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Abstract 
An in-depth study has been carried out for the dispersion of Love 
waves in an isotropic elastic layer sandwiched between orthotropic 
and prestressed inhomogeneous elastic half-spaces. The inhomogene-
ities in density and rigidity of the lower half-space are space depend-
ent and an arbitrary function of depth. Simple mathematical tech-
niques are used to obtain dispersion relation for Love wave propaga-
tion in an isotropic layer. An extensive analysis is carried out through 
numerical computation to explore the effect of inhomogeneity and 
initial stress the lower half on the phase velocity of the Love waves. 
The numerical analysis of dispersion equation manifests that the 
phase velocity of the Love wave increases with the increase of stress 
parameter. The results further indicate that the inhomogeneity of the 
half space affect the wave velocity significantly. These results can be 
useful to study geophysical prospecting and understanding the cause 
and estimation of damage due to earthquakes. 
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1 INTRODUCTION  

The deformation at any point of the medium is useful to analyze the deformation field around 
mining tremors and drilling into the crust of the earth. It may also find application in various 
engineering problems, crystal physics and solid-earth geophysics regarding deformation of an 
anisotropic solid. In fact, study of surface waves in non-homogeneous and layered media has been 
of central interest to theoretical and experimental seismologists. Our Earth is a spherical and 
layered solid under high initial stress. Due to variation of temperature, gravitating pull, atmosphere, 
slow process of creep and pressure due to crustal layer, the critical initial stresses are stored in the 
layer of the Earth. At the present time the usefulness of dislocation theory in seismology is restricted 
by the absence of detailed knowledge of either the tectonic stress which drives the system or the 
stress which resists slip on the fault plane and by the absence of detailed observations of deformation 
preceding, accompanying of dislocation theory to seismology lie in the mathematical theory but 
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rather in the basis mechanics of faulting. The stresses which exist in an elastic body even though 
the external forces are absent are termed as prestresses. These stresses might exert significant effect 
on the elastic waves produced by earthquakes. The propagation of Love waves in a non-
homogeneous elastic media is of considerable importance in earth-quake engineering and seismology 
on account of occurrence of non-homogeneities in the earth crust, as the earth is made up of different 
layers. The mathematical expression provides the bridge between modelling results and field 
applications.  
 Surface waves are very important in the study of earthquake engineering, geophysics and 
geodynamics. Love waves cause more destruction to the structure than that of the body waves due 
to its slower attenuation of the energy. The supplement of surface wave analysis and other wave 
propagation problems to anisotropic elastic materials has been the subject of many studies. Many 
authors have discussed Love wave propagation by considering various irregularities, 
inhomogeneities and boundaries of the Earth. Love (1944) and Ewing et al. (1957) proposed the 
propagation of waves in transversely isotropic medium. Chatopadhyay (1975) discussed Love waves 
due to irregularity in the thickness of the non- homogeneous crystal layer. Deresiewicz (1962) 
studied the propagation of Love waves in a homogeneous crust overlying an inhomogeneous 
substratum. Bhattacharya (1969) examined the Love waves in intermediate heterogeneous layer 
placed between isotropic elastic half-spaces. Midya (2004) discussed Love waves in micropolar 
homogeneous elastic media. Manna et al. (2013) discussed propagation of Love wave in hetrogeneous 
elastic half-space and piezoelectric layer. Du et al. (2008) studied the effect of initial stress on the 
propagation of piezoelectric layered structures loaded with viscous liquid. Liu and Wang (2005) 
studied Love waves in functionally graded layered piezoelectric structure. Chakraborty and Dey 
(1982) discussed the propagation of Love waves in water saturated soil underlain by heterogeneous 
elastic medium. Ke et al. (2005) discussed Love waves in nonhomogeneous fluid saturated porous 
layered half-space. Kundu et al. (2013) discussed propagation of Love wave in porous rigid layer 
kept over prestressed half space. Chattaraj et al. (2013) discussed Love wave propagation in 
irregular prestressed anisotropic porous stratum. Ghorai et al. (2010) showed the effect of rigid 
boundary on the propagation of Love wave in porous layer placed over an elastic half-space. Kadian 
and Singh (2010) studied the influence of size of barrier on Love wave reflection. Ahmed and Abd-
Dahab (2010) studied the effect of initial stress on Love waves in an orthotropic Granular layer. 
Gupta et al. (2013) proposed a mathematical model to study Love wave propagation in 
homogeneous and initially stressed hetrogeneous half-spaces. Presently, Madan et al. (2014) 
investigated propagation of Love waves in saturated porous anisotropic layer. Kakar and Gupta 
(2014) studied Love waves in an intermediate heterogeneous layer lying in between homogeneous 
and inhomogeneous isotropic elastic half-spaces. More recently, Kundu et al. (2014a; 2014b) have 
examined Love wave propagation in fiber-reinforced media. 
 The present paper deals with the study of propagation of Love wave in a sandwiched layer lying 
between orthotropic and inhomogeneous half spaces. Five different cases have been studied for 
propagation of Love waves in a layer. The dispersion equations of Love waves under assumed 
conditions have been derived. Also numerical computation of dispersion equation has been 
performed to show the effect of initial stresses and inhomogeneity parameters on the propagation 
of Love waves. It has been found that initial stress parameter, rigidity parameter and density 
parameter of the lower half-space affect the phase velocity of Love waves. 
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2 FORMULATION OF THE PROBLEM 

