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Abstract 
The phenomena of reflection and refraction of plane waves incident 
obliquely at a plane interface between uniform elastic solid half-
space and porous solid containing liquid filled bound pores and two-
phase fluid in connected pores has been analyzed. The amplitude 
ratios of the reflected and refracted waves to that of the incident 
wave are calculated as a non- singular system of linear algebraic 
equations. These amplitude ratios are used further to derive the 
expressions for the partition of incident energy among the reflected 
and refracted waves. Partition of incident energy among the 
reflected and refracted waves is studied for incidence of P and SV 
waves. The conservation of the energy across the interface is verified. 
The effect of gas saturation, wave frequency, capillary pressure and 
bound liquid film on the amplitude ratios and energy partitions are 
studied in the numerical example. 
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1 INTRODUCTION 

A poroelastic solid is considered as an elastic matrix with a Newtonian fluid filling its connected pores. 
Dynamic behavior of fluids saturated porous media has been the center of study due to their 
importance in modelling the sedimentary materials in the field of acoustics, oil exploration, earthquake 
engineering, soil dynamics and hydrology. The dynamic equations formulated by Biot (1956a, b, 1962) 
are, generally, used to derive the mathematical models for wave propagation studies in a poroelastic 
solid saturated completely with a single-fluid phase. Pride et al. (2004) extended the Biot's single 
pore fluid formulation to the porous media saturated by multiple fluids. 
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 Mixture theory seems to be convenient in studying the wave propagation in a porous solid 
saturated by multiphase fluid. It was Brutsaert (1964), who predicted the existence of third 
compressional wave due to presence of second fluid in pores. In this, the constituent phases are 
assumed to exist everywhere, but without any integration between them. Bowen (1976, 1980) has 
given an extensive study of mixture theory. The work of Bedford and Drumheller (1983) deals with 
mixture of immiscible constituents. Garg and Nayfeh (1986) have studied the propagation of 
compressional waves in porous media saturated with chemically non-reactive miscible liquid/gas 
mixture. Santos et al. (1990a, b) derived the governing equations and presented a method to calculate 
elastic constants for isotropic porous solids saturated by two-phase fluids. Garg and Nayfeh (1986), 
and Tuncay and Corapcioglu (1997) formulated a comprehensive procedure relevant to wave 
propagation in porous solids saturated with multiple fluids. A recent mathematical model presented 
by Lo et al. (2005) is also based on continuum mixture theory. It is general enough to account for 
changes in capillary pressure and viscous/inertial coupling among the constituents. In the absence of 
inertial coupling, this model reduces to that of Tuncay and Corapcioglu (1997). Most of studies on 
wave propagation in porous media prefer to use the elastodynamics of Biot's theories and the 
boundary conditions of Deresiewicz and Skalak (1963), for example, Pride et al. (1992), Kaynia and 
Banerjee (1993), Gurevich and Schoenberg (1999) and Denneman et al. (2002). Burridge and Keller 
(1981) used two space method of homogenization to derive the constitutive equations for poroelasticity 
from microstructure.  
 In the contemporary times, acoustic wave propagation in porous media has also got importance in 
the oil explorations and medical field. During the propagation of a sound wave in such a medium, 
interactions between these two phases of different nature take place, giving various physical properties 
that are unusual in classical media. The large contact area between solid and fluid, which is the main 
characteristic of porous media induces new phenomena of diffusion and transport in the fluid, in 
relation to micro-geometry of the pore space. Many applications are concerned with understanding 
the behavior of acoustic waves in such media. In geophysics, we are interested in the propagation of 
acoustic waves in porous rocks, for information on soil composition and their fluid content. Acoustic 
characterization of materials is often achieved by measuring the attenuation coefficient and phase 
velocity in the frequency domain. The most recent theoretical and experimental methods developed 
by the authors for the acoustic characterization of porous materials are shown in Fellah et al. (2013).  
 Besides, seismic waves in the earth's crust are influenced by the properties of the strata through 
which they travel and the reflection/refraction at discontinuities between different layers. Recorded 
signals of these waves provide information about the internal structures of the Earth which is used 
further in devising an effective strategy for the exploration of minerals and hydrocarbons. Reflection 
and refraction of elastic waves at the boundaries of fluid saturated porous materials is a process,  
which has direct relevance in the studies on geophysical exploration. The problem of reflection and 
refraction of plane elastic waves striking at the plane interface between an elastic solid and a 
poroelastic solid saturated by a single fluid/two immiscible fluids have been attempted by many 
researchers. The latest book by Carcione (2007) is referred to for relevant references and detailed 
procedures. 
 In recent years, some studies (Tomar and Arora, 2006; Arora and Tomar, 2007, 2010; Yeh et al., 
2010) have considered the reflection and refraction of plane harmonic waves at the boundaries of 
porous media saturated by two immiscible fluids. In this study, pore-fluids were assumed non-viscous 
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so as to avoid the involvement of attenuation. For the same reason, the incidence was restricted to 
pre-critical angles. Unfortunately, this is in contrast to the realistic flow mechanics in crustal rocks 
where the equilibration of fluid pressure produces a great deal of seismic attenuation (Sams et al., 
1997). However, Sharma and Kumar (2011) and Kumar and Saini (2012) ignored all these restrictions. 
Sharma and Saini (2012) studied the wave propagation in porous solid containing liquid filled bound 
pores and two-phase fluid in connected pores. Kumar and Sharma (2013) studied the reflection and 
transmission of attenuated waves at the boundary between two dissimilar poroelastic solids saturated 
with two immiscible viscous fluids. Kumar and Kumari (2014) studied the reflection of attenuated 
waves at the surface of fractured porous solids saturated with two immiscible viscous fluids. 
 The present work generalizes the reflection at the free surface studied by Sharma and Saini (2012) 
to the reflection-refraction phenomenon at the plane interface between uniform elastic solid and 
porous solid saturated with two miscible/immiscible fluids containing liquid filled bound pores. A 
porous medium is considered to be dissipative due to the presence of the viscosity in the pore fluids. 
Hence, the waves refracted to the dissipative porous medium are identified as inhomogeneous waves 
with the attenuation always normal to the interface. An energy matrix is calculated, which defines 
the shares of two waves reflected to elastic solid and four waves refracted to saturated porous solid 
containing liquid filled bound pores. This matrix enables to identify the interaction energy among the 
refracted waves, which is required to ensure conservation of energy at the interface. Numerical 
example is considered to study the nature of dependence of amplitude ratios and energy ratios on 
angle of incidence of the incident wave. The conservation of the energy across the interface is verified. 
The effects of gas saturation, wave frequency, capillary pressure and bound liquid film on the 
amplitude ratios and energy partitions are depicted graphically and discussed. 

