V )&�(p)																																																			(26) 

 

¤Ѳ�(�) = t −12
�qr
�qG v��¤Ѳ�(��G) +	t 1.5	v��  &��&V ¢ �¤&�(��G) = &�(�)–&�(��G)�																													(27)�qr

�qG  

 &�(p) = *V −	∑ (�*�G12∑ (&��&V )����G 																																																																							(28) 
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��� = ( ���∑ (&��&V )����G )V																																																																									(29) 
 

In the above equations, N is the number of elements connected to node i, m is the number of col-

umns in the storey “S” and n is the step number of the recursive process. 

As the lateral independent rotation of each storey of structure (φ�(�)
 ) is related to nodal rota-

tions (Ѳ�(�)
), we can place equation (23) into equation (27) and simplify the analysis stages:  

  

ΔѲ�(G) = tω��
�q�
�qG ΔѲ�(p) + tω¦ �� §t δ�� �Ѳ�(G) + Ѳ�(G)�©

G ª�q�
�qG 																																											(30) 

 

For 2 ≤ n we have:  

 

ΔѲ�(�) = tω��
�q�
�qG ΔѲ�(��G) + tω¦ �� §t δ��	(ΔѲ�(��G) + ΔѲ�(��G))©

G ª																																						(31)�q�
�qG  

 

Where, ω�� = − G, R�� and ω¦ �� = �¬��¬�ω�� and R�� is the relative bending stiffness of members connect-

ed to node i which was introduced before. Also, the value of the carry-over factor (δ��) is defined as: δ�� = −1.5	D��. 
The current equation performs as a recurrence relation. The rotation value of each node will be 

updated in each stage and finally converges to its accurate values. Closing the values of nodal rota-

tions in two consecutive steps by desired accuracy is considered as the end of the SDM process.   

If a structure has non-prismatic members, then the above equations will be changed as follows: 

 

	L�(p) = (	��de − ∑ (�����qr�qG∑ ®���qr�qG 	) + t 7¦��
�qr
�qG &V(p)																																																														(32) 

 
 

¤L�(p) = t 7��
�qr
�qG 	L�(p)																																																																																							(33) 

 

&�(�) = &�(p) + t�¯	Ѳ(̄�)�
G 																																																																																									(34) 

 

Δθ�(G) = tω��
�q�
�qG 	Δθ�(p) + tω¦ �� °tD±	Ѳ±(G)©

G ²�q�
�qG 																																																																	(35) 
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For n≥ 2 we have: 

 

Δθ�(�) = tω��
�q�
�qG 	Δθ�(��G) + tω¦ ��

�q�
�qG °tD±ΔѲ±(��G)©

G ²																																																											(36) 
 

 	ϕ�(p) = V� 	−	∑ FEV��©G∑ �φ��φ�� 	T±©G 																																																																																		(37) 
 

As the bending stiffness coefficients and carry-over factor are different at two ends of storey col-

umns in non-prismatic structures, the shear stiffness ratio (D±) in node “r” of the column element 

should be calculated separately as follows: 

 �¯ = Ō∑ �&��&� � 	Ō�G 																																																																																								(38) 

 T±	is the shear stiffness of node “r” of the non-prismatic column which is obtained through equations 

(11) and (13), and ∑ T±©G 	is the total shear stiffness of all nodes of columns (nodes of the two ends of 

the columns) in the storey of interest (i.e. storey “s”) of the structure. Also, θ± is the rotation of 

node “r” of the non-prismatic column. 

 	v�� = ®��∑ ®���qr�qG 																																																																																	(39) 

 7�� = −	 �́�	v�� 																																																																																		(40) 
 7¦�� = P1 + 	 �́�	Q(&��&� )v�� 																																																																											(41) 

 

When the non-prismatic structure has no lateral displacement in the storey “S”(φ� = 0), by simplifi-

cation, the below relations are conducted: 

 

Δθ�(p) = tω��
�q�
�qG 	θ�(p)																																																																												(42)	

	
Δθ�(�) = tω��

�q�
�qG 	Δθ�(��G)																																																																											(43) 

	
For a special situation, prismatic structure without any lateral displacement in the storey “S” (φ� = 0),	C��	 = G,  is replaced in the above equations. 
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4.3 Sign Convention 

Sign convention in the proposed SDM method is similar to other manual analysis methods in which 

clockwise direction for	θ,φ, FEM and M  is considered as positive. According to this convention, the 

forces and linear displacements are taken as positive when the element rotates clockwise. It is in 

accordance with the positive directions used by some other researchers(e.g.(Timoshenko and 

Goodier, 1987). Also, the positive direction for shear force is the direction in which the force rotates 

the element clockwise (Figure 4). 

 

 

Figure 4: Positive sign convention for force and displacement. 

 
5   MATRIX FORMULATION OF SDM 

Manual approach of SDM should be repeated in a consecutive process until the final values of struc-

ture node displacements are obtained; this process is time-consuming and boring in structures with 

high degrees of indeterminacy. In fact, in matrix formulation of SDM, the initial information such 

as(φ(p), θ(p), δ and ω) will be calculated manually by the user and a computer will be used to per-

form the analysis process. Therefore, introducing an accurate solution without any repetition proce-

dure and forming and solving only one matrix equation to give the unknowns, is the main purpose 

of the SDM matrix procedure.     

If the equations (23), (25) and (26) are defined by matrix formulation, then we will have: 

 "∆θ(p)' = µω¶^�"θ(p)'																																																																				(44) 
 "ΔѲ(G)' = µω¶"∆θ(p)' + µω¦¶µδ¶"θ(G)'																																																													(45) 
 

If we have: 
               µτ¶ = µω¦¶µδ¶																																																																																(46) 

 

And by inserting equation (46) in (47) we have: 

 "ΔѲ(G)' = µω¶^F"θ(p)' + µτ¶"θ(G)'																																																															(47) 
 

{θ} is a vector including the last rotations in structure nodes and has a rank of (p×1) and "θ(p)' is 
also a column vector including the initial rotations of structure nodes due to external loads with a 

rank of (p×1); [ω] is a square matrix with a rank of (p×p) which includes the slope distribution 
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factors of the members, and p is the number of rigid nodes and structure supports, and [Ι] is a 

unique matrix with an equal rank with [ω]. The matrices of µω¦¶ and µδ¶ have the same rank with µω¶ and their entries are calculated just in two end nodes of the columns of each structure storey. 