We have considered an isotropic and homogeneous layer of thickness H  (denoted as 2M ) 
sandwiched between two orthotropic and prestressed inhomogeneous (denoted as 1M  and 3M ) half-
spaces (as shown in Fig. 1). Let 2  and 2  be the rigidity and density of the intermediate layer  
and rigidity and density in the upper half-space are 1  and 1 .  The origin has been taken at the 
lower interface, Love wave propagates toward x -axis, while the positive z -axis toward the interior 
of the lower half space. The rigidity and density of the lower half are space dependent and an 
arbitrary function of depth i.e.  3 1 z     and  3 1 z    . Here   is the inhomogeneous 
parameter of lower half-space and having dimension that are inverse of length. Here   is 
inhomogeneous parameter of lower half-space and having dimension that are inverse of length. The 
upper portion of superficial half-space corresponds to the free surface with zero relative density and 
rigidity as 1lim 0

z



  and 1lim 0

z



 . 

 

 
Figure 1: Geometry of the problem. 

 
3 SOLUTION OF THE PROBLEM 

3.1 Solution for the upper half-space 

Equation of motion for upper half-space in the absence of body forces can be written as (Love, 
1911) 
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where , , , , , , , xx xy xz yx yy yz zx zy         and zz  are the incremental stress components, 1u , 1v  and 
1w  are the components of the displacement vector in the upper layer, 1  is the density of the upper 

half-space.  
 The stress–strain relations are 
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where , , , , , , , xx xy xz yx yy yz zx zy         and zz  are the incremental normal elastic coefficients, 

,x y  and z  shear modulus along x , y  and z  axis respectively. The strain components xye , ,xxe  
,yye  yze , zxe  and zze  are defined by 
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Using Love wave conditions 1 1 0u w  , 1 1( , , )v v x z t  in equations (1) and (2), the equation of 
motion for the upper orthotropic half-space becomes 
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and stress–strain relations reduces to 
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To solve Eq. (4) we take the following substitution 
 
 1 U(z)exp ( )v i t kx    (6) 

 
where ,kc  c  is phase velocity , 1 1 1c    and k  is wave number. 
 Using Eq. (6) in Eq. (4), we get 
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Therefore, the solution for the upper orthotropic half-space is given by 
 
 1 A e exp ( )zv i t kx     (9) 
                                  
where   is arbitrary constant. 
 
3.2 Solution for the lower half-space 

Equation of motion for lower half-space under initial stress P  acting along x -axis can be written 
as (Love, 1911) 
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where , , , , , , , xx xy xz yx yy yz zx zy         and zz  are the incremental stress components, 3u , 3v  and 

3w  are the components of the displacement vector and 3 is the density of the lower half-space. 
Here, x , y  and z are the rotational components in the lower half-space, which are defined by 
 

 

3 3

3 3

3 3

1

2

1

2

1

2

x

y

z

w v

y z

u w

z x

v u

x y

           

           

           

  (11) 

 
Using Love wave conditions 3 3 0u w  , 3 3( , , )v v x z t , Eq. (10) can be reduced to 
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The stress–strain relations are 
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The inhomogeneity of rigidity and density of the lower half-space are 
 
  3 1 z    ,  3 1 z     (14) 

 
Now, substituting the inhomogeneity of rigidity from Eq. (14) in Eq. (13), we have   
 

 
 

 

3

3

1

1

yx

yz

v
z

x

v
z

z

  

  


 




 


  (15) 

 
The equation of motion (12) with the help of equations (14) and (15) can be written as 
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To solve Eq. (16) we take the following substitution 
 