 
2 BASIC EQUATIONS 

The composite porous medium consists of four constituents, i.e., solid grains, bound liquid film, pore-
liquid, pore-gas, which are identified with indices ' 's , ' ' , ' 'l , ' 'g   respectively. Out of the total 
porosity   f  of the medium, a fraction α  is occupied by bound liquid film and the remaining part 
 α1 f  is the connected porosity  . Then, the volume fractions of the constituents are defined as 
 
 1s f   , f  ,  1l    , g  , (1) 

 
where   is the fraction of gas saturation in connected pore-space. These volume fractions are scaling 
functions which are used to relate partial and intrinsic values of any characteristic of the medium. 
For example, the product s  defines the contribution of solid grains in the aggregate density    of 
multiphase mixture. 
 In applying continuum models to treat multiphase media, it is assumed that the local variables 
can be replaced by mixture variables averaged over a region, which is quite large in comparison to 
grain-size but very small when compared to sample-size. It is further assumed that for each of the 
phases, i) partial stress tensors are symmetric, ii) external body forces are absent, and iii) deformations 
are infinitesimal. The gas is assumed to be soluble in liquid but no mass exchange is allowed between 
the solid matrix and the twin-phase pore-fluid. Inertial coupling between the mixture constituents is 
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excluded. Following Garg and Nayfeh (1986), the equations of motion for the low-frequency vibrations 
of constituent particles in isotropic porous solid are given by 
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  (2) 

 
where the superscript ' 'd  is used to denote drained porous solid frame. The particles of elastic 
skeleton and bound liquid have the same displacement and pressure. Hence, the drained porous matrix 
is considered a single continuum which behaves viscoelastic to wave propagation (Edelman, 1997). 

' s are used to define stresses and ' s are intrinsic densities. iu , iv  and iw  denote the components 
of displacements of the drained solid, liquid and gas particles, respectively. The indices (other than 
s ,  , l , g ) can take values 1, 2 and 3. A repetition of these indices implies summation. Dot over a 
variable implies partial derivative with time and comma before an index implies partial space 
differentiation. 
 Darcy's law relates viscous dissipation to the motion of gas and liquid particles relative to the 
pore-walls. The assumption of Poiseuille flow, necessary for this law, breaks down if the frequency 
exceeds a certain value. The present work is specifically restricted to low frequency such that viscous-
fluid dissipation does not depend on frequency. Following Garg and Nayfeh (1986), dissipation 
coefficients for liquid ( ld ) and gas ( gd ) are defined as follows: 
 
