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Abstract 
This paper is concerned with the nonlinear free vibration of a heated 
micro/nano beam modeled after the nonlocal continuum elasticity 
theory and Euler-Bernoulli beam theory. The governing partial dif-
ferential equations are derived from the Hamilton variational prin-
ciple and von Kármán geometric nonlinearity, in which the effects 
of the nonlocality and ambient temperature are inclusive. These 
equations are converted into ordinary forms by employing the Kan-
torovich method. The solutions of nonlinear free vibration are then 
sought through the use of shooting method in spatial domain. Nu-
merical results show that the proposed treatment provides excellent 
accuracy and convergence characteristics. The influences of the as-
pect ratio, nonlocal parameter and temperature rise parameter on 
the dimensionless radian frequency are carefully investigated. It is 
concluded that the nonlocal and temperature rise parameters lead 
to reductions of the nonlinear vibration frequency, while the influ-
ence of the nonlocal effect decreases with an increase in the aspect 
ratio. 
 
Keywords 
Euler-Bernoulli beam; nonlocal elasticity theory; nonlinear free vi-
bration; Kantorovich method; shooting method. 
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1 INTRODUCTION 

Since the initial discovery of carbon nanotubes by Iijima (1991), a new attractive topic has come 
under ever-increasing research scrutiny for micro/nano-sized structures. The exceptional physical, 
chemical, mechanical, electronic and thermal properties of this structure have led to a wide range 
of applications (Poncharal et al., 1999; Guz et al., 2007). Due to the presence of small scale effects 
which are related to the atoms and molecules that constitute the materials at micro/nano scale, 
atomic modeling method, such as molecular dynamics simulation (Tuzun et al., 1996) is certainly 
conceptually valid for the accurate mechanical analysis. However, the approach is computationally 
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exorbitant for micro/nano structures, especially for large sized atomic systems. As experiment in 
micro/nano scale is difficult to conduct and control, continuum modeling is becoming an alternate 
to atomistic method. 
 Conventional continuum models may lead to erroneous results as for small scales continuum 
assumption may not hold valid. To overcome this drawback, the development of scale-dependent 
continuum theories, such as nonlocal elastic theory (Eringen, 1983 and 2002), strain gradient elastic 
theory (Kahrobaiyan et al., 2011; Aifantis, 1999), and couple stress theory (Mindlin and Tiersten, 
1962; Yang et al., 2002), is initiated. Among these theories, the theory of nonlocal elasticity has 
received much popularity in the mechanical analysis of micro/nano structures whilst the results 
show a good consistence with that in molecular dynamics (Chen, 2004). 
 In 1970s, Eringen (1972) pioneered the nonlocal elasticity theory, where the classical or local 
continuum mechanics was modified by specifying the stress at a reference point can be considered 
to be a function of the strain field at every point in the domain to account for the scale effect in 
elasticity. In this regard, the internal size or scale could be considered in the constitutive equations 
simply as a material parameter. Such a nonlocal elasticity concept has been widely accepted and 
has been applied to many problems of a wide range of interest, including the bending, buckling, 
and vibration of beam-like (Aydogdu, 2009; Liu et al., 2008; Reddy, 2007) and plate-like (Narendar, 
2011; Pradhan and Phadikar, 2009; Shen et al., 2010) elements in micro/nano structures. 
 The application of nonlocal elasticity models in micro/nano materials was initially delivered by 
Peddieson et al. (2003) in which a nonlocal version of Euler–Bernoulli beam model was formulated 
based on the nonlocal elasticity theory of Eringen (1983). Up to now, many research works corre-
lated to nonlocal elasticity theory have been reported trying to develop nonlocal continuum models 
and apply them to analyze the general behavior of structures in micro/nano scale, see Refs. (Lu et 
al., 2006; Wang et al., 2008; Murmu and Pradhan, 2009; Civalek and Akgöz, 2010; Civalek and 
Demir, 2011; Setoodeh et al., 2011; Thai, 2012; Eltaher et al., 2013; Rahmani and Pedram, 2014) 
