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Abstract 
To investigate the thermal buckling of curved carbon 
nanotubes (CCNTs) embedded in an elastic medium, 
nonlocal elasticity theory is employed in combination with 
the theory of thin curved beams. Differential quadrature 
(DQ) method is implemented to discretize the resulted 
governing equations. Solving these equations enables us to 
estimate the critical temperature and the critical axial 
buckling load for CCNTs surrounded by an elastic medium 
and under the effect of a uniform temperature change. The 
elastic interaction between the nanotube and its surrounding 
medium is modeled as a Winkler–Pasternak elastic 
foundation. The fast convergence of the DQ method is 
demonstrated and also its accuracy is verified by comparing 
the results with available solutions in the literature. The 
effects of various parameters such as different boundary 
conditions, nonlocal parameter, Winkler and Pasternak 
elastic modulus, temperature and nanotube curvature on the 
critical buckling temperature and load are successfully 
studied. The results reveal that the critical buckling load 
depends significantly on the curvature of the CCNT.  
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1 INTRODUCTION 

Nano-electro-mechanical systems (NEMS) are among fast growing technologies which deal with the 
production of nano-scale machines. These devices are being extensively used in many advanced 
industries such as aerospace, automotive, biotechnology, and audiometric equipment (Dai et al., 
1996). Among the nanostructures, carbon nanotubes (CNTs) are one of the most important structures 
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which are regarded as representatives for nanotechnology due to their unique characteristics. These 
structures have outstanding mechanical, physical and chemical properties such as high strength, high 
stiffness to weight ratio, as well as high electrical and thermal conductivity (Ruoff and Lorents, 1995; 
Tans et al., 1998; Tombler et al., 2000; Jiang et al., 2004; Friedman et al., 2005; Sedighi et al., 2014). 
 Most of the potential applications of CNTs dramatically depend on their mechanical performance 
including their buckling behavior due to the thermal effects and the environment they are embedded 
in. As in reality, there are no perfect straight CNTs, thus it is imperative to assess buckling behavior 
of curved CNTs. More importantly, CCNTs can be used as single-electron transistor (Postma et al., 
2001), mechanical nanosprings and nanocoils (Liu et al., 2014). So far, several experimental methods 
(Iijima et al., 1996; Falvo et al., 1997; Waters et al., 2005) and molecular dynamics simulation 
approaches (Yakobson et al., 1996; Ozaki et al., 2000; Liew et al., 2004; Liu et al., 2004; Wang et al., 
2005; Cao and Chen, 2006; Kulathunga et al., 2010; Li et al., 2013) have been carried out to accurately 
examine the corresponding mechanical response of nanostructures. However, despite of the 
considerable advances in nanotechnology, experimental tests are difficult to be performed and handled 
at nano-scale and also, all-atom molecular dynamics simulation method is computationally expensive. 
Hence, introducing theoretical models (e.g. modified continuum mechanics approaches) is required as 
they are relatively simple to be applied with less time-consuming without compromising the accuracy 
of the results. 
 Eringen (1983) proposed the nonlocal elasticity theory which has been widely used for continuum 
mechanics modeling of CNTs (Wang et al., 2008; Murmu and Pradhan, 2010; Wang et al., 2010; 
Murmu and Adhikari, 2011; Narendar and Gopalakrishnan, 2012; Thai, 2012; Thai and Vo, 2012; 
Şimşek and Yurtcu, 2013; Tounsi et al., 2013, Asemi et al., 2014). In this theory, the effects of small 
scaling parameter on the mechanical analysis of nanostructures are taken into account. The main idea 
of the nonlocal elasticity theory is that the stress at an arbitrary point of a body is a function of the 
strain at all over the body (Eringen, 1983). Subsequently, Reddy (2007) reformulated different beam 
theories based on the nonlocal beam theory. He employed the nonlocal theory to investigate the 
bending, buckling, and vibration of nanobeams. Civalek and Demir (2011) used an Euler-Bernoulli 
beam model based nonlocal elasticity theory to examine the static and buckling analysis of cantilever 
CNTs. They numerically solved the governing equations and showed that the nonlocal parameter has 
a significant effect on the static and buckling behavior of CNTs. Wang et al. (2008) examined the 
effects of thermal loading on the vibration and buckling of CNTs conveying fluid. Rastgo et al. (2005) 
investigated instability of curved beams made of functionally graded material under thermal loading. 
Murmu and Pradhan (2010) studied the effects of thermal loading on the buckling load of CNTs 
embedded in an elastic medium. They modeled the elastic medium around the nanotubes as a single-
variable Winkler elastic medium. Wang et al. (2010) assessed the effects of small scaling parameter 
on the thermal buckling of CNTs. Murmu and Adhikari (2011) analytically investigated the stability 
of a system consisting of two nanobeams.  
 In this paper, the thermal buckling analysis of curved CNTs resting on an elastic medium is 
investigated. Despite the significance, there are not many researches previously conducted on curved 
CNTs, whereas to the best of the authors’ knowledge, the present study is the first to investigate the 
thermal buckling of curved CNTs embedded in an elastic medium employing DQ method. At first, 
the critical buckling temperature of CNTs resting on the elastic medium is calculated. Afterwards, 