  2 k k k kd    ,  , k l g , (3) 

 
where k  and k  define the viscosity and the relative permeability of fluid phase k.   denotes the   
intrinsic permeability of the porous medium. 
 Garg and Nayfeh (1986) employed the concepts from the theory of interacting continua (Bedford 
and Drumheller, 1983) to formulate separate constitutive models for different constituents of porous 
medium. In terms of intrinsic stress tensors and densities, the constitutive relations for porous matrix, 
liquid and gas are defined as follows: 
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  (4) 

 
where ij  is Kronecker symbol. The elastic constants ' s derived from the elastic moduli of the 
constituents, are given in the Appendix. 
 In Kelvin-Voigt model of linear viscoelasticity, the elastic solid element and viscous fluid element 
are assumed to be parallel and thus subjected to same strain. Then, an effective elastic modulus of 
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the composite is obtained as the sum of partial values of the modulus for different constituents (Wong 
and Bollampally, 1999). Following Edelman (1997), the time-dependent rigidity modulus p  of 
viscoelastic porous frame relates to the rigidity ( s ) of solid grains as follows:  
 

  p s s Re t






   


 


, (5) 

 
where   is the dynamic shear viscosity and Re  is acoustic Reynolds number for bound liquid film. 
Edelman (1997) has defined this number as 21 Re   . Non-dimensional parameter   is expressed 
in terms of fluid viscosity, bulk modulus, density and medium permeability (Nikolaevskiy, 1990; 
Maksimov et al., 1994). 

 
3 HARMONIC PLANE WAVES 

3.1 Saturated porous solid  

Propagation of harmonic plane waves is considered in a partially saturated porous solid containing 
liquid filled bound pores and a connected pore space saturated by two-phase fluid, identified as gas 
and liquid. Following Sharma and Saini (2012), in a partially saturated porous solid containing liquid 
filled bound pores and a connected pore space saturated by two-phase fluid, three dilatational waves 
and one shear wave propagate.  For convenience in discussion, the three longitudinal waves with 
velocity order      1 2 3V V V R R R  are named as IP , IIP ,  IIIP  waves, respectively. The lone 
transverse wave is identified as S  wave. For the displacements  , ,  j j ju v w , the system of Christoffel 
equations in Sharma and Saini (2012) is solved to define the complex velocities ( jV , 1, 2, 3,  4j  ) of 
four attenuated waves in the medium. Corresponding to each wave, the polarizations ( S , L ,G ) for 
material particles are calculated to define the displacements of material particles as given in Sharma 
and Saini (2012). 
 
3.2 Elastic solid 

Equation of motion for isotropic elastic solid is given by 
 
 , ij j iU   . (6) 

   
The isotropic stress-strain relation in the elastic medium is given as 
 
  , , ,ij ij k k i j j iU U U     , (7) 

 
where λ  and   are the lame's constants. iU  is the displacement of particles in the elastic solid. 
In terms of the displacement components, the equations of motion are expressed as follows: 
 
   , ,j ij i jj iU U U       . (8) 
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To seek the harmonic solution of system of equations (8), for the propagation of plane waves, the 
displacement components are written as follows: 
 
     exp ,  1,  2,  3 ,j j k kU S p x t j      (9) 

    
where   is angular frequency and  1 2 3, , p p p    is slowness vector p . The vector  1 2 3, , 

T
S S S   S  

corresponds to the polarization for the motion of solid particles in the elastic solid medium. 
Substituting (9) in (8) yields a system of three equations, given by  
 
     0T T          

 p p p p I S . (10) 

 
Now, after re-adjusting the above equation, we get 
 
  1 20, T T       ΓS  Γ p p I p p , (11) 

 
which are the Christoffel’s equations for the propagation of harmonic plane waves in the elastic solid 
medium. The coefficients used in the above the above relation are 

 
 1 22 ,                . 

 
In terms of velocity V , the slowness is defined as V  p N  such that 1T  N N  and 2.1 /V   
The dual (complex) vector N  represents the directions of propagation and attenuation of a wave in 
the porous medium. In terms of N  and V , the Christoffel equations (11) are expressed as 
 
  T T

1 2  0         
N N I N N S . (12) 

 
The non-trivial solution for Christoffel equations is ensured by vanishing the determinant ( 2

1 2  ) 

of the matrix  1 2 .T T    N N I N N  This condition translates into two equations as follows: 

 
The first one (i.e., 1 0  ) implies that 
 
  2 2 0V     . (13) 

 
The root of this square equation define the velocity ( 1V ) in the elastic medium. In this case the 
polarization vector  1 2 3, , ,S S S    corresponding to equation (12), is calculated to be parallel to N  
and hence the wave identified with velocity 1V  is longitudinal wave. 
Another equation (i.e., 2 0  ) yields 
 
 2 0V   . (14) 
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which implies a wave with velocity 2V   . The corresponding polarization vector  1 2 3, , ,S S S    
is represented through a singular matrix  T  I N N . So, the polarization vector may be parallel to 
a column (or, row) vector of this symmetric matrix. This defines the direction of polarisation in a 
plane, which is normal to the propagation vector N . This implies that the wave with velocity 2V  is 
a transverse wave. The polarisation vector S  defines the polarisation of solid particles in the elastic 
medium.  