and the references therein. It has been clear from these available surveys that nonlocal effects play 
a significant role both for static and dynamic issues exhibited by micro/nano structures. 
 It is fairly necessary to perform the nonlinear vibration analysis of micro/nano beams in thermal 
environments. Firstly, for many micro/nano beams, both the physical (e.g., induced by van der 
Waals force) and geometrical (e.g., stem from large deflection) nonlinearities were observed by 
previous theoretical and experimental investigations (Yang et al., 2010; Ke et al., 2009), the non-
linearity causes the mechanical behaviors of the beams to be changed significantly (Setoodeh et al., 
2011; Fang et al., 2013), so the linear beam theory is not appropriate in such situations. Moreover, 
some researches confirm that the thermal effects are effective on the mechanical behaviors of mi-
cro/nano beams (Amara et al., 2010; Ansari et al., 2011). Based on the theories of thermal elasticity 
and nonlocal elasticity, Chang (2012) developed an elastic Euler-Bernoulli beam model for the 
thermal-mechanical vibration and buckling instability of single-walled carbon nanotubes conveying 
fluid, numerical solutions obtained from the finite element method conclude that the effects of 
temperature change and nonlocal small scale are very significant on the fundamental natural fre-
quency and critical flow velocity. Janghorban (2012) investigated the bending of an Euler–Bernoulli 
microbeam in thermal environment based on nonlocal elasticity theory using two types of differen-
tial quadrature method to discretize the equilibrium equation. Yang and Lim (2012) derived a new 
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higher-order nonlocal Timoshenko beam model for thermal buckling of a shear deformable nano-
column via the variational principle and von kármán nonlinearity. Size-dependent thermal buckling 
behavior of nanocolumns was demonstrated. Arani et al. (2012), Ke et al. (2012) investigated the 
nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory and Timoshenko 
beam theory under the combination of electric and thermal fields. The nonlinear governing equa-
tions were derived by using Hamilton principle and the numerical solutions for the nonlinear fre-
quency were determined employing differential quadrature method. Nazemnezhad and Hosseini-
Hashemi (2014) studied the nonlinear free vibration of functionally graded nanobeams within the 
framework of nonlocal elasticity and Euler–Bernoulli beam theory with von kármán type nonline-
arity. The approximate analytical expression for nonlinear frequency was established utilizing the 
Galerkin method and multiple scale method. Similar study was carried out by Şimşek (2014) for 
nanobeams, the nonlinear vibration frequency was obtained in analytical form via the Galerkin 
method and a variational method. 
 As one may note, the majority of cited references on the vibration modeling of micro/nano 
beams are confined to linear cases with or without thermal effect incorporated. Relatively limited 
attempt is available related to the large amplitude vibration behavior of micro/nano-scale beams 
in an environment of changing temperatures. That gives us a potential to investigate the nonlinear 
vibration of micro/nano beams by nonlocal thermal elasticity theory. 
 This paper makes the effort to explore the influence of Von Kármán geometric nonlinearity on 
the vibration behavior of a micro/nano beam in accordance with the Euler-Bernoulli beam theory 
with inclusion of the thermal environment. The small scale effect is taken into consideration based 
on the nonlocal elasticity theory. The governing equations are derived adopting Hamilton principle 
and the numerical solution for the vibration frequency is obtained making use of the Kantorovich 
time-averaging method (Huang and Aurora, 1979; Huang and Walker, 1988) followed by the shoot-
ing method (Li and Zhou, 2001; Wang et al., 2013; William et al., 1986). The effects of geometric 
nonlinearity, aspect ratio (length-to-depth ratio), temperature rise and nonlocal parameter on the 
vibrational frequency are studied in detail. From the knowledge of authors, it is the first time using 
the shooting method for the nonlocal beam vibrating in the nonlinear regime and temperature field. 
It is believed that the present model can be a promising technique to offer an efficient and accurate 
nonlinear vibration solution in investigating micro/nano beams with nonlocal effects. 
 