They are replaced in corresponding matrixes to estimate the lateral displacement of structure (φ). 
In non-prismatic structures, due to the difference between bending stiffness coefficients and carry-

over factors in two ends of storey columns, we have δ�� ≠ δ�� and they should be calculated separate-

ly for each column node. In a multi-storey structure,	µω¦¶and µδ¶	matrices should be formed separate-

ly for each storey of the structure and the matrix µτ¶ for all of the structure is calculated through 

the superposition principle by using the partial matrix of µτ¶	in each storey of the structure. There-

fore: 

 

                              						µτ¶ = ∑ µτ¶±±q�±qG 																																																																								(48) 
 

In which, Ns is the number of stories in the structure. 

Each row in matrix µω¦¶	is corresponded to the rigid node of structure storey, and the value of µω¦¶�	in node ί is equal to a total of (1 + 	C��	)R��(»��») for the members connected to node ί on the 

storey “S”; which is placed in each entry of the ith row of matrix	µω¦¶. Therefore: 

 

µω¦¶�� = tP1 + 	C��	Q  φ��φ�¢
�q�
�qG R��																																																																					(49) 

 

Indeed, the values of relative shear stiffness (D±), calculated through equation (38) are placed in 

matrix D, and matrix µδ¶ is obtained through equation (50):  

 

 )50(      ¼δ��½ = ¼D��½ ⇒ µδ¶ = µD¶¿±���ÀÁ�`																																																														  

 

It should be noted that during the process of placing the entries in the global matrix of the struc-

ture, the zero value is considered for entries corresponding to nodes which do not exist in the given 

storey. If the structure includes prismatic members, equations (49) and (50) are changed as follows: 

 

µω¦¶�� = t φ��φ�¢
�q�
�qG ω��																																																																														(51) 

 ¼δ��½ = ¼−1.5	D��½																																																																																			(52) 
 

By calculating the above parameters, the rotations in structural nodes can be calculated. To this 

end, equation (27) can be changed to a matrix format. Equations (53) and (54) show the 2nd step 

of calculating ΔѲ: 
 "ΔѲ(,)' = µω¶"ΔѲ(G)' + ¼τ½"ΔѲ(G)'																																																																		(53) 
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"ΔѲ(,)' = (µω¶ + nτo)^	�NΔѲ
(G)R																																																																(54) 

 

In this way, through expanding relationship (27), other values of "ΔѲ(�)' can be obtained for n≥ 2: 
 "ΔѲ(�)' = (µω¶ + ¼τ½)^	Â��"ΔѲ(G)'																																																																			(55) 
 

Then, through placing equations (44), (45) and (55) in (18), the values of "θ(�)' will be calculated in 

the last cycle. Therefore, it can be concluded that: 
 kθl = ¼(µI¶ + µω¶) + µ	µI¶ − (µω¶ + µτ¶)	¶�G × (µω¶^F + µτ¶(µI¶ + µω¶))½"θ(p)'																															(56) 
 

If we define: µZ¶ 	= InversekµI¶ − µV¶l , µV¶ = µω¶ + µτ¶ and µU¶ = µI¶ + µω¶, then we will have: 
 kθl = nµU¶ + µZ¶Pµω¶^F + µτ¶µU¶Qo "θ(p)'																																																												(57) 
 

Final values of nodal rotations can be calculated through equation (56) by forming and solving only 

one matrix equation. End moments and shears of members can be evaluated through placing the 

nodal rotations in slope-deflection equations. The above equation can be used in computer pro-

gramming of SDM. It should be noted that the slope distribution factors in matrix formulations of 

SDM are calculated for all members connected to the structure nodes, whereas the supports will 

also be considered as nodes. At first, to compute the bending stiffness, carry-over factors of mem-

bers and fixed-end moments for non-prismatic members, the “hand book of frame 

constants”((Association, 1958)) could be used. Then, the matrix of slope distribution factor, [ω], will 

be formed for a structure. This matrix is a square one with a rank of (p×p), where p is the number 

of structure nodes. The entry		ω�� in matrix [ω] is equal to the slope distribution factor of member ij, 

which connects the nodes i and j. For those nodes which are not connected to each other by any 

member, ω��= 0; for original diameter entries, 	ω��= 0 and for fixed and two-roller supports in 

which	R�� = 0, ω�� is also considered as zero. For hinge and roller supports, ω��=	−	C��	, because the 

value of R�� is equal to unity (see equation (40)). The value of initial rotation for a rigid node of 

structure under external loading is obtained by equations (26) and (32). For fixed and two-roller 

supports, 	θ�(p) = 0 and for hinged support and roller support, it is computed through equation (26). 

It is worth noting that the initial rotation value in matrix formulation of SDM is computed for a 

hinged support; So, the bending stiffness, carry-over factor and the fixed-end moments obtained 

through “handbooks of frame constants” ((Association, 1958)) will be used in the equations without 

any changes. If the structure has no lateral displacement	(φ�� = 0), equation (56) will be simplified 

as follows:  kθl 	= ¼µI	¶ − µ	ω¶½�G	kθ(p)l																																																															(58) 
 
6   NUMERICAL EXAMPLES 

6.1 In the first example, the proposed procedure of SDM is applied on the continuous beam of Fig-

ure 5 from reference(Lopes et al., 2011). This beam has 4 supports in A, B, C and D. The supports 
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A and D are fixed. Other specifications are shown in Figure 5. The cross section of beam is U- 

shape (UPN 80).EI is assumed to be constant through the length of the beam. 

 

 

Figure 5: Continuous beam with asymmetric loading (Lopes et al., 2011). 

 
Fixed end moment of members and initial rotation of the structure nodes and slope distribution 

factors are calculated in Table 2: 

 

D C B A Node 

DC CD CB BC BA AB Member 

0 0 133.225 -133.225 63.875 -63.875 FEM 

0 -81.0452/EI 63.282/EI 0 L(p) 
0 -0.3333 -0.1666 -0.25 -0.25 0 ω 

 

Table 2: Fixed end moment, initial rotations and slope distribution factors for the example 6.1. 