Latin American Journal of Solids and Structures 12 (2015) 1901-1917 
 



    A.R. Setoodeh et al. / DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory           1903 

 

the critical buckling load of CCNTs embedded in an elastic medium and under the effect of a uniform 
temperature alteration is estimated. In these analyses, the elastic medium around the nanotube is 
modeled as a two-variable Winkler-Pasternak elastic medium. The governing equations are developed 
based on the thin curved beams and nonlocal elasticity theories. Using powerful numerical method of 
differential quadrature method, the critical buckling load is calculated for different boundary 
conditions. The effects of various parameters such as boundary conditions, small scaling parameter, 
Winkler and Pasternak parameters, temperature change and angle of curvature of nanotubes on the 
critical buckling load are examined. 
 
2 NONLOCAL ELASTICITY THEORY OF CCNTs  

To derive the governing equations of the thermal buckling of a CCNT embedded in an elastic medium, 
a combination of the thin curved beam and nonlocal elasticity theories are employed. A curved beam 
is illustrated in Figure 1, where L  is the length of the beam. The orientation of the mid-plane is 
determined by the polar component of  . 

 

 
Figure 1: Schematic of a portion of a CCNT. 

 
The relation between this component and the angle of curvature of beam,   is as follows; 
 
 R    (1) 
 
where R  is the radius of curvature of the beam.  
 The kinematics relations of thin curved beams are derived based on the kinematics of thin-walled 
shells. This can be done by neglecting the out of plane components as well as their derivatives. Hence, 
the strain of each point on the beam is obtained based on the kinematics equations of thin curved 
beams which is stated as follows (Qatu, 2004).  
 
 0 z       (2) 
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where 0u  and 0w , are the displacement components of a material point on the mid-plane in the polar 
directions of   and z , respectively. 0  is the strain arising from the mid-plane stretching, and   is 
the curvature of the beam due to bending. 
 The modified elasticity theories have enabled us to fill the present gap between molecular dynamics 
and continuum mechanics. Eringen’s nonlocal theory states that the stress at an arbitrary physical 
point of a body is assumed to be a function of the strain field for the whole body. The differential 
form of this theory is as follows (Eringen, 1983); 
 
  21 ij ijmn mnC       (5) 

 
where C  and   represent the stiffness matrix of the structure and the gradient operator, respectively. 
Also,   is the nonlocal parameter. 
 

  20e a    (6) 

 
0e  is a constant value assigned to the body and a  represents the internal characteristic length. In 

general, 0e a  is believed to be less than 2 for the case of CNTs (Setoodeh et al., 2011; Malekzadeh et 
al., 2012). A homogeneous isotropic nanotube is assumed here while an axial load is perpendicularly 
exerted on the nanotube cross section. Thus, Eq. (6) is simplified for an isotropic and homogeneous 
nanotube based on the thin beam theory, where the effect of shear deformation is neglected. Hence, 
the stress-strain relation for the aforementioned type of loading is modified as, 
 
  21 E       (7) 

 
where   and   represent the normal nonlocal stress and strain at an arbitrary point, respectively, 
and E  denotes the Young's modulus of the nanotube. The stress resultants are the integrals of stress 
over the cross section area of the nanotube. Therefore, the nonlocal stress resultant are given by 
 
  ˆ d

A

N A    (8) 

  ˆ d
A

M z A    (9) 

 
where A  represents the cross section area of the nanotube. Integrating Eq. (7) over the nanotube 
cross section and substituting Eqs. (3) and (8) into Eq. (7), yields to 
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Multiplying Eq. (7) by z  and integrating the result over the cross section area, and substituting Eqs. 
(4) and (9) leads to find another constitutive equation in terms of stress resultants as bellow 
 

 
2

2

ˆ
ˆ M

M EI 



 


  (11) 

 
where I  represents the moment of inertia of the nanotube cross section. 