2 GOVERNING EQUATIONS OF MICRO/NANO BEAMS 

The beam under consideration is modeled as an Euler-Bernoulli one at micro/nano scale. It has 
length L , height (or depth) h , rectangular cross section area A , and moment of inertia I . The 
Cartesian coordinate system  , ,x y z  is used with x -axis coincident with the centroidal axis of the 
undeformed beam, y -axis along the width, and z -axis along the height of the beam. 
 
2.1 Strain-displacement relations 

Assuming that the deformations of the beam take place in the x - z  plane. Upon denoting the 
displacement components along the x -, y - and z -directions by 1u , 2u , and 3u , respectively, the 
displacement field can be written in view of the assumptions of Euler-Bernoulli beams as (Wang et 
al., 2013) 
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            1 , 2 3, , , , ,   , , 0,   , , ,xu x z t u x t zw x t u x z t u x z t w x t      (1) 

 
where [0, ]x L , t  is the time variable,  ,w x t  and  ,u x t  are the displacements of the neutral 
axis at abscissa x  in z - and x -directions, respectively. Hereinbelow, a comma represent the par-
tial derivative with respect to the indicated spatial and temporal coordinates. 
 In accordance, the von Kármán type nonlinear strain–displacement relationship takes the fol-
lowing form 
 

   2
, , ,

1
, ,

2xx x x xxx z t u w zw      (2) 

 
2.2 Nonlocal beam theory and stress resultants 

For the case where the thermal effect is taken into account, the nonlocal constitutive relation can 
be approximated to a one-dimensional form as (Eringen, 1983 and 2002) 
 
  xx xxE E T       (3) 

 
where E  is the elastic modulus,   is the thermal expansion coefficient and T  denotes the temper-
ature rise; xx  is the normal stress, xx  is the normal strain, respectively.   is a nonlocal linear 
differential operator defined by 
 
    2

0,
1 ,   

xx
e a       (4) 

 
in which   is the nonlocal parameter that incorporates the small scale effect, 0e  is a constant 
appropriate to each material, and a  is an internal characteristic length. 
 The nonlocal constitutive relation can be expressed in terms of stress resultants. Integrating 
Eq.(3) over the beam’s cross section area A  yields 
 

   2
, ,

1

2
T

xx x xN EA u w N
       

  (5) 

 
  Multiplying Eq.(3) by z  and integrating the result over the area A  leads 
 
   ,

T
xx xxM EIw M      (6) 

 
where the moment of inertia I , the stress resultants xxN  and xxM , and the thermal stress result-
ants TN  and TM , are, respectively, defined by 
 

           2, 1, d ,   , 1, d ,   , 1, dxx xx xx xx xx xxA A A
A I z A N M z A N M z A       
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2.3 Nonlinear equations of motion 

The dynamic behavior of the Euler-Bernoulli beam is governed by Hamilton principle which can be 
stated in analytical form as 
 

  δ δ δ2

1

 d 0
t

Et
K V t   ∏   (7) 

 
where ∏  is the strain energy, EK  the kinetic energy, and V  the work done by the external ap-
plied forces. 
 The first variation of strain energy of the beam takes the form 
 

  δ δ δ δ δ , , , ,0 0
d d + d

L L

xx xx xx x x x xx xxA
A x N u w w M w x        ∏   (8) 

  
 The first variation of kinetic energy states that 
 

  δ δ δ δ, , , , , ,0
+ d

L

E t t t t xt xtK A u u w w Iw w x       (9) 

 
an expression in which the longitudinal and rotational inertia are included. Here,   is the mass 
density of the beam material. 
 Denoting uq  and wq  be the external axial and transverse loads distributed along the length of 
beam, respectively, then the first variation of the work done by the external forces reads 
 

  δ δ δ
0

+
L

u wV q u q w    (10) 

 
 Substituting Eqs.(8)-(10) for δ∏ , δ EK , and δV  into Eq.(7), integrating by parts and grouping 
terms by δw  and δu  lead to the following partial differential equations 
 

 δ2

1

  , ,0
d d 0

t L

tt xx x ut
Au N q u x t        (11) 