 
4 FORMULATION OF THE PROBLEM 

Consider an elastic solid and a porous solid containing liquid filled bound pores and a connected pore 
space saturated by two-phase fluid  having a common boundary. In the cartesian co-ordinate system 
 1 2 3,  ,  x x x , let the plane 3 0,x   define this common boundary which is separating the two different 
media (say, 1M  and 2M ). A wave (P or SV) travels through the elastic medium 1M  (i.e., 3 0x  ) 
with velocity 0V  and incident at the interface making an angle 0  to the 3x -axis pointing in to this 
medium. For two dimensional motion in the 1 3x x  plane, unit vector  0 0sin ,  0, cos   represents 
the phase direction of the incident wave. The incident angle may vary from 0 to 2 . Such an 
incidence results in two waves reflected back in to elastic medium 1M  and four waves refracted to 
the continuing porous medium 2M . The primed quantities separate the medium 1M  from 2M . 
 The displacement in the elastic medium 1M  are expressed as 
 

      
2
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1
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where values 1-2 of the index l  represent the P and SV waves, respectively. The lf   are relative 
excitation factors for two reflected waves. We have     1 l l

j jn n    and from Snell's law, ( )
1
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1
l
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2 0ln   .  

 Similarly, for waves refracted in medium 2M , the displacements are expressed as 
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where  L AS  and G  BS  are as given in Sharma and Saini (2012). 
 The lf  are relative excitation factors for refracted waves. We have     1

l l
j jn n  , and from Snell's 

law,    
1 1 0 0sin
l l

lp n V V  ,  
2 0
l

n  .  
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5 BOUNDARY CONDITIONS 

We assume that two half spaces separated by a plane interface 3 0,x   are in perfect contact. 
Therefore, the boundary conditions are continuity of stress components and displacement components 
along the interface plus one more condition which restrict the flow of two fluids of porous solid in to 
uniform elastic solid, i.e, at 3 0.x   
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  (19) 

 
where superposed dot represent the temporal derivative. 
 The above boundary conditions are satisfied through a system of six linear inhomogeneous 
equations in 1f , 2f , 3f , 4f , 5f  and 6f . This system of equations is given by  
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where the coefficients ija , ( 1, 2, 3, 4,  5,  6i  ) are given as follows: 
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6 ENERGY RATIOS  

We now consider the partitioning of energy between different reflected and refracted waves at the 
surface element of unit area. Following Achenbach (1973), the rate at which the energy is transferred 
per unit area of the surface is given by the scalar product of surface traction and particle velocity, 
denoted by *P . The time average of *P  over a period, denoted by *P , represents the average 
energy transmission per unit surface area per unit time. Thus, on the surface with normal along 3x -
direction, the average energy intensities of the waves in the uniform elastic solid medium are defined 
by 
 
 *

13 1 33 3eP U U    , (21) 
 
with the help of expressions 
 

      1
. .

2
f g f gR R R , 

 
for two arbitrary complex functions f  and g , we obtain the energy ratios giving the rate of average 
energy transmission corresponding to each of the reflected and refracted waves to that of the incident 
wave. These energy ratios  iE ( 1,  2i  ), for the reflected P  and SV  waves, respectively, are defined 
as follows: 
 

 
Figure 1: Shows the schematic diagram of the incidence, reflection and refraction of waves. 

 
 * *

0i ei eE P P  ,   1, 2i  , (22) 
 
where 
 
         (0) (0) (0) ( 0 0*

0 1
0) (0) (0) (0) (0)

1 3 3 1 1 1 3 3 32eP SS p S p S p S Sp               



R , (23) 

                        1 1 1 1 1 1 1 1*
1 1 3 3 1 1 1 1 3 3 3 5 5

1 1
2eP S p S p S S p S p S f f                         

R , (24) 

                        2 2 2 2 2 2 2 2 2 2*
2 1 3 3 1 1 1 1 3 3 3 6 62eP S p S p S S p S p S f f                         

R . (25) 
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For a saturated porous solid half space with normal along the 3x -direction, the average energy flux 
is represented through the components  ijP  given by 
 
                                31 1 33 3 33 3 33 3

d i j d i j l i j g i j
s s l gij

P u u v w                 R R R R R R R R . (26) 