 
3 GOVERNING EQUATIONS OF CCNTs  

In this part of the paper, the governing equations are developed using Hamilton’s principle. Since the 
equilibrium equations for the local and nonlocal elasticity theories are the same, the local elasticity 
form of these equations is employed and the effect of nonlocal parameter is ignored for the sake of 
simplicity. The medium surrounding the nanotube is modeled as an elastic foundation with wk  and 

pk  as Winkler and Pasternak constants, respectively. It is considered that the CCNT is under the 
effect of a uniform temperature change of T  relative to the reference temperature. The resulted 
thermal stress due to this temperature variation is considered as an external load. Based on the theory 
of thermo-elasticity, the value of this force is calculated as 
 

 
1 2th th

EA
F T


 


  (12) 

 
th  and   represent the thermal expansion coefficient and the Poisson’s ratio of the nanotube, 

respectively. For the sake of simplicity, the following variable is introduced. 
 

 
1 2

th



 


  (13) 

Thus, Eq. (12) yields to 

 
 thF EA T    (14) 
 
In order to present a comprehensive study, it is also assumed that the CNT is under an axial load, 
P . Therefore, the strain energy of the nanotube, the potential energy of the elastic medium and the 
work done due to the thermal loading and external force can be represented by Eqs. (15)-(18), 
respectively. 
 

  
1

d
2s

V

U V    (15) 
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where V  is the total volume of the nanotube. Using Hamilton’s principle,   
 
  d 0th P

s f ext ext
t

U U W W t       (19) 

 
And, applying variation principle to the functional forms stated in Eqs. (15)–(18) and performing 
some manipulations, the equilibrium equations and the boundary conditions are obtained as follows 
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Eqs. (20) and (21) are the equilibrium equations, and Eqs. (22)–(24) represent different boundary 
conditions. 
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 (24) 

 
The boundary conditions for the simply supported condition are obtained as, 
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0

0

w

M
N
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M
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

  (25) 

 
and for a clamped end it is represented as, 
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By combining the equilibrium equations (20)–(21) with Eqs. (10)–(11), the governing equations are 
derived as, 
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To simplify the equations, the following nondimensional parameters are introduced, 
 

 
L


   ,  L

R
  ,  

4
w

w

k L
K

EI
 ,  

2
p

p

k L
K

EI
 ,  

2AL
S

I
 ,  0e a

L
  ,  

2PL
F

EI
  (29) 

 
Based on the introduced variables, the nondimensional form of the governing equations are 
reformulated as, 
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  (31) 

 
 Employing the numerical method of differential quadrature and applying the proper boundary 
conditions, an eigenvalue problem is achieved. Solving this eigenvalue problem leads to obtaining the 
critical buckling loads. 

 
4 NUMERICAL SOLUTION  

Among the various numerical solutions could be used to solve the governing equations, differential 
quadrature method employed here. This method requires a low computational cost to solve initial 
and boundary value problems with a significant accuracy (Bellman and Casti, 1971; Bellman et al., 
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1972; Shu and Richards, 1992; Jin et al., 2001). In this method, the problem domain is divided into 
N  points. The value of the rth order derivative of the function f  at each point of the domain is equal 
to a linear summation of the weighted function values at all points of the domain. 
 

    ( )( )
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rr
x i ij j

j

f x B f x i N


     (32) 

 
 ( )r

ijB are the rth order of the weighting coefficients. To calculate these coefficients, a set of test 
functions can be used. The weighting coefficients related to the first order derivative of the function 
f  can be calculated as follows (Bert and Malik, 1996), 
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The recursive relation to calculate the weighting coefficients of the higher order derivatives is given 
as, 
 
 ( ) ( 1) (1) , 2, 3, ,m mB B B m N                    (34) 

 
Also, a set of cosine type (the Gauss–Lobatto–Chebyshev) grid distribution points is given by (Bert 
and Malik, 1996), 
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   (35) 

 
 Herein, a new version of DQ method is employed which has been proposed by Karami and 
Malekzadeh (2002). Shortly, their methodology would overcome the difficulties encountered in 
boundary conditions implementations of fourth-order differential equations for the DQ analysis of 
beam structures. Using this method and satisfying the boundary conditions yield to find the critical 
buckling load as well as the critical buckling temperature. For the sake of brevity, more details of the 
DQ analysis are not presented here. 