 

Table 3 shows the steps of Jacobi-based SDM for analysis of the continuous beam of example 6.1: 

 

C B Node 

CB BC Member 

-0.1666 -0.25 7 

-81.0452 63.282 L(p) 
-10.5427812 20.2613 ΔL(p) 
- 3.37553258 2.6356953 ΔL(G) 
-0.439106837 0.843883145 Δθ(,) 
-0.140590932 0.109776709 Δθ(Ç) 
-0.0108288799 0.035147732 Δθ(B) 
-0.005855612 0.004572199 Δθ(È) 
-95.55989604 +87.17237509 θ(E) 

 

Table 3 The steps of Jacobi-based SDM for analysis 

of the continuous beam of example 6.1. 
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Below, the parametric calculation of some steps of the SDM is shown: 

 ¤LÉp = 7ÉX 	LXp	, ¤LXp = 7XÉ	LÉp,				¤LÉG = 7ÉX	¤LXp	, ¤LXG = 7XÉ	¤LÉ	,p 				¤LÉ, = 7ÉX	¤LXG	, ¤LX, = 7XÉ	¤LÉG 
 

Using slope deflection relations, the values of end moments and shears for the beam are calculated 

as below: 

 

MAB= - 39.9921, MBA=111.6406, MBC= -111.6401, MCB=104.7462, MCD= -104.7231,                  

MDC= - 52.3615, VAB=25.1851, VBA=44.8148, VBC=110.4443, VCB=108.5556,                    

VCD=43.0369, VDC= - 43.0369. 

 

To apply the matrix formulation on the above example, [ω] and kθpl are formed for the beam of 

Figure 5, by using the parameter values in Table 2: 

 

	µω¶ =
?@@
@@A

Ê Ë ´ �Ê 0 0 0 0Ë −0.25 0 −0.25 0´ 0 −16 0 −13� 0 0 0 0 HII
IIJ 

 

By applying equation (58) and using the calculated [ω] andkθpl, nodal rotation matrix is obtained 

as follow: 

 

kL(0)l =
9Ì:
Ì; Ê = 0Ë = 63.282� ´ = −81.0452� � = 0 <Ì=

Ì>												⇒ 											 kLl =
9Ì:
Ì; Ê = 0Ë = 87.1756� ´ = −95.5744� � = 0 <Ì=

Ì>
 

 

As could be seen, the results of the manual and matrix formulation are in good agreement. 

The above beam is also analyzed by Sap2000 software. The results are shown in Figures. 6 and 7. 
  

 

Figure 6: Shear diagram (KN) for the beam of the example 6.1. 
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Figure 7: Bending moment diagram (KN.m) for the beam of the example 6.1. 

 
As can be seen, the difference between the results of the SDM with those of these diagrams is negli-

gible and is less than 1% .It seems this small difference is because of considering shear deformation 

in software calculations. 

6.2 In this example, bending frame with lateral displacement and different columns heights, will 

analyze by classic and matrix procedure of SDM and results will be compared with those of 

Sap2000 software. Characteristics, loading and support conditions are shown in Figure 8 and the 

flexural rigidity of frame members is constant. 

 

 
 

Figure 8: The Frame with different column heights (example 6.2). 

 
If it is supposed that φba is considered as the independent φ of the storey, and we have: φ� =φba, 

then regarding geometric relationships between the members of the frame, it can be obtained that: 
 	+1.25ϕ�=	φcÍ		 and       0=φac		  

 

At first, primarily needed parameters are calculated. These values are presented in Table 4.  

 

D C B A Node 

DC CD CB BC BA AB Member 

0 0 12 -12 0 0 FEM 

0 −3.6884/EI 6.023/EI + 0 L(p) 
0 0.4286 0.5714 0.5263 0.4737 0 R 

0 -0.21428 - 0.2857 - 0.2631 -0.2368 0 7 

0 -0.26785 -0.2368 0 7¦ 

-0.6787 -0.6787 − − − − − − − − -0.6516 -0.6516 Î 
 

Table 4: Fixed-end moment of members, slope distribution and carry-over factors for the frame of Figure 8.	
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�ÏÉ=
��.Ð	ÑÒÐF ���.Ð	ÑÒÐF �W	(G.,È)��	ÑÒÓF �= 0.43439                     �XÔ=

��	ÑÒÓF ���.Ð	ÑÒÐF �W	(G.,È)��	ÑÒÓF �= 0.4524887 

 
 ÎÏÉ =	-1.5�ÏÉ =	-0.6516     ,      ÎXÔ= -1.5�XÔ = -0.678733            &V(p)

=
Ç�(p)G,	k	��.Ð	ÑÒÐF �W	(G.,È)��	ÑÒÓF �	l=G.ÕG}~  

 

 LÉ(p) = p�(�G,)B∗p.EÇÇÇ	}~ + 1.5 (0.4737)(G.ÕG}~ )= 
E.p,Ç}~ LX(p) = p�(G,)B∗p.ÈÕÇÇÇ	}~ + 1.5 (0.4286) (1.25) (G.ÕG}~ )= − Ç.EÕÕB}~  

 

 µ7¦¶×=�ØÙÚØÛ �7XÔ = −	0.26785																																								µ7¦¶a=�ØÜÝØÛ �7ÉÏ = −0.2368 

 
Now, slope distribution relationships between rigid nodes are simply produced through computing 

needed parameters. The parametric form of the slope distribution procedure for calculating nodal 

rotations of Figure 8 is shown in Table 5 (for the first three steps). Similarly, by repeating this pro-

cedure, other step values of nodal rotations’ changes are calculated. The results of all stages are 

shown in Figure 9. 

 
C B Node 

7XÉLÉ(p)
 7ÉXLX(p)

 ∆L(p) 
7XÉ∆LÉ(p) + 7¦c nÎÏÉLÉ(G) + ÎXÔLX(G)o 7ÉX∆LX(p) + 7¦a nÎÏÉLÉ(G) + ÎXÔLX(G)o ∆L(G) 

7XÉ∆LÉ(G) + 7¦c nÎÏÉ∆LÉ(G) + ÎXÔ∆LX(G)o 7ÉX∆LX(G) + 7¦a nÎÏÉ∆LÉ(G) + ÎXÔ∆LX(G)o ∆L(,) 
 

Table 5: Parametric form of SDM procedure for calculating nodal rotation of example 6.2. 