   δ2

1

  , , , , ,0
d d 0

t L

tt xxtt xx xx xx x wxt
Aw Iw M N w q w x t            (12) 

 
and the corresponding boundary conditions at the beam ends 
 

 δ δ δ2 2 2

1 1 1
,0, 0, 0,

d 0,   d 0,   d 0
t t t

xx x xx xx L x L x Lt t t
N u t V w t M w t

  
       (13) 

 
with xV denotes the equivalent shear force 
 
 , , ,x xx x xx x xttV N w M Iw     (14) 
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 Noting that δw  and δu  are arbitrary, setting the coefficients of δw  and δu  in Eqs.(11)-(12) to 
zero, and substituting for the second derivative of xxN  and xxM  from the subsequent results into 
Eqs.(5)-(6) and Eq.(14), the explicit expressions of nonlocal stress resultants and xV  are obtained 
as 
 

  2 2
, , , ,

1

2
T

xx x x tt u x
N EA u w N Au q 

         
  (15) 

   2
, , , , ,

T
xx xx tt xxtt xx x wx

M EIw M Aw Iw N w q           (16) 

    2
, , , , , ,

T
x xxx x xx x xtt tt w x

V EIw M N w Iw Aw q            (17) 

 
 As a final point, the nonlocal governing equations in terms of the displacements can be expressed 
by substituting for xxN  and xxM  from Eqs.(15)-(16), respectively, into Eqs.(11)-(12) as follows 
 

   δ2

1

  
2

, , , ,0
,

1
d d 0

2

t L
T

x x x u ttt
x

EA u w N q Au u x t 
               

    (18) 

   δ2

1

  , , , , , ,0
d d 0

t L
T

xxxx xx tt xxtt xx x wxt
EIw M Aw Iw N w q w x t              (19) 

 
 For the subsequent results to be general, the following parameters are defined to make the 
governing equations dimensionless 
 

       2
,2

,  ,  ,  ,  1
1

,  ,  ,  ,  
XX

A EI
X U W x L

I A

t
u w

L LL
 




          

           
2 3

,  ,  ,  ,  ,  ,  ,  ,  ,  ,  T T T T
xx H V xx x u w u wM M M M P P N N N Q Q q q

L L L
V

EI EI EI
     

 
where   is the slenderness ratio of the beam,   is the scaling effect parameter. By using these 
variables, the nonlocal governing equations as well as the boundary conditions can be rewritten in 
the following form 
 

   δ2

1

  
1

2 2
, , , ,0

,

1
d d 0

2
T

X X X u
X

U W N U Q U X



  
               

     (20) 

 δ2

1

  
1

, , , , , ,20

1
( ) d d 0T

XXXX XX H X X w XXW W W P W Q M W X


 
 



                  
     (21) 

 δ δ δ2 2 2

1 1 1
,0,1 0,1 0,1

d 0,   d 0,   d 0H V XX X X
P U P W M W

  

  
  

  
       (22) 

 
in which 
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  2 2 2
, , , ,

1

2
T

H X X u X
P U W N U Q 

         
  (23) 

  2
, , , , , ,2

1T
V XXX X H X X w X

P W M P W W W Q  


           
   (24) 

 2
, , , , ,2

1
( )T

XX XX H X X wM W M W W P W Q 


 
         

  (25) 

 
 The integro-differential Eqs.(20)-(21) along with the boundary conditions (22) govern the von 
Kármán nonlinearity of the proposed beam with allowances for small scale effect. As a remark, the 
proposed nonlocal theory can be straightforwardly addressed to the nonlocal beam for bending, 
thermal buckling and dynamic analyses. A notable feature of present model is that both the gov-
erning equations and boundary conditions are nonlocal due to the nonlocal constitutive relations. 
Furthermore, it is worth emphasizing that conventional (local) beam model is recovered when the 
influences of small scale is disregarded. 
 Herein, a pinned-pinned beam will be considered. In view of the symmetrical deformation about 
the center of the beam, a half beam is modeled and the boundary conditions at the ends are of the 
following form based on Eq.(22) 
 