 
To explain the distribution of incident energy at the free surface of a dissipative porous medium, a 
matrix defined with its element given by, 
 
    *

0 ij ij i j eE P f f PR R ,  , 1, 2, 3, 4i j  , (27) 

   
where bar over an entity implies its complex conjugate. Elements of the matrix P  in (27) are defined 
as follows: 
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 

 
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 (28) 

 
The matrices used in the above expressions are defined as 
 

           
11 12 13 21 22 23

2
,  

3
j j j j j j

p      
           

X I A B Y I A B , 

     
31 32 33

j j j    Z I A B , 

 
where the superscript '( ) 'j  on matrices A  and B  means the matrices are evaluated for slowness 
vector p  of the corresponding refracted wave represented with a value of  1,  2,  3,  4j  . An energy 
matrix (27) calculates the distribution of the energy among four waves travelling into the dissipative 
porous medium saturated by two miscible/immiscible fluids. The diagonal entries of the energy matrix 

ijE  represent the energy share of the four refracted waves in the medium. The terms 11 E , 22E , 33E , 
44E  are identified as the refraction (energy) coefficients for IP , IIP , IIIP  and SV  waves, 

respectively. The sum of all non-diagonal entries of this energy matrix gives the share of the 
interaction energy among all the refracted waves in the medium. This part of energy is given by 
 

4 4

1 1
RR ij ii

i j

E E E
 

       
  , 

 
yields the conservation of the incident energy across the interface through relation 1 2 11E E E  

22 33 44 1RRE E E E     . 
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7 NUMERICAL EXAMPLE 

A reservoir rock (sandstone) saturated with a liquid and gas is chosen for the  numerical model of 
porous medium (Garg and Nayfeh, 1986). The solid grains of the rock with bulk modulus sK 
36 GPa , rigidity modulus s  9 GPa, and density s  2650 kg/m3 form a porous frame of porosity 

0.3.f   The connected pore space is filled with the bubbles of gas of bulk modulus gK  0.0037 
GPa and density g  100 kg/m3 mixed in a liquid of bulk modulus lK  2.3 GPa and density l 

3980 kg/m . Both the pore-fluids are viscous and the values chosen for dissipation coefficients are 
ld  1 MPa-s/m2 and gd  0.04 MPa-s/m2. The same liquid with viscosity   10-12 GPa-s and 

Reynolds number Re 100 is assumed in the bound pores. The value of ratio cap lK K  is used to 
calculate   1 capK    (see appendix).  Low-frequency propagation regime is ensured with 

π×2 5 kHz  . The elastic medium ( 1M ) has the parameters,  2650 kg/m3,   16.9 GPa, and 
  28.3 GPa as the values chosen for the density and elastic constants for granite. 

 
8 DISCUSSION 

8.1 Reflection and refraction coefficients 

We find that the energy ratios of reflected and refracted waves due to either an incident P  wave or 
SV  wave depend upon the angle of incidence (i.e., 0 ). The energy ratios  iE  ( 1, 2i  ) and the 
energy matrices  ijE  ( ,  1,  2, 3,  4i j  ) defined in the previous section are calculated for a given value 
of the incident angle 0  varying from 0  to  90 . In the present case, the incidence is considered only 
for P - and SV - waves. For each incidence, the energy partitions are computed and the conservation 
of energy is ensured at the interface of an elastic solid half space and the porous solid half space 
containing liquid filled bound pores and a connected pore space saturated by two-phase fluid. In the 
present discussion, 1E  and 2E  denote the reflection coefficients of P  and SV  waves, respectively, 
whereas 11 E , 22E , 33E , 44E  denote the refraction coefficients of the IP , IIP , IIIP , and SV  waves, 
respectively. The amplitude ratios for the reflected and refracted waves are donated as the energy 
ratios except these are denoted by notation ( )Z f , i.e.,  11 1Z f ,  22 2Z f ,  33 3Z f , 

 44 4Z f ,  1 5Z f , and  2 6Z f  represent the amplitude ratios of refracted IP , IIP , IIIP ,
-SV , reflected P and SV-waves, respectively. Henceforth in the discussions the notations for the 
energy and amplitude ratios will be used for sake of convenience.  
 Fig. 2 shows the variation of amplitude ratios with gas saturation for incident P -wave. 1Z , 2Z  
and 11Z  increases with increase in the gas saturation. 44Z  is almost ineffective to the variation in the 
gas saturation. 22Z  and 33Z  are very small yet they show variation with   as depicted in Fig. 2. 
 Fig. 3 shows the variation of amplitude ratios with change in the frequency for incident P -wave. 