 
 

 

 
 

Figure 9: SDM procedure for analysis of the moment frame of example 6.2. 
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Now, for the matrix procedure of SDM, by calculating the required parameters, the corresponding 

matrices can be formed. Then, through SDM matrix procedure, frame node rotations will be de-

fined:   
 

µω¶ =
?@@
@A Ê Ë ´ �Ê 0 0 0 0Ë −0.236842 0 −0.263158 0´ 0 −0.285714 0 −0.214286� 0 0 0 0 HII

IJ
 

 

µ7¦¶ = Þ 0 0 0 0−0.236842 −0.236842 −0.236842 −0.236842−0.267857 −0.267857 −0.267857 −0.2678570 0 0 0 ß 
 

µδ¶ = Þ 0 −0.6516 0 0−0.6516 0 0 00 0 0 −0.6787330 0 −0.678733 0 ß 
 

 

"L(p)' =
9Ì:
Ì; Ê = 0Ë = 6.023� ´ = −3.6884� � = 0 <Ì=

Ì>												⇒ 											 kLl =
9Ì:
Ì; Ê = 0Ë = 7.7963� ´ = −5.56734� � = 0 <Ì=

Ì>
 

 

As can be observed, the calculated nodes rotation values through manual procedure of SDM after 

the sixth stages are equal to the results from their matrix procedure, till two decimals value; this 

shows the proper accuracy and convergence of the proposed method. Now, the lateral rotation of 

members, end moment and end shear values of members can be computed using equation (23) and 

slope deflection relations: 

 &V=+ ,.,BB}~  
 

MAB= 0.64,     MBA= 5.32,     MBC= -5.32,        MCB=9.77,          MCD= -9.77,     MDC= -7 

 

VAB=1.2→,     VBA=1.2←,							VBC= 11.257↑,     VCB=12.743↑,    VCD= 4.2→,     VDC=4.2← 

 

To compare the results obtained through the proposed method with those of computer programs; 

the above frame is modeled and analyzed through Sap2000 software. In Figure 10, the shear and 

moment diagrams of frame members are shown as the two outputs of software: 
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Figure 10: The shear diagram (in Ton) and moment diagram (in Ton-m) of the frame of example 6.2 

 
6.3  In this example, one single-bay moment resisting frame with a single-storey is considered which 

has non-prismatic columns and a set of cross bracing (x-bracing)(Rezaee Pajand and Aftabi Suny, 

2010). As is clear in Figure 11, the frame has a bay of 4b and a height of 3b. Columns of frame are 

non-prismatic with two different end sections as shown in the figure and its beam is prismatic with 

a section like the column in connecting joint. The beams and columns of the frame are made from 

materials with an elastic modulus of 10E. On the other hand, braces have an elastic modulus of E 

and a section area of 0.01b2.  
 

 
 

Figure 11: The one bay moment resisting frame with non-prismatic columns 

and x-bracing system(Rezaee Pajand and Aftabi Suny, 2010) 

 
In such a problem, the stiffness of braces in the storey should be included in calculations. What 

analyzing relations reveals is, while designing of the two given bracing members is performed based 

on allowable compression force, both members will participate in the lateral resisting system; so, the 

total lateral stiffness of the braces is equal to total lateral stiffness of the two members (Rezaee 

Pajand and Aftabi Suny, 2010; Zalka, 2002): 

 

 
 

Figure 12: A X-bracing frame(Rezaee Pajand and Aftabi Suny, 2010). 

M. Diagram 

Dig 
V. Diagram 
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sâ = 2sÉ¯ãäd = 2	(�Ê! )	åæç,L																																																																		(59) 
 

Where, E is elasticity modulus, A is cross-section area, L, is the length of bracing member and Ө is 

the angle between the bracing member axis and horizontal direction. Regarding that the above sys-

tem is a dual bending–bracing frame system, it is needed to consider the stiffness of these two sys-

tems during the computations processes, simultaneously. According to Figure 3, the storey shear 

(V�) is equal to the sum of the column’s shear forces and the horizontal components of the bracing 

members forces in the desired storey:   

 

*â + t*��
�
G = *�																																																																																(60) 

 

In which, m is the number of column members in the storey and Vè is obtained by the below equa-

tion: 

 
                                                          *â = sâ∆�																																																																																		(61) 
 

In this equation, the sum of lateral stiffness of the bracing system in the Sth storey is defined by	Kè. 
According to Figure 4 and based on the main assumption of the SDM method, i.e. neglecting axial     

deformation of frame members, relative displacements of all Sth  storey columns are the same and 

equal to	∆�. 
All bending frame equations are used in dual frames, but member shear stiffness will be 

changed. Therefore equations (28) and (29) are modified as follows: 
 		�¯ = Ō	(	sâé�) 	+ 	∑ (&��&� )	Ō 	�G 																				(62)																			&�(p) = *V 	−	∑ (�*���G	(	sâé�) 	+	∑ (&��&� )	Ō 	�G 																					(63) 
 

If the structural members are prismatic, the above equations will be simplified as below: 

 ��� = ���(		sâé�12 )	+	∑ (&��&� )����G 																			(64)																					&�(p) = *V 	−	∑ (�*���G	(	sâé�) 	+ 	12∑ (&��&� )����G 															(65) 
 

Now, to solve the above problem, stiffness and carry-over coefficients of non-prismatic columns are 

computed at first, using the tables of  “handbook of  frame constants” (Association, 1958), as fol-

lows: 
 

®G, = 20.61ê(10�)((0.2	ë)B12 )3ë ì	= 	0.00916	�ëÇ =		®BÇ 
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®,G = 5.42	ê(10�)((0.2	ë)B12 )3ë ì = 	0.00241	�ëÇ =		 ®ÇB 
 

The frame beam is prismatic and has stiffness coefficient and carry-over factors as below: 

 

®,Ç = 4	ê(10�)((0.2	ë)B12 )4ë ì	= 	0.0013333	�ëÇ =		 ®Ç, 

 

sâ = 2	�(0.01	ë,)5ë (45), = 	0.00256	Eb																					sâ 	é� = 0.00768		�ë,
 

 

Now, by defining the required data, the rotation coefficients are calculated: 

 v,G = ®,G∑®, = 0.00241	�ëÇ0.00241	�ëÇ 	+ 	0.0013333	�ëÇ = 0.64381122 = 	vÇB		 
 

 7,G = −´,G	v,G = −	0.77257	 = 	7ÇB 
 

 v,Ç = ®,Ç∑®, = 0.0013333	�ëÇ0.00241	�ëÇ 	+ 	0.0013333	�ëÇ = 0.3562 = 	vÇ,						7,Ç = − ,́Ç	v,Ç = −	0.1781	 = 7Ç, 