 3 V(z)exp ( )v i t kx    (17) 
 
Using Eq. (17) in Eq. (16), we get 
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Introducing  V( ) ( ) 1z z z    into Eq. (18) to cancel the term dV( ) dz z , we have 
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where c  is phase velocity and 3c    .
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 Introducing the non-dimensional quantities 
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in Eq. (19), we get, 
 

 
2

2 2

d 1 1
( ) 0

4d 4

s
s

rs s

         
  (20) 

                                                                 
Eq. (20) is the well known Whittaker’s equation (Whittaker and Watson, 1990). 
 The solution Eq. (20) is given by 
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The solution of Eq. (22) is given by 
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Eq. (23) is the displacement for the Love wave in the half space. 
 Now, expanding Eq. (23) up to linear term, we have 
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3.3 Solution for the intermediate isotropic layer 

Equation of motion for intermediate layer can be written as (Love, 1911) 
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where xxs , xys , xzs , yxs , yys , yzs , zxs , zys  and zzs  are the incremental stress components, 2u , 2v  
and 2w  are the components of the displacement vector and 2  is the density of the intermediate 
layer. 
 The stress displacement relation for isotropic media is 
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Using Love wave conditions 2 2 0u w  , 2 2( , , )v v x z t , the stress–strain relations are 
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Using Eq. (28), the Eq. (25) can be written as 
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where 2 2 2c   .

   To solve Eq. (29) we take the following substitution 
 
 2 W(z)exp ( )v i t kx    (30) 
 
where kc  , c  is phase velocity and k  is wave number. 
 Using Eq. (30) in Eq. (29), we get 
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Therefore, the solution for the intermediate layer is given by 
 
  2 Ccos Dsin exp ( )v z z i t kx       (33) 

 
where C  and D  are arbitrary constants. 

 
4 BOUNDARY CONDITIONS 
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2 3v v , where 2v  and 3v  are the displacement components, along the y  direction only, in the 
intermediate layer and lower half-space respectively. 

(ii) At the interface, 0z   the continuity of the stress requires that    
2 3

yz yzs 
 

 , where yzs

the relevant is stress component.  
(iii) Also, stability conditions leads to 3 0v   as z   . 
 
2nd Boundary conditions 
  
(i) At the interface, z   , the upper boundary plane is not free surface, the continuity of the 

displacement along thex  direction requires that 1 2v v , where 1v  is the displacement 
component in the upper half-space along the y  direction only. 

(ii) At the interface, z   , the continuity of the stress requires that    
1 2

yz yzs
 

 , where 
yz  the relevant is stress component.  

(iii)  Also, stability conditions leads to 1 0v   as z   . 

 
5 DISPERSION RELATIONS 

Applying 2nd boundary conditions in equations (2), (28) and equations (9), (33), we have 
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  (34) 

    Ae Ccos Dsin 0          (35) 
 
Now, applying 1st boundary conditions in equations (15), (28) and equations (24), (33), we have 
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  (36) 
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Eliminating A, B, C  and D from equations (34) to (37), the dispersion relation for Love waves can 
be calculated as 
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On solving further above equation, we get 
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which implies 
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On solving further equation (38), we get 
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which implies 
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     
  (39) 

 
Eq. (39) is dispersion relation of Love waves in an intermediate isotropic vertical layer placed in 
between orthotropic and prestressed inhomogeneous half-spaces. 
 
Special cases 
 
Case 1 If 1x z     , the Eq. (39) reduces to 
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Eq. (40) is dispersion relation of Love waves in an intermediate isotropic vertical layer placed in 
between homogeneous and prestressed inhomogeneous half-spaces. 
 
Case 2 If 0  , the Eq. (39) reduces to 
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  (41) 

 
Eq. (41) is dispersion relation of Love waves in an intermediate isotropic vertical layer placed in 
between orthotropic and prestressed homogeneous half-spaces. 
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Case 3 If 1x z     , 0   the Eq. (39) reduces to 
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Eq. (42) is dispersion relation of Love waves in an intermediate isotropic vertical layer placed in 
between homogeneous and prestressed homogeneous half-spaces. 
 
Case 4 If 0  , 0P  , the Eq. (39) reduces to 
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Eq. (43) is dispersion relation of Love waves in an intermediate isotropic vertical layer placed in 
between orthotropic and homogeneous half-spaces. 
 
Case 5 If 1x z     , 0  , 0P  , the Eq. (39) reduces to 
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Also, on neglecting the lower half space, Eq. (44) reduces to 
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  (46) 
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Eq. (45) and Eq. (46) are classic Love wave dispersion relation; hence it validates our solution for 
Love waves in an intermediate isotropic vertical layer placed in between orthotropic and prestressed 
inhomogeneous half-spaces. 