2Z  and 11Z  gets strengthen with increase of frequency. Unlike 2Z , the amplitude ratio 44Z  decreases 
in magnitude with increase in the frequency. 1Z  remains ineffective to the change in the frequency. 
As 22Z  and 33Z  are negligibly small yet their amplitude ratios get strengthen with increase in 
frequency. 
 Fig. 4 shows the variation of the amplitude ratios with change in the capillary pressure for incident 
P-wave. It is evident from the figure that capillary pressure has a little effect upon the variation of 
amplitude ratios. Whatever effect, if seen, is at the small scale, which is clearly visible in the amplitude  
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Figure 2: Amplitude ratios ( 1Z , 2Z , 11Z , 22Z , 33Z  and 44Z ) with 2  kHz,   0.2, h  4, 
0.001cap lK K ,   0.2, 0.5, 0.8, and different angles of incidence of P-wave. 

 
ratios 22Z  and 33Z . Where, 22Z  gets weaken with increase in the capillary pressure and 33Z  shows an 
anomalous behaviour with increase of capillary pressure. 
 Fig. 5 shows the variation of  the amplitude ratios with the change in the fraction of bound liquid 
film for incident P-wave. 2Z  and 11Z  show a weakening in the amplitude ratio with increase in the 
fraction of bound liquid film. 44Z  increases with increase in the fraction of bound liquid film. While 
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Figure 3: Amplitude ratios ( 1Z , 2Z , 11Z , 22Z , 33Z  and 44Z ) with angle of incidence of P-wave for   0.4,  

0.2, h  4, 0.001cap lK K , and different values of  . 

 

1Z , first decreases until 58o, thereafter, it gets little strengthen with increase in the fraction of bound 
liquid film. Thus, 1Z  shows a mixed behavior with variation in the fraction of bound liquid film. 
Again, 22Z  and 33Z  are very small, but yet their amplitude ratios get weaken with increase in the 
fraction of bound liquid film. 
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Figure 4: Amplitude ratios ( 1Z , 2Z , 11Z , 22Z , 33Z  and 44Z ) with angle of incidence of P-wave for 2  kHz, 

  0.4,   0.2, h  4, and different values of capK . 

 
Fig. 6 shows the variation of amplitude ratios with gas saturation for incident SV-wave. 1Z  has a 
mixed behaviour with increase in the gas saturation, i.e., it gets strengthen until the angle of incidence  
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Figure 5: Amplitude ratios ( 1Z , 2Z , 11Z , 22Z , 33Z  and 44Z ) with angle of incidence of P-wave for   0.4, 

2  kHz, ch  4, 0.001cap lK K , and different values of  . 

 
42o and thereafter, it starts weakening with increase in the gas saturation. 2Z  has no variation till 
the angle of incidence 28o, after that it increases in strength with increase in the gas saturation till 
63o, beyond this some weakening is observed with increase in the gas saturation. 11Z  decreases in 
strength with increase in the gas saturation σ  until the angle of incidence 42o, after that increase is 
observed with  . Similarly, 44Z  increases little with increase in the gas saturation until 48o, 
afterwards, it decreases a little with increase in the gas saturation. 
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Figure 6: The same as Fig. 2, but variation for incidence of SV-wave. 

 
Fig. 7 shows the variation of the amplitude ratios with change in the frequency   for incident SV-
wave. 1Z  strengthen with increase in the frequency until 42 , after this it remains ineffective to the 
change in frequency. Therefore, mixed behavior is shown with variation in the frequency. 44Z  gain in 
strength with increase in  . 2Z  increases with increase in  , change is most prominent after 48o. 
While 11Z  shows almost no variation with  . 22Z  and 33Z  are very small, but it strengthen with 
increase in the frequency.  
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.  
Figure 7: The same as Fig. 3, but variation for incidence of SV-wave. 

 
Fig. 8 shows the variation of amplitude ratios with change of capillary pressure for incident SV-wave. 
Like Fig. 4, 1Z , 2Z , 11Z  and 44Z  show almost no variation with increase in the capillary pressure as 
the variation is observed at the small scale only, which is visible in 22Z  and 33Z . 
 Fig. 9 shows the variation in the amplitude ratios with fraction of bound liquid film for incidence 
of SV-wave. 44Z  decreases with increase in  . 1Z  shows a mixed behaviour, i.e., it gets weaken with 
increase in the fraction of bound liquid film until the angle of incidence 42o, thereafter, it increases 
with   until 55o, henceforth, no variation till grazing incidence. Therefore, mixed behavior is observed.  
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Figure 8: The same as Fig. 4, but variation for incidence of SV-wave. 