 OG = ®G, + ´,G®,G!G, = 0.00402		�ë, 	= 	 OB														O, = ®,G + Ǵ,®G,!G, = 0.00177		�ë, 	= 	OÇ 

 

	(	sâé�) 	+	t 	k	(í��í� )	(	Ō 		)	l =�
G 0.01926		�ë, 

 �G = 0.208723 = �B																					�, = 0.0919 = �Ç 
 µ7¦¶, = (1 + ´,G)v,G  &,G&V ¢ = 1.4164 = µ7¦¶Ç 
 &V(p) = 5îë − 00.01926		�ë, = 259.6054 î�ë 
 

L,(p) = 0	– (−�	43� 	îë,)	0.0037433	�ëÇ + (1 + 1.2)(0.64381122)(259.6054 î�ë) = 	723.89387 î�ë 

 

LÇ(p) = 0	– (�	43� 	îë,)	0.0037433	�ëÇ + (1 + 1.2)(0.64381122) �259.6054 î�ë� = 11.51632 î�ë 
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3 2 Node 

7Ç,L,(p)
 7,ÇLÇ(p)

 ∆L(p) 
7Ç,∆L,(p) + 7¦Ç n�,GL,(G) + �ÇBLÇ(G)o 7,Ç∆LÇ(p) + 7¦, n�,GL,(G) + �ÇBLÇ(G)o ∆L(G) 

7Ç,∆L,(G) + 7¦Ç n�,G∆L,(G) + �ÇB∆LÇ(G)o 7,Ç∆LÇ(G) + 7¦, n�,G∆L,(G) + �ÇB∆LÇ(G)o ∆L(,) 
 

Table 6: Parametric form of SDM procedure for nodal rotation of example 6.3. 
 

 

3 2 Node 

11.51632 î�ë 723.89387( î�ë) L(p) 
−128.9254982 î�ë −2.051056592( î�ë) ∆L(p) 
−117.4091782( î�ë) 721.8428134( î�ë) L(G) 
79.04270288( î�ë) 101.6390409( î�ë) ∆L(G) 
5.416916267( î�ë) 9.441324069( î�ë) ∆L(,) 
0.25255513( î�ë) 0.96930216( î�ë) ∆L(Ç) 

−0.013587021( î�ë) 0.114065624( î�ë) ∆L(B) 
−0.007236073( î�ë) 0.015498862( î�ë) ∆L(È) 

−0.00276( î�ë) 0.002364( î�ë) ∆L(E) 
−32.71951182( î�ë) 834.0244093( î�ë) L(ï) 

 

Table 7: The results of SDM procedure for nodal rotation of example 6.3. 

 

By calculating the required parameters, the corresponding matrices for the structure are formed: 

 

µω¶ = Þ 0 0 0 0−0.77257 0 −0.1781 00 −0.1781 0 −0.772570 0 0 0 ß 
 
 

	µ7¦¶ = Þ 0 0 0 01.4164 1.4164 1.4164 1.41641.4164 1.4164 1.4164 1.41640 0 0 0 ß 
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µδ¶ = µD¶ð¯ã��ñò�d = Þ 0 0.0919 0 00.208723 0 0 00 0 0 0.2087230 0 0.0919 0 ß 

 
 

"L(p)' =
9Ì:
Ì; Ê = 0Ë = 723.894 î�ë´ = 11.5163 î�ë� = 0 <Ì=

Ì>												⇒ 											 kLl =
9Ì:
Ì; Ê = 0Ë = 834.025 î�ë´ = −32.7199 î�ë� = 0 <Ì=

Ì>
 

 

Through comparing manual and matrix procedures of SDM, it can be shown that the value of 

frame nodal rotation after the sixth step using a manual procedure is equal to its matrix results till 

two decimal values which indicate the accuracy and good convergence speed of the proposed meth-

od.  

After calculating the nodal displacements, members’ lateral rotations and bending moments are 

resulted by equation (34) and slope deflection equation, respectively: 

 &V = 	333.24533� î�ë� 
 �G, = −1.603	îë,,	�,G = 0.2431	îë,,	�,Ç = −0.2431îë,,	�Ç, = 1.846	îë,,	�ÇB = −1.846	îë,,�BÇ = −4.112	îë, 

 

In the above example, if the bracing system is eccentric, the only difference is the value of the stiff-

ness of bracing members. Regarding  studies (Rezaee Pajand and Aftabi Suny, 2010; Zalka, 2002), 

it is just enough that parameter “A” in equation (59) is replaced by	"A`" which is defined as follows:  

 

 
 

Figure 13: An eccentric bracing frame(Rezaee Pajand and Aftabi Suny, 2010). 
 

Êd = õ, ö 1 + ÷,õ, + ÷,øÇ, 	Ê																																																															(66) 
 

In the above equation, β is the proportion of height to length of braced span and α is the ratio of 

distance between the brace connection place to its neighbor column to the length of braced span. 
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These two factors can be seen in Figure 13. In a situation where shear walls are used in the struc-

ture, it is just enough to define wall lateral stiffness through the following equation to analyze the 

structure by the SDM method: Kû = 3EIγHÇ 																																																																															(67) 
 

Where, E is elasticity modulus for concrete shear wall and I is the moment inertia of shear wall and 

are calculated by following equation:  E = 5000þf×F 																																																																										(68) 
 I = bLûÇ12 																																																																																		(69) 
 f×	is compressive strength of concrete based on N/mm2 . b and Lû are the thickness and the length 

of the wall, respectively. Coefficient γ in equation (67) shows the effect of shear deformation on the 

wall stiffness and obtained by the following equation: 
 γ = 1 + 0.75 LûH ¢																																																																						(70) 
 

where, H is the  height of the wall.  

 
7 BENDING FRAME WITH NON-VERTICAL COLUMNS. 

7.1 

The SDM method can be used for frames at which the beams at storey level have lateral rotation or 

the columns are non-vertical. Through writing horizontal equilibrium equations for shear force, the 

horizontal components of the axial forces of non-vertical columns are participated in the equilibri-

um. Therefore, to ease the process, moment equilibrium equation around a virtual point resulted 

from the intersection of members or the continuation (point I in Figure 14), are used to remove the 

effect of column axial force in equations. If the concentrated load of P is applied on the connection 

“B” in the frame of Figure 14, the parameters of the SDM approach can be defined for the frame 

through writing moment equilibrium for point “I”. 
 