      0, 0,   0, 0,   0, 0W U M       (26) 

 ,
1 1 1
, 0,   , 0,   , 0

2 2 2X VW U P  
                           

  (27) 

 
3 METHOD OF SOLUTION 

The current work centers on the nonlinearly free vibration of a uniformly heated nonlocal beam 
with time-independent temperature. So the basic equations should be modified by setting 
 
 20,   T T

w uQ Q M N T         (28) 
 
with   being a parameter introduced to indicate the temperature rise. 
 Then, in consideration of Eq.(20) cum Eq.(23), the dimensionless relationship between the axial 
stress resultant and displacement reads 
 

  δ2

1

  
1

, ,0
d d 0H xP U U X




     (29) 

 
an expression that will be used in the numerical procedure to simplify the computation. 
 The partial differential governing equations and boundary conditions (20)-(22) are complicated 
due to the nonlinearity and coupling between the longitudinal and transverse displacements. A 
closed-form analytical solution is difficult to obtain. In solving the nonlinear free vibration, as a 
powerful numerical technique, the combination of Kantorovich averaging method (Huang and Au-
rora, 1979; Huang and Walker, 1988) and the shooting method (Li and Zhou, 1988; Wang et al., 
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2013; William et al., 1986) is frequently applied to treat relevant problems. Advantage of this 
approach lies in its ease to handle more complex nonlinear boundary value problem. However, to 
best knowledge of authors, the approach is not available in the open literature for the nonlocal 
elastic structures. The method for the problem at hand is applied in what follows. 
 
3.1 Kantorovich averaging method 

Assuming that the vibration is prior to the buckling of the beam, that is, cr  , where cr  is the 
critical temperature rise parameter. Major concern is focused on the microstructure-dependent 
characteristic relation between the fundamental frequency and vibrational displacement of a beam. 
Approximate solutions of large amplitude free vibration will be achieved by implementing the fol-
lowing assumed harmonic temporal functions (Wang et al., 2013) 
 
         2, cos ,   , cosW X W X U X U X        (30) 

 
where   is a nondimensional radian frequency of the beam,  W X  and  U X  are the shape func-
tions to be determined. 
 The Kantorovich time-averaging method is then applied to eliminate the temporal coordinate. 
The substitution of Eq.(30) into Eqs.(20)-(21) cum Eq.(29), and the integration over one complete 
period of oscillation, 0 2  , lead to the following set of nonlinear ordinary differential equations 
 

    d
, ; , , ,   0,1 2

d
X X

X
   

Y
H Y   (31) 

 
with the denotations of the forms 
 

   TT 2
1 2 3 4 5 6 7 , , , ,, , , , , , , , , , , ,X XX XXX XY Y Y Y Y Y Y W W W W U U  Y         

 T
2 3 4 1 1 6 2 2, , , , , , 0Y Y Y Y H     

 2 2
1 3 7 2 5 1 3 7 3 6 4 5 2 2 2 3 2 2 3 5 72

1
3 3 ,  3 4sN Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y    



              
   

2 2 2
1 2 6 2 6 72 2 2 2 2

7 7

1 1 3 1
,  ,  

4 21 4 3
s

s

N Y Y Y Y
N Y Y

  
    

            
    

 
 Since Eq.(30) cannot satisfy all the boundary conditions in Eqs.(26)-(27) identically, a residual 
may exist. The execution of the Kantorovich method to Eqs.(26)-(27) in virtue of Eq.(22), yields a 
group of scale-dependent boundary conditions. However, in the case of buckling and vibration 
analyses, the nonlocal bending moment 0M   in Eq.(26) can be replaced by , 0XXW   as a result 
of 0W U    at the pinned end, and the nonlocal shear force 0VP   in Eq.(27) can be replaced 
by , 0XXXW   due to , 0XW U    at the mid-span of the beam. This leads the boundary condi-
tions are the same as those pertaining to the classical beam theory and can be expressed in shape 
functions as 
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        T T T
1 1 5 3 2 1 2 5 4

1
0 , , ,   , , , , 0, 0, 0

2
Y Y Y Y Y Y Y 

        
B Y 0 B Y   (32) 

 
Here,    1 2, 0 1 2W W     indicates the normalized central amplitude of the beam, 1B  and 2B  
are two boundary related matrixes. 
 