 

2Z  decreases with increase in  . 11Z  increases with increase in   till 42o, after that, it decreases 
with increase in the fraction of bound liquid film. 22Z  and 33Z  are again very small and shows a 
weakening with increase in the fraction of bound liquid film. 
 Fig. 10 depicts the variation of the energy partitions with the change of gas saturation for incident 
P -wave. 2E  increases with increase in the gas saturation and 44E  decreases with increase in the gas  
saturation. And, 1E  and 11E  are insensitive to the change of frequency. While, 22E , 33E  and RRE  
are very small. 
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Figure 9: The same as Fig. 5, but variation for incidence of SV-wave. 

 
Fig. 11 depicts the effect of the frequency on the energy partitions for incident P-wave. One could 
easily draw inference from the figure that 1E  and 11E  are insensitive to the change in the frequency 
and if any little is seen that is seen after 78 . The share of reflected SV-wave (i.e., 2E ) increases with 
increase in the frequency. While the energy variation of 44E  unlike  2E  shows a decrease with 
increase of the frequency. 22E , 33E  and RRE  are very small and first two shows an increase with 
increase in the frequency of the incident wave. 
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Figure 10: Energy ratios ( 1E , 2E , 11E , 22E , 33E , 44E  and RRE ) with 2  kHz,   0.2, h  4, 
0.001cap lK K ,   0.2, 0.5, 0.8, and different angles of incidence of P-wave. 

 
Fig. 12 shows the effect of the capillary pressure on the energy partitions for the incident P-wave. 
The variation is observed at the small scale. 1E  and 44E  do not show any change with capillary 
pressure. 2E  shows an increase in the energy with increase in the capillary pressure. Unlike 2E , 11E  
shows a decrease in energy with increase in the capillary pressure. 
 Fig. 13 shows the effect of  bound liquid film on the energy partitions for the incident P-wave. 1E  
shows a little variation that too after 65 , i.e., dips with increase in the fraction of the bound liquid 
film. 2E  decreases with increase in the value of  . 44E  increases gradually with increase in the  
Latin American Journal of Solids and Structures 12 (2015) 1870-1900 



   Rajesh Saini / Reflection and refraction at the interface of an elastic solid and a partially saturated porous solid          1890 

 

 
Figure 11: Energy ratios ( 1E , 2E , 11E , 22E , 33E , 44E  and RRE ) with angle of incidence of P-wave for   0.4, 

  0.2, h  4, 0.001cap lK K , and different values of  . 

 
fraction of liquid bound film, i.e., the increase in   enhances the energy share of that wave. 11E  
decreases slightly with increase in the fraction of bound liquid film. Once again 22E , 33E  and RRE  
are very small. 
 Fig. 14 depicts the variation in the energy partitions with the change of gas saturation for incident 
SV-wave. 1E  increases with increase in the saturation of gas. 2E  is insensitive to the change of gas 
saturation. 11E  decreases with increase in the gas saturation and the decrease is quite significant. 44E  
increases with increase in the gas saturation. 22E , 33E  and RRE  are very small and their variation 
is as shown in the figure. 
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Figure 12: Energy ratios ( 1E , 2E , 11E , 22E , 33E , 44E  and RRE ) with angle of incidence of P-wave for 
2  kHz  ,   0.4,   0.2, h  4, and different values of capK . 

 
Fig. 15 depicts the effect of the frequency on the energy partitions for incident SV-wave. 1E  increases 
in magnitude with increase in the frequency till the critical incidence 39o. 2E  is insensitive to the 
change of frequency. 11E  decreases too with increase in the frequency. But, 44E  shows an increase 
with increase in the frequency. However, 22E , 33E  are small but show an increase in the magnitude 
with increase in the frequency. RRE  shows a decrease in the magnitude with increase in the frequency 
till 39  and beyond which the pattern is reversed, i.e., increases with increase in the frequency. 
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Figure 13:  Energy ratios ( 1E , 2E , 11E , 22E , 33E , 44E  and RRE ) with angle of incidence of P-wave for   0.4, 
2  kHz  , ch  4, 0.001cap lK K , and different values of  . 

 
Fig. 16 shows the effect of capillary pressure on the energy partitions for incidence of SV-wave. 1E ,

2E  and 44E  are insensitive to change of capillary pressure. 11E  shows an increase in the energy share, 
that too after 48o. 22E , 33E  and RRE  are again very small and their variation is shown in the figure. 
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Figure 14: The same as Fig. 10, but variation for incidence of SV-wave. 