 
 

Figure 14: An example of a frame with non-vertical columns and Lateral 

displacements of  its members (Kaveh, 2012; Megson, 2005).  
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As mentioned in (Kaveh, 2012), lateral displacements of members can be simply described based on 

frame independent displacement through geometric relationships. This dependency is defined for the 

frame of Figure 14 by following equations:  

 ∆Gç��L = ∆,ç��(90°	 − 	L) = ∆Çç�� 90° 																																																																									(71) 
 ∆G= ∆, ��� L = ∆Ç ç��L 																																																																																		(72) 

 

Lateral rotation of member “AB” is supposed as the basis (φ�=φba	 ) and the length of h and r is 

equal to r	 = ���×Á�� and h=Lac tanθ, therefore: 

 

&V(p) = 5 �ℎ�� − �(��ÏÉ + (��ÔX� � −  (�*ÏÉ(é + ℎ) 	+ 	(�*ÔX(v + �)� ¢
12	 §�� é,� n�ℎ�� + �é2��o +	�� v,��&ÔX&V � n1 + � v2��oª 																															(73) 

 

Also, the relative shear stiffness and lateral rotation of members are defined as follows: 

 

�ÏÉ =	 �� é,� n�ℎ�� + �2é3� �o�� é,� n�ℎ�� + �é2��o +	�� v,� �&ÔX&V � n1 + � v2��o																																																		(74) 
 

�XÔ =	 �� v,� n1 + �2v3��o�� é,� n�ℎ�� + �é2��o +	�� v,� �&ÔX&V � n1 + � v2��o																																																			 (75) 

 &V(�) = &V(p) + 	0.5	�ÏÉ �ѲÏ(�) + ѲÉ(�)� + 0.5	�XÔ �ѲX(�) + ѲÔ(�)�																																									(76) 
 
It can be seen that if  θ → �,, then r&h→ ∞ ,  

± →1  and  
G± →0  and the equations will be simplified. 

 
7.2 In this part, an example from (Kaveh, 2012) is presented. In the frame of Figure 15, A and D 

are fixed supports and the column”CD” makes an angle of 53 degrees with horizontal direction. 

Structural loading and the relative value of (
}~� ) for each member are shown in Figure 15.  
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Figure 15: Frame of example 7.2 and the structure characteristics(Kaveh, 2012). 

  
  If φ�=φba		, then from equation (72), we have the following relations: 

 

 

In this example, the required parameters are calculated firstly and the structure is analyzed by the 

two manual and matrix forms of the proposed method. 

 

 

D C B A Node 

DC CD CB BC BA AB Member 

0 0 0 0 0 0 FEM 

0 0 -20.4082 0 L(p) 
0 12 

12 
23 

13 0 R 

0 −	14 −	14 −	13 −	16 0 7 

0.81632 0.81632 ---- ---- 0.4898 0.4898 D 

-1.22449 -1.22449 ---- ---- -0.7347 -0.7347 Î 

0 0 0.08333 0 7¦ 
 

Table 8: Fixed-end moment of the members, slope distribution and carry-over factors of the frame of Figure 15.  

 

 

φV(p) = 100�2025� − (0) − (0)12	k	�0.515� n�2025� + � 152 ∗ 25�o +	� 125� (0.75) n1 + � 252 ∗ 25�o	l = 	81.6326 
 

 �ÏÉ=
��.Ð��Ð �n�F�FÐ�W�F∗�Ð�∗FÐ�o��.Ð�Ð�n�F�FÐ�W� �ÐF∗FÐ�oW	� �FÐ�(p.ïÈ)nGW� FÐF∗FÐ�o= 0.4898         �XÔ=

� �FÐ�nGW�F∗FÐ�∗FÐ�o��.Ð�Ð�n�F�FÐ�W� �ÐF∗FÐ�oW	� �FÐ�(p.ïÈ)nGW� FÐF∗FÐ�o = 0.81632 
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ÎXÔ= -1.5�XÔ =-1.22449 ÎÏÉ =	-1.5�ÏÉ =	-0.7347 

 

 LX(p) ={(1.5)(-0.75)�G,�+(1.5)(0.75)�G,�}(81.6326)= 0 		, LÉ(p) ={1.5�GÇ�+(1.5)( -0.75)�,Ç�}(81.6326)= 

-20.4082 

 7¦a=�ØÜÝØÛ �7ÉÏ	 + �ØÜÙØÛ �7ÉX=0.08333			,				7¦� = öφÙÜ
φÛ ø7XÉ	 + �ØÙÚØÛ �7XÔ = 0 

 

Now, through calculating required parameters, the slope distribution process will be repeated be-

tween rigid connections. Parametric form of slope distribution procedure for calculating nodal rota-

tion of the frame of Figure 15 is similar to Table 5. In Table 9, the calculation process of the rota-

tions for nodes B and C are presented: 

 
C B Node 

0 −20.4082 L(p) 5.10505 0 ∆L(p) 5.10505 −20.4082 L(G) 
0 −0.971813 ∆L(G) 0.243 0.0595 ∆L(,) −0.014875 −0.10944 ∆L(Ç) 0.02736 0.013176 ∆L(B) −0.00323 −0.01272 ∆L(È) 5.3542 −21.4295 L(E) 

 

Table 9: Calculation process of the rotation values for  

nodes B and C of the frame of Figure 15. 

 
For analysis of the frame by matrix formulation of the presented approach, the corresponding ma-

trices should be formed at first: 

 

µω¶ = ?@@
@A 0 0 0 0−16 0 −13 00 −0.25 0 −0.250 0 0 0 HII

IJ
 

 

µ7¦¶ = Þ 0 0 0 00.08333 0.08333 0.08333 0.083330 0 0 00 0 0 0 ß 
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µδ¶ = Þ 0 −0.7347 0 0−0.7347 0 0 00 0 0 −1.224490 0 −1.22449 0 ß 

 

By forming the initial rotation matrix and using equation (56), the final rotation value of the nodes 

are calculated: 

 

"L(p)' = � Ê = 0Ë = −20.4082´ = 0� = 0 � 												⇒ 											 kLl = � Ê = 0Ë = −21.4286´ = 5.35715� = 0 � 

 

By using equation (23) and applying slope-deflection equations, the end-moments and shears of the 

members are calculated. 