 
6 NUMERICAL CALCULATIONS AND DISCUSSION 

To show the effect of inhomogeneity parameters and initial stress parameters of lower half-space 
on Love wave propagation in intermediate layer, we take following parameters Gubbins (1990). 

(i) Material Parameters for upper half-space. 

=x 5.65x1010 N/m2, z 2.46x1010 N/m2, 1= 7800 kg/m3. 

(ii) Material Parameters for intermediate layer. 

2  5.82x1010 N/m2, 2 4500 kg/m3. 

(iii) Material Parameters for lower half-space. 

3 6.34x1010 N/m2, 3  3364 kg/m3. 

 We have plotted dimensionless phase velocity 2c c  against dimensionless wave number kH  for 
Eq. (39) using MATLAB software. The effects of initial stress parameters  2P   and 
inhomogeneity parameters k on Love wave propagation have been shown in Figs. 2–4. Figure 2 
is plotted for dimensionless phase velocity 2c c  in intermediate layer against dimensionless wave 
number kH  of Love wave for different values of inhomogeneity parameter k  and in the presence 
of constant initial stress parameter  2P   0.5 present in the lower half-space. It is clear from 
this figure, the phase velocity increases with increase of inhomogeneity parameters k . Figure 3 
represents the variation of dimensionless phase velocity 2c c  in intermediate layer against 
dimensionless wave number kH  of Love wave for different values of initial stress parameter  2P   
and in the presence of constant inhomogeneity parameter k  0.5 present in the lower half-space. 
The values of stress parameters for curves have been taken as 0.0, 0.3, 0.5 and 0.7, respectively. It 
is observed from these curves that as the stress parameters in the half-space increases, the velocity 
of Love wave increases. Figure 4 shows the effect of initial stress parameters on dimensionless phase 
velocity 2c c  in intermediate layer against dimensionless wave number kH of Love wave in the 
presence of constant inhomogeneity parameter for homogeneous media. From above numerical 
analysis, the following observations are made: 
i. In entire figures, dimensionless phase velocity 2c c  of Love waves in intermediate layer 

decreases with increase of dimensionless wave number kH . 
ii. The dimensionless phase velocity 2c c  of Love wave in intermediate layer shows remarkable 

change with inhomogeneity k  and stress parameters  2P  . 
iii. It is observed as the depth increases the velocity of Love wave in intermediate layer decreases. 
iv. The phase velocity 2c c  of Love wave in intermediate layer decreases with the decrease of 

initial stress  2P   of lower half-space. 
v.  The phase velocity 2c c  of Love wave in intermediate layer increases with the increase of 

inhomogeneity parameter k  of lower half-space.  
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 Figure 2: Dimensionless phase velocity 2c c  in intermediate layer against dimensionless wave number kH of 

Love wave for different values of inhomogeneity parameter l k  and in the presence of constant initial stress 
parameter  2 0.5m P    present in the lower half-space. 

 

 
Figure 3: Dimensionless phase velocity 2c c  in intermediate layer against dimensionless wave number kH of 

Love wave for different values of initial stress parameter  2m P   and in the presence of constant 
inhomogeneity parameter 0.5l k   present in the lower half-space. 

 
7 CONCLUSIONS 

In this paper, an analytical approach is used to investigate the propagation of Love wave in a 
homogeneous isotropic layer of finite thickness between orthotropic and inhomogeneous half spaces. 
It has been observed that present geometry allows Love waves to propagate. Implicit dispersion 
relation and closed form solutions for displacement in the layer and half-spaces have been obtained. 
The significant effect of inhomogeneity parameters and stress parameters on Love wave propagation  
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 Figure 4: Dimensionless phase velocity 2c c  in intermediate layer against dimensionless wave number kH of 

Love wave for different values of initial stress parameter  2m P   and in the presence of constant 
inhomogeneity parameter l k  for homogeneous media. 

 
has been observed. Phase velocity has been also computed numerically, and the effects of variation 
in density and rigidity in the lower half-space have been studied. It has been investigated that the 
initial stresses have a pronounced effect on the propagation of Love waves. In special cases, when 
the intermediate layer and lower half-space or intermediate layer and upper half-space are 
homogeneous, our computed equation coincides with the classical equation of Love wave. Since 
Earth is an initially stressed, orthotropic and can be considered as composed of different 
inhomogeneous layers, hence, it is more realistic to consider the inhomogeneity and initial stress 
discussed in the present problem to study the propagation of Love waves in prestressed 
inhomogeneous Earth medium. The present study may be useful for geophysical applications of 
propagation of Love waves in different layers of Earth. 
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