 
5 NUMERICAL RESULTS  

In this section, numerical results are presented for the buckling behavior of CCNTs resting on an 
elastic foundation. The nondimensional critical buckling temperature and loads are determined for 
different values of the small scaling parameter. Three different boundary conditions including fully 
simply supported (S-S), simply-clamped supported (S-C) and fully clamped (C-C) are considered. 
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 In the first step, the accuracy and convergence study of the present method is demonstrated. Due 
to the lack of nonlocal solution for curved nanotubes, comparisons with solution of straight CNTs are 
carried out. Then, further analyses in terms of different parameters are presented. In all of the 
solutions, the Poisson’s ratio and the thermal expansion coefficient are assumed to be  0.3, and 

th  1.1x10-6, respectively. Also, the length to the thickness ratio of the nanotubes is assumed to be 
10 with a nanotube length of 10 nm, unless otherwise specified. 
 
5.1 Validation of the proposed approach 

The convergence behavior of the proposed method is demonstrated in Table 1. The nondimensional 
critical buckling loads of the straight nanotubes for three different values of the nonlocal parameters 
are presented. The validation is made for simply supported nanotubes. Reddy (2007) calculated the 
nondimensional critical buckling load based on the nonlocal Euler-Bernoulli beam theory. By 
comparing our results with the solution of Reddy (2007), it can be observed that with only seven 
nodes (N ), accurate results with a fast convergence behavior are achieved. This shows the efficiency 
of the DQ method in solving this kind of problems. 

 
Reddy (2007) N  8 N  7 N  6 0 (nm)e a  

9.8696 9.8696 9.8697 9.8673 0 
8.9830 8.9830 8.9831 8.9811 1 
7.0761 7.0761 7.0761 7.0749 2 

Table 1: The convergence of the nondimensional critical buckling loads of a straight CNT for 
different nonlocal parameters ( 0w pT K K    ). 

 
Moreover, to further validate our approach, a comparison is made between the present results and 
those reported by Wang et al. (2010). Wang et al. (2010) analytically obtained the dimensionless 
critical buckling temperature of nanotubes based on the nonlocal Timoshenko beam theory. The 
dimensionless critical buckling temperature is given by, 
 
 Non

thT S T     (36) 
 
 In Table 2, the nondimensional critical buckling temperature of a simply supported straight CNT 
for three buckling mode numbers of 1, 5, and 10 are presented. The length to diameter (thickness) 
ratio is L d  100 with the nanotube length of 100 nm. Also, the nonlocal parameter is assumed to 
be 0e a  1 nm.  

 
Wang et al. (2010) Present Mode No. 

3.9458 3.9478 1 
97.43 98.69 5 
381.5 393.5 10 

Table 2: The nondimensional critical buckling temperature of a straight CNT for three different buckling modes. 
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It is seen that the results are very close to those obtained by Wang et al. (2010) in the case of modes 
1 and 5, while the discrepancy for the higher mode of 10 is in an acceptable range of 3%. This means 
that employing the nonlocal Euler–Bernoulli beam theory is quite reasonable for practical purposes.  
 Since no similar results have been found for the case of nonlocal buckling of curved carbon 
nanotubes, a comparison is carried out with the solution of Matsunaga (1996) presented for classical 
arch theory as shown in Table 3. The small scale parameter is set to be zero and the nondimensional 
critical buckling loads of CCNTs with different geometry parameters are determined. Again, the 
developed results are in good agreement with the existing numerical solution which verifies the 
reliability and validity of the present approach to predict the stability behavior of CCNTs. 