 

  

MAB= -257.8923,     MBA= -279.321,    MBC= 279.695, 

 MCB=333.267,  MCD= -333.267,   MDC= -344 

 

VAB=35.8142←,   VBA=35.8142→, VBC= 40.864↓,											VCB=40.864↑,     VCD= 27→,	     VDC=27← 

 

The comparison of the results with those of (Kaveh, 2012), shows the accuracy of the proposed 

method. 

 
8 BENDING FRAME WITH VERTICAL DISPLACEMENTS OF THE NODES 

8.1 

If a frame column does not continue to the foundation level, due to vertical displacements, the 

frame beams will have lateral rotation. This is a limitation of the Kani method which is not able to 

analyze a frame with vertical displacement, and structure columns should be continued to the foun-

dation level. But through the SDM method, these kinds of structures can be analyzed. An example 

of this structure is shown in Figure 16. 

 
 

Figure 16: A moment resisting frame with vertical displacements of the nodes. 
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In this condition, through writing the shear equilibrium equation in vertical direction (Figure 17) 

and replacing the end shear of members, an auxiliary equation will be obtained. This equation con-

siders the vertical displacement, 3∆ , and consequently the lateral rotation of the beam ( 3ϕ ): 

 

 
 

Figure 17: The free diagram of a part of the frame of Figure 16. 

 

 

)77(                                                   	VcÍ + Va} + V�Í + V�} = Fde 

 

 F`�	, is the resultant of external forces in vertical direction which are applied on the frame part that 

is shown in Figure 17. Through simplifying, the below auxiliary equation will be obtained:  
 

 &Ç(�) = &Ç(p) + 0.5	�ÉC �ѲÉ(�) + ѲC(�)�+0.5	�XÔ �ѲX(�) + ѲÔ(�)�−0.5	��Ô �Ѳ�(�) + ѲÔ(�)� −0.5	��C �Ѳ�(�)) + ѲC(�)�				 
 &Ç(p) = F`� −	∑(�*12	k	�&ÉC&Ç � �ÉC 	+ �&XÔ&Ç � �XÔ − �&�C&Ç ���C 	−	�&�Ô&Ç � ��Ôl																																					(79) 
 

��� = ����&ÉC&Ç � �ÉC 	+ �&XÔ&Ç ��XÔ − �&�C&Ç � ��C 	−	�&�Ô&Ç � ��Ô ,											��� =  � !¡¢																											(80) 
 

It should be noted that the geometrical relations between structural members are as follows: 

 φa} = + ∆ÇLa} , φcÍ = + 	∆ÇLcÍ , φ�} = − 	∆ÇL�} , φ�Í = − 	∆ÇL�Í 

 

In the following example, the classical and matrix computing stages of SDM in a frame with verti-

cal displacement are explained more: 

8.2. In this example, a two-storey bending frame containing horizontal and vertical displacement is 

evaluated through classical and matrix approach of SDM. This frame is influenced by uniform dead 

(78) 
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load and horizontal force resulted from an earthquake. The frame geometrical characteristics and 

loading are represented in Figure 18. Finally, the obtained results will be compared with those of 

SAP2000 software. Bending rigidity values of all frame members are constant and equal. 

 

 
 

Figure 18: The bending frame of Figure 17. 

 

Considering the geometrical relation between structural members, we have: 

 &ÏÉ = &�� = +&	G, &ÉX = &CÔ = &�� = +&	,		, &ÉC = &XÔ = +&Ç			, &C� = &Ô� = −	&Ç 

 

The required coefficients and factors are calculated through simple relations of structural analysis 

(Tables 10 and 11). 

 

 

H D C A , F Node 

HG HD DH DE DC CD CB 
AB , 

FG 
Member 

0 2.25 -2.25 0 2.25 -2.25 0 0 FEM 

1.7777/EI 2.25/EI 2.25/EI 1.7777/EI 2.25/EI 2.25/EI 1.7777/EI 4/EI φ(p) 
-1.74983/EI 0.727273 /EI 4.035694 /EI 0 θ(p) 

0.4286 0.5714 0.3636 0.2727 0.3636 0.5714 0.4286 0 R 

-0.2143 -0.2857 -0.1818 -0.1364 -0.1818 -0.2857 -0.2143 0 7 

0.3333 0.25 0.25 0.3333 0.25 0.25 0.3333 0.5 D 

-0.5 +0.375 +0.375 -0.5 -0.375 -0.375 -0.5 -0.75 Î 
 

Table 10: Fixed-end moment of members, slop distribution and carry-over factors for example 8.2. 
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 G   E   B  Node 

GF GH GE EG ED EB BC BE BA Member 

0 0 0.75 -0.75 0 0.75 0 -0.75 s0 FEM 

4/EI 1.7777/EI 2.25/EI 2.25/EI 1.7777/EI 2.25/EI 1.7777/EI 2.25/EI 4/EI φ(p) 
1.025 /EI 0.727273 /EI 4.175/EI θ(p) 

0.3 0.3 0.4 0.3636 0.2727 0.3636 0.3 0.4 0.3 R 

-0.15 -0.15 -0.2 -0.1818 -0.1364 -0.1818 -0.15 -0.2 -0.15 7 

0.5 0.3333 0.25 0.25 0.3333 0.25 0.3333 0.25 0.5 D 

-0.75 -0.5 +0.375 +0.375 -0.5 -0.375 -0.5 -0.375 -0.75 Î 
 

Table 10 (cont.): Fixed-end moment of members, slop distribution and carry-over factors for example 8.2. 

 

 

H G  E D C B A , F Node 
 

 ----  -0.15  ---- ---- ---- -0.15 0 Due to 1ϕ  

7¦ values for 

each node -0.2143 -0.15 -0.1364 -0.1364  -0.2143 -0.15 ---- Due to 2ϕ  

+0.2857 +0.2 `0 0  -0.2857 -0.2 ---- Due to 3ϕ  

 

Table 11: 7¦ values for nodes in the structure of Figure 18. 

 
 

Through computing required parameters, the classical iterative procedure of SDM is repeated 

through structure rigid nodes till changes in nodal rotations values become negligible in two succes-

sive steps. The results are shown on Figure 19. 

As EI is constant and equal for all frame members, it is not shown in Figure 19. The final values of 

rotations should be divided by this parameter. Through the sum of partial rotations calculated in 

each node, the values of final node rotations and also, the member lateral rotations are obtained:   
 

  LÏ(ï) = 0� ,																	LÉ(ï) = 6.16457� , LX(ï) = 4.86486� 	,								LÔ(ï) = 1.12757�  

 

 LC(ï) = −0.171009	� , L�(ï) = 0� , L�(ï) = 2.45871� , L�(ï) = −2.4981�  

 

 φÇ(ï) = 3.6336025� , 					φ,(ï) = 3.768878� , φG(ï) = 6.15582�  
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Figure 19: Classical procedure of SDM for analysis of the frame of example 2.8. 