 

Fig. 17 shows the effect of bound liquid film on energy partitions for incidence of SV-wave. 1E  
decreases with increase in the fraction of the bound liquid film till 39o. 2E  decreases with increase of 
the fraction of bound liquid film. 11E  increases with increase in the fraction of bound liquid film. 44E   
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Figure 15: The same as Fig. 11, but variation for incidence of SV-wave. 

 
decreases with increase in the fraction of the bound liquid film. 22E  and 33E  show a decrease with 
increase in the value of  , however, the variation is at small scale. RRE  increases till 39o and beyond 
which it decreases with increase in the value of the  . 
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Figure 16: The same as Fig. 12, but variation for incidence of SV-wave. 
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Figure 17: The same as Fig. 13, but variation for incidence of SV-wave. 

 
9 CONCLUDING REMARKS 

The work presented here study the reflection/refraction at the interface of an elastic solid and a 
partially saturated porous solid containing liquid filled bound pores and a connected pore space 
saturated by two-phase fluid and the study is for low frequency regime. The porous medium is 
dissipative due to presence of viscous fluids in the connected pores. The four attenuated waves in the 
porous medium are identified with complex velocities. The variable gas share in pores enables to 
represent the pore saturation from all liquid to all gas. Besides, the method used in this paper is not 
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based on elastic Lame's potentials, but looks directly for the solution of the elastodynamic equation 
in term of displacement vectors. The study through this method has advantage over the traditional 
potential method. Firstly, it could be generalized to anisotropic media for the given model. Secondly, 
it could be used for the inhomogeneous media, but lame’s potential method could not be used for 
both the cases. Some main observations from the numerical example may be important and hence 
are explained as follows: 
1) The amplitude ratios 1Z  and 2Z  show variation with change of the saturation of gas, both for 
 the incident P and SV-waves. 
2) For incidence of P-wave, 2Z , 11Z  and 44Z  show change with change of frequency. While for 
 incidence of SV-wave, 1Z , 2Z , and 44Z  show a significant change with change of frequency. 
3) All the amplitude ratios are insensitive to the change of the capillary pressure. 
4) All amplitude ratios are sensitive to change of fraction of bound liquid film. 
5) The variation with saturation of gas is observed for 22E  and 44E  for incidence of P-wave and 
 for incident SV-wave, the variation is prominent for 1E , 11E  and 44E  waves only. 
6) The variation of energy with frequency for incidence P-wave is most prominent for reflected SV 
 and refracted SV-wave. For SV incidence, the significant variation is observed for reflected P, 
 refracted IP  and refracted SV . 
7) The capillary pressure has an insignificant effect on the energy ratios variation. Any effect, if 
 there, is very small and could be observed for small energy ratios 22E  and 33E . 
8) Variation with bound liquid film is dominant only in case of 2E , 11E  and 44E  waves for incident 
 P-wave. For incidence of SV-wave, 11E  and 44E  alone show variation with change of fraction of 
 bound liquid film. 
9) The energy ratios 22E  and 33E  are very small. 
10) Angle of incidence render a significant effect on the energy partitions across the surface. 
11) The sum of all the energies i.e. reflected as well as refracted at the interface is unity. This shows 
 that there is no dissipation of energy at the interface. Hence, energy is conserved. 
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Appendix: 
 
The elastic constants used in (4) are expressed in terms of the elastic constants of the constituents, 
as follows: 
 

 3 3 0 32 331k k R           , 

 2 2 3 0 22 23k k k R          , 

 1 1 3 0 12 13k k k R          ,  1, 2, 3k  , 

 g g l lR     ,  0 h   , 

 
where h  is Henry's constant (Garg and Nayfeh, 1986) to represent the mixing of two pore-fluids. 
For immiscible pore-fluids, i.e., 0h  , ik  are reduced to ik  , which are expressed as follows: 
 

 11 11rK        , 

12 2rK    , 13 3rK    ,    1r s sK K K      , 

 21 1 11lK           ,   22 2 2 1 1lK            , 

 23 3 31lK           , 

 31 1 1gK      ,  32 2 2gK      ,  33 3 31gK       , 

   1 11 g lK K K     ,    1 1  1 1r r cK K K            , 
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 1c l g l gK K K K K K        ,   1 g lK K K      , 

 1 1r dK K        , 

   2 21 [ ]l g lK K K K      ,      2 1 1  l g rK K K K      ,  1 capK   , 

   3 31 [ ]l g gK K K K      ,    3 1  g l rK K K K     , 

 
where capK  is equivalent bulk modulus for macroscopic capillary pressure (Garg and Nayfeh, 1986) 
and dK  is the bulk modulus for drained porous solid. jK  denotes the bulk modulus of phase
( ,  ,  ,  )j s l g . 1

cK  represents the effective compressibility of mixture of pore-fluids and cK   reduces 
to lK  when 0  . The present work is specifically restricted to the propagation low frequency 
harmonic waves so as to follow Poiseuille flow. As a result the capillary pressure in pores is assumed 
to be independent of frequency and hence a constant capK . 
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