3.2 Brief description of shooting method (William et al., 1986) 

Eqs.(31)-(32) constitute a nonlinear spatial boundary value problem including fundamental fre-
quency parameter  , scaling effect parameter  , and temperature rise parameter  . The shooting 
method, consisting of the Runge-Kutta integration method in conjunction with the Newton-
Raphson iterative formulation, is employed to numerically get a solution of the problem. 
 To apply the shooting algorithm, the boundary value problem (31)-(32) is first reduce to an 
initial one as 
 

  d
, ; , , ,   0

d
X X

X
   

Z
H Z   (33) 

    T
1 2 3 40 0, , 0, , 0, ,d d d dZ   (34) 

 
where  T

1 2 3 4 5 6 7, , , , , ,Z Z Z Z Z Z ZZ , and  T
1 2 3 4, , ,d d d dD  is an unknown vector related to the 

missing initial values of Y  at 0X  . Integrating Eq.(33) with Eq.(34) one calculates Z . A fourth 
order Runge-Kutta method with variable steps may be used with this purpose. 
 After prescribing parameters,  ,  , and  , the Newton-Raphson formulation is applied and D  
is updated in a way that the answers satisfy the four finial conditions at 1 2X  , namely, 
 

  T
2

1
; , , , , 0, 0, 0

2
   

      
B Z D   (35) 

 
 According to the iterative procedure, if convergence is achieved, or if *D D  is a approximate 
answer of equation (35), the correct value for boundary value problem can be determined 
 
    *; , , ; , , ,X X     Y Z D   (36) 
 
which contains the frequency dependence as 
 
  2

7 , ,Y      (37) 

 
4 NUMERICAL RESULTS AND DISCUSSION 

Imposing the formulation and algorithm outlined in the previous section, some numerical investi-
gations are now performed and discussed. The nondimensional fundamental frequencies are pre-
sented in both tabular and graphical forms with varying nonlocal parameter, aspect ratio, temper-
ature load, and central amplitude. To facilitate a direct comparison with the existing data available 
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in the literature, the dimensionless amplitude at the center of the beam is sometimes normalized 
by  . 
 
4.1 Comparison with published results 

In order to establish reasonable comparisons, the linear free vibration of a nanobeam with its length 
L  is assumed to be 10 nm is examined for various values of nonlocal parameter 2 . Here, the linear 
vibration can be recovered by setting the amplitude parameter   to be a very small value. At first, 
the natural fundamental frequencies 0  of the beam with some cases of aspect ratio L h  are tab-
ulated in Table 1 in the absence of the temperature rise   and are compared with the results given 
by Thai (2012). Excellent agreement is observed. 

 
2  

(nm2) 
0  when 5L h   0  when 10L h   0  when 20L h   0  when 100L h   cr  when 20L h   

Present Thai 
(2012) 

Present Thai 
(2012) 

Present Thai 
(2012) 

Present Thai 
(2012) 

Present Thai 
(2012) 

0 9.7112 9.7112 9.8293 9.8293 9.8595 9.8595 9.8692 9.8692 9.8696 9.8696 

1 9.2647 9.2647 9.3774 9.3774 9.4062 9.4062 9.4155 9.4155 8.9830 8.9830 

2 8.8747 8.8747 8.9826 8.9826 9.0102 9.0102 9.0192 9.0191 8.2426 8.2426 

3 8.5301 8.5301 8.6338 8.6338 8.6603 8.6604 8.6689 8.6689 7.6149 7.6149 

4 8.2228 8.2228 8.3228 8.3228 8.3483 8.3483 8.3567 8.3566 7.0761 7.0761 

Table 1: Comparison of the natural radian frequency parameter 0  and the critical  
temperature rise parameter cr  for various nonlocal parameters of a nanobeam. 
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Figure 1: Variation of the square of natural fundamental frequency with the temperature  

rise parameter under some specific values of nonlocal parameter. 
 