 
For analysis of the frame by matrix procedure, the corresponding matrices are formed firstly based 

on Tables 10 and 11. 

 

 

µω¶ =
?@@
@@@
@A 0 0 0 0 0 0 0 0−0.15 0 −0.15 0 −0.2 0 0 00 −0.2143 0 −0.2857 0 0 0 00 0 −0.1818 0 −0.1364 0 0 −0.18180 −0.1818 0 −0.1364 0 0 −0.1818 00 0 0 0 0 0 0 00 0 0 0 −0.2 −0.15 0 −0.150 0 0 −0.2857 0 0 −0.2143 0 HII

III
IJ
 

 

 

 

µω¦¶G =
?@@
@@@
@A 0 0 0 0 0 0 0 0−0.15 −0.15 0 0 −0.15 −0.15 −0.15 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0−0.15 −0.15 0 0 −0.15 −0.15 −0.15 00 0 0 0 0 0 0 0HI

III
IIJ
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µδ¶G =
?@@
@@@
@A 0 −0.75 0 0 0 0 0 0−0.75 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 −0.75 00 0 0 0 0 −0.75 0 00 0 0 0 0 0 0 0HI

III
IIJ
 

 

 

µω¦¶, =
?@@
@@@
@A0 0 0 0 0 0 0 00 −0.15 −0.15 −0.15 −0.15 0 −0.15 −0.150 −0.2143 −0.2143 −0.2143 −0.2143 0 −0.2143 −0.21430 −0.1364 −0.1364 −0.1364 −0.1364 0 −0.1364 −0.13640 −0.1364 −0.1364 −0.1364 −0.1364 0 −0.1364 −0.13640 0 0 0 0 0 0 00 −0.15 −0.15 −0.15 −0.15 0 −0.15 −0.150 −0.2143 −0.2143 −0.2143 −0.2143 0 −0.2143 −0.2143HI

III
IIJ
 

 

 

 

µδ¶, =
?@@
@@@
@A0 0 0 0 0 0 0 00 0 −0.5 0 0 0 0 00 −0.5 0 0 0 0 0 00 0 0 0 −0.5 0 0 00 0 0 −0.5 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 −0.50 0 0 0 0 0 −0.5 0 HII

III
IJ
 

 

 

 

µω¦¶Ç =
?@@
@@@
@A0 0 0 0 0 0 0 00 −0.2 −0.2 −0.2 −0.2 0 −0.2 −0.20 −0.2857 −0.2857 −0.2857 −0.2857 0 −0.2857 −0.28570 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0.2 0.2 0.2 0.2 0 0.2 0.20 0.2857 0.2857 0.2857 0.2857 0 0.2857 0.2857 HII

III
IJ
 

 

 
 

µδ¶Ç =
?@@
@@@
@A0 0 0 0 0 0 0 00 0 0 0 −0.375 0 0 00 0 0 −0.375 0 0 0 00 0 −0.375 0 0 0 0 0.3750 −0.375 0 0 0 0 0.375 00 0 0 0 0 0.375 0 00 0 0 0 0.375 0 0 00 0 0 0.375 0 0 0 0 HII

III
IJ
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Then, by forming the primary rotation matrix and using equation (56), the final values of rotations 

at structural nodes are computed. 

 

"θ(p)' =
9ÌÌ
:
ÌÌ;

A = 0B = 4.175C = 4.03569D = 0.727273E = 0.727273F = 0G = 1.025H = −1.74983<ÌÌ
=
ÌÌ>								⇒ 						 kθl =

9ÌÌ
:
ÌÌ;

A = 0B = 6.18804C = 4.85051D = 1.14392E = −0.189134F = 0G = 2.48216H = −2.51266 <ÌÌ
=
ÌÌ>

 

 

Using equation (23), the lateral independent rotation of the stories is calculated: 

 φÇ = 3.63363125� φ, = 3.771583777� φG = 6.16755�  

 

To evaluate the results, the values of end moments of the members, resulting from manual and 

matrix procedures of SDM are compared with those of SAP2000. On Figure 20, three values are 

shown on each end of the member; the top ones are the moments resulted from the software and 

the second and third ones are the results of matrix and manual procedures of the SDM, respective-

ly. The values show good agreement between these results. 

 

 

 

Figure 20: Comparison of the results of Sap 2000, manual and matrix formulation of SDM. 

 

9 CONCLUSION 

In this paper, two manual and matrix formulations of SDM for structural analysis were introduced. 

Based on Jacobi approach, the manual SDM uses an iterative process to reach the answers without 

solving any linear equation. The efficiency and reliability of the manual SDM are shown through 

some examples. In comparison to Cross method, in the new method, the distribution and carry-over 
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process are merged together. This characteristic and considering the fact that the SDM is repeated 

only on rigid nodes and not on the moment values of all the members connected to rigid nodes, 

analysis time consuming and steps are reduced, comparatively. Regarding the later characteristics, 

analysis time consuming and the number of stages is also less than the Kani method; and by ob-

taining nodal rotation and lateral rotation of the storey, end moment and shear values of members 

can be calculated, simultaneously. In another work, the steps of the manual formulation were shown 

by a geometric progression, which led to matrix formulation. The main advantage of the matrix 

formulation is using only a matrix equation for the unknowns that could be used in computer pro-

gramming. To show the accuracy of the Matrix formulation, some examples were solved. The re-

sults also show the accuracy and effectiveness of the proposed matrix formulation of SDM. 

Another advantage of the proposed method is that the approach does not contain limitations as 

those in the Kani method and is capable of analyzing frames with non-vertical columns and also, 

those with vertical displacement. In the proposed method, with some modification, lateral stiffness 

of bracing members could be applied in SDM equations, so the proposed method is able to analyze 

bracing and dual systems. The SDM process is also capable of analyzing structures containing non-

prismatic members. It should be noted that the current analysis software are not usually able to 

model every kind of non-prismatic member; while by specifying some basic parameters, the SDM 

approach  is able to simply analyze structures with these kinds of members. The results of this 

study could be used in structural engineering calculations and the method could be expanded for 

other specific structures. 
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