 
Matsunaga (1996) Present L R  L d  

9.8696 9.8696 0.00 

2 
9.8568 9.8476 0.10 
9.8193 9.7816 0.20 
9.7581 9.6723 0.30 
9.6732 9.5205 0.40 

9.8696 9.8696 0.00 

5 9.8054 9.7430 0.25 
9.6179 9.3681 0.50 

9.6090 9.8696 0.00 

10 9.5478 9.7445 0.25 
9.3643 9.3740 0.50 
9.8035 9.8696 0.00 

20 9.7413 9.7449 0.25 
9.5548 9.5755 0.50 

Table 3: The local nondimensional critical buckling loads of a simply supported CCNT ( 0 0e a  ). 

 
At the next step, comparisons with the DQ Euler-Bernoulli beam solution of Murmu and Pradhan 
(2010) for the critical buckling loads of straight nanobeams are carried out. To clarify the comparison, 
a nondimensional parameter may be defined as  
 

 Nonlocal
scale

Local

F
F

F
   (37) 

 
where NonlocalF  and LocalF  represent the nondimensional critical buckling load for straight nanotubes 
using nonlocal and classic theories, respectively. In Figure 2, the variation of the dimensionless 
parameter of ScaleF  is depicted in terms of the nonlocal parameter, 0e a . As it can be observed, both 
results are matched quite well. 
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5.2 Effects of curvature and nonlocal parameter 

To consider the effects of curvature and the small scaling parameter on the stability of CCNTs, the 
dimensionless critical buckling temperature and loads for different angles of curvature and various 
nonlocal parameters are determined and listed in Tables 4 and 5, respectively. The results are shown 
for three different types of boundary conditions. 
 The trend of data in both of the Tables 4 and 5 are identical. The results indicate that with 
increasing the nonlocal parameter, the corresponding nondimensional critical buckling parameter 
decreases for all types of the boundary condition.  
 The reason is that the length of nanotube and consequently the flexibility of the nanotube are 
increased by increasing the angle of the curvature. However, the behavior is somehow different for 
fully clamped boundary condition. Moreover, it is worth noting that the stability of the curved 
nanotubes improves for end supports with a higher stiffness. 
 

 
Figure 2: Variation in the ratio of the dimensionless nonlocal to the local buckling load vs. nonlocal parameter 

(L d  100, L  100 nm,   0, T  25, w pK K   0). 

 
5.3 Influence of the elastic medium surrounding the CCNT 

To illustrate the effect of the elastic medium surrounding the CCNT, the nondimensional critical 
buckling temperature for various values of Winkler and Pasternak parameters are presented (Figures 
3 and 4). The nondimensional critical buckling temperature as a function of Winkler elastic modulus 
for three different boundary conditions is demonstrated in Figure 3. 
 It can be observed that the nondimensional critical buckling temperature dependency on Winkler 
parameter decreases when the elastic foundation becomes stiffer. It is also seen that the influence of 
end-support stiffness on the nondimensional critical buckling temperature is higher than the Winkle 
parameter. 
 Figure 4 represents the dependency of the nondimensional critical buckling temperature on the 
Pasternak elastic modulus. As illustrated in the Figure, the dimensionless critical buckling 
temperature increases linearly by increasing the Pasternak elastic parameter for all types of boundary  
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    0 (nm)e a  

2 1.5 1 0.5 0    
     S-S  

1.3928 2.3497 3.1864 3.7498 3.9478  0 
1.3593 2.2931 3.1097 3.6595 3.8528  0.5 
1.2677 2.1386 2.9001 3.4129 3.5932  1 
1.1397 1.9227 2.6074 3.0684 3.2305  1.5 
0.9986 1.6846 2.2845 2.6884 2.8304  2 

     S-C  
5.3898 6.4343 7.3047 7.8771 8.0763  0 
5.1308 6.1251 6.9537 7.4986 7.6882  0.5 
4.4842 5.3534 6.0776 6.5539 6.7196  1 
3.7059 4.4243 5.0229 5.4165 5.5534  1.5 
2.9814 3.5595 4.0411 4.3577 4.4679  2 

     C-C  
29.1644 30.5041 31.4938 23.2170 15.7914  0 
24.2651 25.3798 26.2032 21.0589 14.3728  0.5 
16.1340 16.8752 17.4227 16.3740 11.3217  1 
10.3524 10.8279 11.1792 11.3947 8.3629  1.5 
6.8938 7.2105 7.4444 7.5879 6.1227  2 

Table 4: The dimensionless critical buckling temperature for different angles of curvature and nonlocal parameters 
( 0w pk k  ). 