Then verification is carried out for the linear vibration problem of a uniformly heated beam. The 
dependences of the square of fundamental frequency 2

0  on the temperature rise parameter   un-
der some specific values of nonlocal parameter 2  at the aspect ratio L h  are plotted in Fig. 1, in 
which, an unheated beam result is rendered when   vanishes, and a classical beam result is recov-
ered when 2  is identically zero. The point with 0 0   matches with the critical temperature rise 
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parameter cr , which is extracted from Fig. 1, and is listed in Table 1 for comparison with Thai 
(2012). It is clearly understood from the curves shown in Fig. 1 that the inclusion of the nonlocal 
effects decreases the buckling temperature rise as well as the natural frequency. In other words, the 
local theory overestimates the buckling temperature and natural frequency of the beam compared 
to the nonlocal one. For a given  , the square of fundamental frequency decreases monotonically 
and almost linearly with the increment of the temperature rise parameter, this trend is in agreement 
with that reported in the literature for a heated plate (Li and Zhou, 2001). 
 Furthermore, the reliability of the present method in nonlinear free vibration analysis is demon-
strated for an unheated beam with specified scaling effect parameters  . The normalized funda-
mental frequency defined by the ratio of the nonlinear to linear radian frequency parameter 0   
is presented in Table 2 at varying vibration amplitude 

 
and is compared with the one obtained 

by Şimşek (2014). It may be noted that the present results match quite well to those of the other 
researchers, validating the present computational techniques. 
 


 
  0   0.2   0.4   0.6   0.8 

Present Şimşek 
(2014) 

Present Şimşek 
(2014) 

Present Şimşek 
(2014) 

Present Şimşek 
(2014) 

Present Şimşek 
(2014) 

0.5 1.02322 1.02316 1.03225 1.03217 1.05887 1.05872 1.10182 1.10155 1.15926 1.15886 

1.0 1.08981 1.08972 1.12330 1.12317 1.21827 1.21802 1.36191 1.36150 1.54067 1.54008 

1.5 1.19250 1.19242 1.26046 1.26032 1.44529 1.44501 1.70950 1.70904 2.02219 2.02155 

2.0 1.32291 1.32287 1.43052 1.43041 1.71326 1.71299 2.10158 2.10114 2.54765 2.54703 

2.5 1.47368 1.47372 1.62316 1.62311 2.00581 2.00559 2.51744 2.51706 3.09473 3.09420 

3.0 1.63917 1.63935 1.83125 1.83131 2.31363 2.31350 2.94703 2.94674 3.65373 3.65330 

3.5 1.81536 1.81572 2.05009 2.05027 2.63136 2.63134 3.38506 3.38493 4.21983 4.21962 

4.0 1.99941 2.00000 2.27657 2.27691 2.95576 2.95591 3.82869 3.82872 4.79058 4.79057 

Table 2: Comparison of the normalized fundamental frequency 0 0   for various  
dimensionless central amplitudes and scaling effect parameters of a nanobeam. 

 
4.2 Nonlocal amplitude frequency dependence 

At this stage, the parametric studies are conducted to demonstrate the effects of nonlocality, tem-
perature rise, central amplitude, and aspect ratio on the fundamental frequency of micro/nano 
beams. For a clear manifestation, numerical results are presented graphically. 
 The variation of fundamental frequency with varying central amplitude under some assigned 
values of temperature rise and scaling effect parameter at the aspect ratio is chosen as 20L h   is 
demonstrated in Fig. 2, in which, the linear frequency is recovered when 0  , and a local fre-
quency is achieved when 0  . Pronounced influences of the temperature rise and nonlocality on 
the nonlinear vibration behavior are observed from this figure. It is found that the relationship of 
amplitude-frequency is of the hardening type, and the increment in small scale and temperature 
rise leads to a reduction of the vibration frequency due to the reduction in the flexural rigidity of 
the beam. In addition, the temperature and nonlocality effects are more obvious for lower central 
amplitude and they decrease with increasing amplitude. 
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Figure 2: Variation of the fundamental frequency with the central amplitude under  
(a) various temperature rise parameters and (b) various scaling effect parameters. 
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Figure 3: Frequency ratio of the nonlocal fundamental frequency to the local one vs. aspect ratio for  
a beam under (a) various temperature rise parameters and (b) various scaling effect parameters. 