 

   0 (nm)e a  

2 1.5 1 0.5 0   
     S-S  

3.4820 5.8743 7.9659 9.3745 9.8696  0 
3.3982 5.7328 7.7741 9.1487 9.6319  0.5 
3.1692 5.3466 7.2504 8.5324 8.9830  1 
2.8493 4.8068 6.5184 7.6710 8.0762  1.5 
2.4965 4.2116 5.7112 6.7211 7.0761  2 

     S-C  
13.4745 16.0857 18.2618 19.6928 20.1907  0 
12.8270 15.3127 17.3843 18.7465 19.2205  0.5 
11.2106 13.3834 15.1941 16.3846 16.7989  1 
9.2648 11.0608 12.5572 13.5412 13.8836  1.5 
7.4535 8.8987 10.1026 10.8943 11.1697  2 

     C-C  
72.9109 76.2602 78.7344 58.0424 39.4784  0 
60.6626 63.4493 65.5079 52.6472 35.9321  0.5 
40.3350 42.1880 43.5567 40.9350 28.3043  1 
25.8809 27.0698 27.9481 28.4867 20.9073  1.5 
17.2345 18.0262 18.6111 18.9697 15.3068  2 

Table 5: The dimensionless critical buckling load for different angles of curvature and nonlocal parameters 
( 0w pT K K    ). 
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conditions studied here. Moreover, by comparing Figures 3 and 4, it can be concluded that the effect 
of the Pasternak elastic constant on the nondimensional critical buckling temperature is higher than 
the effect of the Winkler parameter. 
 

 
Figure 3: Dimensionless critical buckling temperature of the CCNT vs. Winkler parameter of the elastic medium 

( 01, 1, 0pe a K    ). 
 

 
Figure 4: The nondimensional critical buckling temperature of the CCNT vs. Pasternak parameter of the elastic 

medium ( 01, 1, 0we a K    ). 
 
5.4 The effect of temperature change 

In order to study the effects of temperature on the buckling of curved CNTs, a nondimensional 
thermal ratio parameter, thermal  is defined as follows, 
 

 thermal
thermal

Non thermal

F

F




   (38) 
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where thermalF  and Non thermalF   represent the dimensionless critical buckling load when the influence 
of temperature change is considered or neglected, respectively. The variation of the nondimensional 
parameter thermal  with respect to the temperature is presented in Figure 5 for different end supports. 
 As it is clear in Figure 5, for all types of boundary conditions considered, the thermal ratio thermal  
reduces with increasing the temperature change. In other words, with increasing the temperature, the 
nondimensional critical buckling load reduces. Furthermore, the slope of thermal  versus temperature 
change increases as the end supports become stiffer. 
 

 
Figure 5: Thermal ratio parameter of CCNTs vs. the temperature change 0( 1, 1, 0)w pe a K K     . 

 
6 CONCLUSIONS  

Thermal buckling analysis of CCNTs embedded in an elastic medium is investigated using the 
differential quadrature method. The governing equations are derived by combining thin curved beams 
and nonlocal elasticity theories. Employing the powerful numerical method of differential quadrature, 
the critical buckling temperature and loads are calculated for different types of boundary conditions. 
The elastic medium around the nanotube is modeled as the two-parameter Winkler-Pasternak 
foundation. It is found that the employed method demonstrate fast rate of convergence with very 
accurate results compared with the available solutions in literature which exhibits efficiency of the 
methodology. The effects of various parameters such as nonlocal parameter, angle of the nanotube 
curvature, Winkler and Pasternak moduli of the elastic medium and temperature change on the 
critical buckling load and temperature are successfully studied. The present results may be used as 
benchmark solutions for future researches. 
 The results reveal that the curvature of the nanotube has a considerable effect on the critical 
buckling load and temperature. Surprisingly, this effect is not identical for all sorts of boundary 
conditions. In the case of S-S and S-C supports, the dimensionless critical buckling load and 
temperature decrease as the angle of curvature increases. However, for fully clamped supports, the 
dimensionless critical buckling load and temperature increase up to a certain angle of curvature but 
then reduce due to further changes of the curvature angle. Moreover, it is shown that the stability of 
the curved nanotube is improved by increasing the Pasternak and Winkler elastic parameters. Also, 
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the dimensionless critical buckling temperature reduces as the nonlocal parameter and the 
temperature increases. 
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