 
It is expected that the small scale effect will diminish for a very slender beam. Fig. 3 confirms this 
point by showing the variation of the fundamental frequency ratio versus the aspect ratio for 

(0.5, 0) 0.1W    with different temperature rise and scaling effect parameter. Here, the fre-
quency ratio is defined by the ratio of the nonlocal fundamental frequency to the local counterpart. 
The ratio so defined is often used as an index to assess quantitatively the small scale effect on 
micro/nano-size structures vibration in nonlocal elasticity theory. It can be seen that the frequency 
ratio is less than unity for all aspect ratios, indicating that the frequency calculated using local 
theory will be the largest one and the inclusion of effect of scale coefficient leads to a reduction in 
the vibration frequency compare to that excluding the effect of scale. With increasing aspect ratio 
L h , results are converging to unity, the frequency gradually approaches the local limit. So, it is 
inferred that nonlocality is important for lower L h  and is negligible for higher L h . Moreover, 
the nonlocality and temperature effects on frequency ratios become more by increasing their values. 
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Figure 4: Normalized fundamental frequency vs. scaling effect parameter  

under some dimensionless central amplitude. 
 
The dependency of the normalized fundamental frequency on scaling effect parameter for some 
selected values of the dimensionless amplitude is showed in Fig. 4. According to Fig. 4, it is observed 
that the nonlocal parameter causes a reduction while the amplitude parameter causes a rise in the 
frequency ratio. A point to note is that, for frequency ratio at lower amplitude, the nonlocal pa-
rameter shows more decreasing effect. Further-more, as the nonlocal parameter increases, the fre-
quency ratio becomes far from unity which highlights the significance of the nonlocal effect. Also, 
fixing the scaling effect parameter   and varying the dimensionless amplitude parameter   re-
sults in a significant change in the frequency ratio，revealing the amplitude dependency of the 
degree of nonlinearity. 
 
5 CONCLUSIONS 

The large amplitude free vibration analysis for an Euler-Bernoulli micro/nano beam model has been 
pursued in thermal environments exploiting the nonlocal constitutive equation to describe the scal-
ing effect. The governing equations are derived by Hamilton principle and the size-dependent fre-
quency is determined based on the assumed time-mode method, Kantorovich method, and shooting 
technique. It is shown that the numerical results obtained by the proposed formulations and algo-
rithm coincide perfectly with the previous results. The effects of nonlocal parameter, aspect ratio, 
temperature rise and central amplitude on the nonlinear vibration frequency are investigated. 
 Parametric study has been presented where the frequency obtained for the nonlocal theory is 
less than the one for its local counterpart. The decrease in frequency is attributed to the reduction 
of stiffness of the beam due to the nonlocality. Therefore, it can be inferred that application of the 
local models for micro/nano-sized beam would lead to an overprediction of the frequency. 
 The frequency difference between local and nonlocal theories is more significant for high value 
of the nonlocal parameter. 
 It seems that the prebuckling temperature rise plays a similar action to that of the nonlocal 
parameter, the decreasing trend of the frequency parameter has been demonstrated with increasing 
temperature rise. This decrease is owing to the reduction of flexural rigidity due to the compressive 
in-plane load induced by the temperature rise. 
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 The critical temperature rise at which buckling occurs can be extracted as a byproduct through 
setting the fundamental natural frequency to zero. 
 The nonlinear vibration frequency gradually converges to its local value as the aspect ratio 
becomes large. 
 For vanishing nonlocal parameter, the vibration solution for a beam furnished by the classical 
elasticity theory is recovered, and for vanishing temperature rise, the vibration solution for a un-
heated beam is degenerated. 
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